Engineering of Live Chimeric Vaccines against Human Metapneumovirus
Abstract
:1. Introduction
1.1. Need for a Vaccine
1.2. Vaccine Development
1.3. Target Populations
2. Vector-Based Chimeric Vaccines
3. Recombinant Virus Engineering
3.1. Reverse Genetics
3.2. Genomic Organization of Paramyxoviridae and Pneumoviridae
3.3. Principles of Exogene Insertions
4. Examples of Chimeric Anti-HMPV Vaccines
4.1. Recombinant Bovine/Human Parainfluenza Type 3
4.2. Human Parainfluenza Type 1
4.3. Sendai Virus
4.4. Newcastle Disease Virus
4.5. Vesicular Stomatitis Virus
4.6. Recombinant Chimeric HMPV
5. Potential Development of Chimeric Vaccines against HMPV
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2015 LRI Collaborators Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 2017, 17, 1133–1161. [CrossRef] [Green Version]
- García-García, M.L.; Calvo, C.; Rey, C.; Díaz, B.; Molinero, M.D.; Pozo, F.; Casas, I. Human metapnuemovirus infections in hospitalized children and comparison with other respiratory viruses. 2005-2014 prospective study. PLoS ONE 2017, 12, e0173504. [Google Scholar]
- Huck, B.; Scharf, G.; Neumann-Haefelin, D.; Puppe, W.; Weigl, J.; Falcone, V. Novel Human Metapneumovirus Sublineage. Emerg. Infect. Dis. 2006, 12, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Biacchesi, S.; Skiadopoulos, M.H.; Boivin, G.; Hanson, C.T.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Genetic diversity between human metapneumovirus subgroups. Virology 2003, 315, 1–9. [Google Scholar] [CrossRef] [Green Version]
- van den Hoogen, B.G.; Herfst, S.; Sprong, L.; Cane, P.A.; Forleo-Neto, E.; de Swart, R.L.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Antigenic and Genetic Variability of Human Metapneumoviruses. Emerg. Infect. Dis. 2004, 10, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Skiadopoulos, M.H.; Biacchesi, S.; Buchholz, U.J.; Riggs, J.M.; Surman, S.R.; Amaro-Carambot, E.; McAuliffe, J.M.; Elkins, W.R.; St. Claire, M.; Collins, P.L.; et al. The Two Major Human Metapneumovirus Genetic Lineages Are Highly Related Antigenically, and the Fusion (F) Protein Is a Major Contributor to This Antigenic Relatedness. J. Virol. 2004, 78, 6927–6937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.-Y.; Tsao, K.-C.; Huang, C.-G.; Huang, Y.-C.; Lin, T.-Y. Clinical features of different genotypes/genogroups of human metapneumovirus in hospitalized children. J. Microbiol. Immunol. Infect. 2013, 46, 352–357. [Google Scholar] [CrossRef] [Green Version]
- Juhasz, K.; Easton, A.J. Extensive Sequence Variation in the Attachment (G) Protein Gene of Avian Pneumovirus: Evidence for Two Distinct Subgroups. J. Gen. Virol. 1994, 75, 2873–2880. [Google Scholar] [CrossRef]
- Seal, B.S. Matrix protein gene nucleotide and predicted amino acid sequence demonstrate that the first US avian pneumovirus isolate is distinct from European strains. Virus Res. 1998, 58, 45–52. [Google Scholar] [CrossRef]
- Arnauld, C.; Bäyon-Auboyer, M.-H.; Eterradossi, N.; Toquin, D. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup. J. Gen. Virol. 2000, 81, 2723–2733. [Google Scholar]
- van den Hoogen, B.G.; de Jong, J.C.; Groen, J.; Kuiken, T.; de Groot, R.; Fouchier, R.A.M.; Osterhaus, A.D.M.E. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Moe, N.; Krokstad, S.; Stenseng, I.H.; Christensen, A.; Skanke, L.H.; Risnes, K.R.; Nordbø, S.A.; Døllner, H. Comparing Human Metapneumovirus and Respiratory Syncytial Virus: Viral Co-Detections, Genotypes and Risk Factors for Severe Disease. PLoS ONE 2017, 12, e0170200. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.V.; Edwards, K.M.; Weinberg, G.A.; Griffin, M.R.; Hall, C.B.; Zhu, Y.; Szilagyi, P.G.; Wang, C.K.; Yang, C.; Silva, D.; et al. Population-Based Incidence of Human Metapneumovirus Infection among Hospitalized Children. J. Infect. Dis. 2010, 201, 1890–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peiris, J.S.M.; Tang, W.-H.; Chan, K.-H.; Khong, P.-L.; Guan, Y.; Lau, Y.-L.; Chiu, S.S. Children with Respiratory Disease Associated with Metapneumovirus in Hong Kong. Emerg. Infect. Dis. 2003, 9, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Kusel, M.M.H.; de Klerk, N.H.; Kebadze, T.; Vohma, V.; Holt, P.G.; Johnston, S.L.; Sly, P.D. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J. Allergy Clin. Immunol. 2007, 119, 1105–1110. [Google Scholar] [CrossRef]
- Edwards, K.M.; Zhu, Y.; Griffin, M.R.; Weinberg, G.A.; Hall, C.B.; Szilagyi, P.G.; Staat, M.A.; Iwane, M.; Prill, M.M.; Williams, J.V. Burden of Human Metapneumovirus Infection in Young Children. N. Engl. J. Med. 2013, 368, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Bosis, S.; Esposito, S.; Niesters, H.G.M.; Crovari, P.; Osterhaus, A.D.M.E.; Principi, N. Impact of human metapneumovirus in childhood: Comparison with respiratory syncytial virus and influenza viruses. J. Med. Virol. 2005, 75, 101–104. [Google Scholar] [CrossRef]
- Anderson, E.J.; Simões, E.A.F.; Buttery, J.P.; Dennehy, P.H.; Domachowske, J.B.; Jensen, K.; Lieberman, J.M.; Losonsky, G.A.; Yogev, R. Prevalence and Characteristics of Human Metapneumovirus Infection Among Hospitalized Children at High Risk for Severe Lower Respiratory Tract Infection. J. Pediatric Infect. Dis. Soc. 2012, 1, 212–222. [Google Scholar] [CrossRef]
- Cattoir, L.; Vankeerberghen, A.; Boel, A.; Van Vaerenbergh, K.; De Beenhouwer, H. Epidemiology of RSV and hMPV in Belgium: A 10-year follow-up. Acta Clin. Belg. 2019, 74, 229–235. [Google Scholar] [CrossRef]
- Glezen, W.P.; Taber, L.H.; Frank, A.L.; Kasel, J.A. Risk of primary infection and reinfection with respiratory syncytial virus. Am. J. Dis. Child. 1986, 140, 543–546. [Google Scholar] [CrossRef]
- Leung, J.; Esper, F.; Weibel, C.; Kahn, J.S. Seroepidemiology of human metapneumovirus (hMPV) on the basis of a novel enzyme-linked immunosorbent assay utilizing hMPV fusion protein expressed in recombinant vesicular stomatitis virus. J. Clin. Microbiol. 2005, 43, 1213–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falsey, A.R.; Erdman, D.; Anderson, L.J.; Walsh, E.E. Human Metapneumovirus Infections in Young and Elderly Adults. J. Infect. Dis. 2003, 187, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Englund, J.A.; Boeckh, M.; Kuypers, J.; Nichols, W.G.; Hackman, