To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns
Abstract
:1. Introduction
2. Effect of Mass Treatment on Prevalence of N. meningitidis, Meningitis Cases and AMR
2.1. Individual Level Assessment
2.2. Association between Overcrowding and N. meningitidis Prevalence/outbreaks
3. Discussion
Funding
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
PrEP | Preexposure Prophylaxis |
US | United States of America |
References
- World Health Organization. Global Health Sector Strategy on Sexually Transmitted Infections 2016–2021; Towards ending STIs; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Unemo, M.; Bradshaw, C.S.; Hocking, J.S.; de Vries, H.J.C.; Francis, S.C.; Mabey, D.; Marrazzo, J.M.; Sonder, G.J.B.; Schwebke, J.R.; Hoornenborg, E.; et al. Sexually transmitted infections: Challenges ahead. Lancet Infect. Dis. 2017, 17, e235–e279. [Google Scholar] [CrossRef]
- Kenyon, C.; Van Dijck, C.; Florence, E. Facing increased sexually transmitted infection incidence in HIV preexposure prophylaxis cohorts: What are the underlying determinants and what can be done? Curr. Opin. Infect. Dis. 2020, 33, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C. We need to consider collateral damage to resistomes when we decide how frequently to screen for chlamydia/gonorrhoea in PrEP cohorts. AIDS 2019, 33, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Wawer, M.J.; Sewankambo, N.K.; Serwadda, D.; Quinn, T.C.; Kiwanuka, N.; Li, C.; Lutalo, T.; Nalugoda, F.; Gaydos, C.A.; Moulton, L.H.; et al. Control of sexually transmitted diseases for AIDS prevention in Uganda: A randomised community trial. Lancet 1999, 353, 525–535. [Google Scholar] [CrossRef]
- Wawer, M.J.; Gray, R.H.; Sewankambo, N.K.; Serwadda, D.; Paxton, L.; Berkley, S.; McNairn, D.; Wabwire-Mangen, F.; Li, C.; Nalugoda, F.; et al. A randomized, community trial of intensive sexually transmitted disease control for AIDS prevention, Rakai, Uganda. AIDS 1998, 12, 1211–1225. [Google Scholar] [CrossRef] [Green Version]
- Ghys, P.D.; Diallo, M.O.; Ettiègne-Traoré, V.; Satten, G.A.; Anoma, C.K.; Maurice, C.; Kadjo, J.C.; Coulibaly, I.M.; Wiktor, S.Z.; Greenberg, A.E.; et al. Effect of interventions to control sexually transmitted disease on the incidence of HIV infection in female sex workers. AIDS 2001, 15, 1421–1431. [Google Scholar] [CrossRef]
- Olsen, G.A. Consumption of antibiotics in Greenland, 1964–1970. IV. Changes in the sensitivity of N. gonorrhoeae to antibiotics. Br. J. Vener. Dis. 1973, 49, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, C.; Laumen, J.; Van Dijck, C. Could intensive screening for gonorrhoea/chlamydia in PrEP cohorts select for resistance? Historical lessons from a mass treatment campaign in Greenland. Sex. Transm. Dis. 2019. [Google Scholar] [CrossRef]
- McNamara, L.A.; MacNeil, J.R.; Cohn, A.C.; Stephens, D.S. Mass chemoprophylaxis for control of outbreaks of meningococcal disease. Lancet Infect. Dis. 2018, 18, e272–e281. [Google Scholar] [CrossRef]
- Stephens, D.S.; Greenwood, B.; Brandtzaeg, P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 2007, 369, 2196–2210. [Google Scholar] [CrossRef]
- Ala’Aldeen, D.A.; Neal, K.R.; Ait-Tahar, K.; Nguyen-Van-Tam, J.S.; English, A.; Falla, T.J.; Hawkey, P.M.; Slack, R.C. Dynamics of meningococcal long-term carriage among university students and their implications for mass vaccination. J. Clin. Microbiol. 2000, 38, 2311–2316. [Google Scholar] [PubMed]
- Glover, J. The cerebro-spinal fever epidemic of 1917 at X depot. Epidemiol. Infect. 1918, 17, 350–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotman, E.; Seifert, H.S. The genetics of Neisseria species. Annu. Rev. Genet. 2014, 48, 405–431. [Google Scholar] [CrossRef]
- Lu, Q.F.; Cao, D.M.; Su, L.L.; Li, S.B.; Ye, G.B.; Zhu, X.Y.; Wang, J. Genus-Wide Comparative Genomics Analysis of Neisseria to Identify New Genes Associated with Pathogenicity and Niche Adaptation of Neisseria Pathogens. Int. J. Genomics 2019, 2019, 6015730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoumanis, A.; Hens, N.; Kenyon, C.R. Is screening for chlamydia and gonorrhea in men who have sex with men associated with reduction of the prevalence of these infections? a systematic review of observational studies. Sex. Transm. Dis. 2018, 45, 615–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghani, A.C.; Swinton, J.; Garnett, G.P. The role of sexual partnership networks in the epidemiology of gonorrhea. Sex. Transm. Dis. 1997, 24, 45–56. [Google Scholar] [CrossRef]
- Garnett, G.P.; Mertz, K.J.; Finelli, L.; Levine, W.C.; St Louis, M.E. The transmission dynamics of gonorrhoea: Modelling the reported behaviour of infected patients from Newark, New Jersey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999, 354, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, C.; Delva, W. It’s the network, stupid: A population’s sexual network connectivity determines its STI prevalence. F1000Res. 2018, 7, 1880. [Google Scholar] [CrossRef]
- Buyze, J.; Vandenberghe, W.; Hens, N.; Kenyon, C. Current levels of gonorrhoea screening in MSM in Belgium may have little effect on prevalence: A modelling study. Epidemiol. Infect. 2018, 146, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhang, C.; Zhang, X.; Chen, M. Meningococcal quinolone resistance originated from several commensal Neisseria species. Antimicrob.Agents Chemother. 2019, 64, e01494-19. [Google Scholar] [CrossRef]
- Bowler, L.D.; Zhang, Q.Y.; Riou, J.Y.; Spratt, B.G. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: Natural events and laboratory simulation. J. Bacteriol. 1994, 176, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadsworth, C.B.; Arnold, B.J.; Sater, M.R.A.; Grad, Y.H. Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. mBio 2018, 9, e01419-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bash, M.C.; Matthias, K.A. Antibiotic Resistance in Neisseria. Antimicrob. Drug Res. 2017, 2, 843. [Google Scholar]
- Saez-Nieto, J.A.; Perucha, M.; Casamayor, H.; Marcen, J.J.; Llacer, A.; Garcia-Barreno, B.; Casal, J. Outbreak of infection caused by Neisseria meningitidis group C type 2 in a nursery. J. Infect. 1984, 8, 49–55. [Google Scholar] [CrossRef]
- Block, C.; Raz, R.; Frasch, C.E.; Ephros, M.; Greif, Z.; Talmon, Y.; Rosin, D.; Bogokowsky, B. Re-emergence of meningococcal carriage on three-year follow-up of a kibbutz population after whole-community chemoprophylaxis. Eur. J. Clin. Microbiol. Infect. Dis. 1993, 12, 505–511. [Google Scholar] [CrossRef]
- Jackson, L.A.; Alexander, E.R.; Debolt, C.A.; Swenson, P.D.; Boase, J.; McDowell, M.G.; Reeves, M.W.; Wenger, J.D. Evaluation of the use of mass chemoprophylaxis during a school outbreak of enzyme type 5 serogroup B meningococcal disease. Pediatr. Infect. Dis. J. 1996, 15, 992–998. [Google Scholar] [CrossRef]
- Pearce, M.C.; Sheridan, J.W.; Jones, D.M.; Lawrence, G.W.; Murphy, D.M.; Masutti, B.; McCosker, C.; Douglas, V.; George, D.; O’Keefe, A.; et al. Control of group C meningococcal disease in Australian aboriginal children by mass rifampicin chemoprophylaxis and vaccination. Lancet 1995, 346, 20–23. [Google Scholar] [CrossRef]
- Millar, J.W.; Siess, E.E.; Feldman, H.A.; Silverman, C.; Frank, P. In vivo and in vitro resistance to sulfadiazine in strains of Neisseria meningitidis. JAMA 1963, 186, 139–141. [Google Scholar] [CrossRef]
- Neal, K.; Irwin, D.; Davies, S.; Kaczmarski, E.; Wale, M. Sustained reduction in the carriage of Neisseria meningitidis as a result of a community meningococcal disease control programme. Epidemiol. Infect. 1998, 121, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Zalmanovici Trestioreanu, A.; Fraser, A.; Gafter-Gvili, A.; Paul, M.; Leibovici, L. Antibiotics for preventing meningococcal infections. Cochrane Database Syst. Rev. 2011, CD004785. [Google Scholar] [CrossRef] [PubMed]
- Stephens, D. Neisseria meningitidis. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, M.; Deguchi, T.; Mizutani, K.S.; Yasuda, M.; Yokoi, S.; Ito, S.; Takahashi, Y.; Ishihara, S.; Kawamura, Y.; Ezaki, T. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in Central Japan. Antimicrob. Agents Chemother. 2005, 49, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Nakayama, H.; Huruya, K.; Konomi, I.; Irie, S.; Kanayama, A.; Saika, T.; Kobayashi, I. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype. Int J Antimicrob Agents 2006, 27, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Furuya, R.; Onoye, Y.; Kanayama, A.; Saika, T.; Iyoda, T.; Tatewaki, M.; Matsuzaki, K.; Kobayashi, I.; Tanaka, M. Antimicrobial resistance in clinical isolates of Neisseria subflava from the oral cavities of a Japanese population. J. Infect. Chemother. 2007, 13, 302–304. [Google Scholar] [CrossRef]
- Kenyon, C.; Buyze, J.; Wi, T. Antimicrobial consumption and susceptibility of Neisseria gonorrhoeae: A global ecological analysis. Front. Med. 2018, 5, 329. [Google Scholar] [CrossRef]
- Dong, H.V.; Pham, L.Q.; Nguyen, H.T.; Nguyen, M.X.B.; Nguyen, T.V.; May, F.; Le, G.M.; Klausner, J.D. Decreased Cephalosporin Susceptibility of Oropharyngeal Neisseria Species in Antibiotic-Using Men-who-have-sex-with-men of Hanoi, Vietnam. Clin. Infect. Dis. 2019, ciz365. [Google Scholar] [CrossRef]
- Bolan, R.K.; Beymer, M.R.; Weiss, R.E.; Flynn, R.P.; Leibowitz, A.A.; Klausner, J.D. Doxycycline Prophylaxis to Reduce Incident Syphilis among HIV-Infected Men Who Have Sex With Men Who Continue to Engage in High-Risk Sex: A Randomized, Controlled Pilot Study. Sex. Transm. Dis. 2015, 42, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.M.; Charreau, I.; Chidiac, C.; Pialoux, G.; Cua, E.; Delaugerre, C.; Capitant, C.; Rojas-Castro, D.; Fonsart, J.; Bercot, B.; et al. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: An open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect. Dis. 2017, 18, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J.S. Historical perspectives and identification of Neisseria and related species. Clin Microbiol Rev. 1988, 1, 415–431. [Google Scholar] [CrossRef]
- Kenyon, C. How actively should we screen for chlamydia and gonorrhoea in MSM and other high-ST-prevalence populations as we enter the era of increasingly untreatable infections? A viewpoint. J. Med. Microbiol. 2018, 68, 132–135. [Google Scholar] [CrossRef]
- Kenyon, C.; Schwartz, I.S. A combination of high sexual network connectivity and excess antimicrobial usage induce the emergence of antimicrobial resistance in Neisseria gonorrhoeae. Emerg. Infect. Dis. 2018, 24, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dretler, A.W.; Rouphael, N.G.; Stephens, D.S. Progress toward the global control of Neisseria meningitidis: 21st century vaccines, current guidelines, and challenges for future vaccine development. Hum. Vaccin. Immunother. 2018, 14, 1146–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, H.S.; McMillan, M.; Koehler, A.P.; Lawrence, A.; Sullivan, T.R.; MacLennan, J.M.; Maiden, M.C.J.; Ladhan, S.N.; Ramsay, M.E.; Trotter, C.; et al. Meningococcal B Vaccine and Meningococcal Carriage in Adolescents in Australia. N. Engl. J. Med. 2020, 382, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.S.; McMillan, M.; Koehler, A.; Lawrence, A.; MacLennan, J.; Maiden, M.; Ramsay, M.; Ladhani, S.N.; Trotter, C.; Borrow, R.; et al. B Part of It School Leaver protocol: An observational repeat cross-sectional study to assess the impact of a meningococcal serogroup B (4CMenB) vaccine programme on carriage of Neisseria meningitidis. BMJ Open 2019, 9, e027233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terranova, L.; Principi, N.; Bianchini, S.; Di Pietro, G.; Umbrello, G.; Madini, B.; Esposito, S. Neisseria meningitidis serogroup B carriage by adolescents and young adults living in Milan, Italy: Prevalence of strains potentially covered by the presently available meningococcal B vaccines. Hum. Vaccin. Immunother. 2018, 14, 1070–1074. [Google Scholar] [CrossRef]
- Balmer, P.; Burman, C.; Serra, L.; York, L.J. Impact of meningococcal vaccination on carriage and disease transmission: A review of the literature. Hum. Vaccin. Immunother. 2018, 14, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- Gianchecchi, E.; Piccini, G.; Torelli, A.; Rappuoli, R.; Montomoli, E. An unwanted guest: Neisseria meningitidis—Carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence. Expert Rev. Anti. Infect. Ther. 2017, 15, 689–701. [Google Scholar] [CrossRef]
- Kenyon, C. Comment on “Effectiveness of a Group B outer membrane vesicle meningococcal vaccine in preventing hospitalization from gonorrhea in New Zealand: A retrospective cohort study. Vaccines 2019, 1, 5, doi:10.3390/vaccines7010005”. Vaccines 2019, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Paynter, J.; Goodyear-Smith, F.; Morgan, J.; Saxton, P.; Black, S.; Petousis-Harris, H.J.V. Effectiveness of a Group B Outer Membrane Vesicle Meningococcal Vaccine in Preventing Hospitalization from Gonorrhea in New Zealand: A Retrospective Cohort Study. Vaccines 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Petousis-Harris, H.; Paynter, J.; Morgan, J.; Saxton, P.; McArdle, B.; Goodyear-Smith, F.; Black, S. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: A retrospective case-control study. Lancet 2017, 390, 1603–1610. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenyon, C. To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns. Pathogens 2020, 9, 134. https://doi.org/10.3390/pathogens9020134
Kenyon C. To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns. Pathogens. 2020; 9(2):134. https://doi.org/10.3390/pathogens9020134
Chicago/Turabian StyleKenyon, Chris. 2020. "To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns" Pathogens 9, no. 2: 134. https://doi.org/10.3390/pathogens9020134
APA StyleKenyon, C. (2020). To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns. Pathogens, 9(2), 134. https://doi.org/10.3390/pathogens9020134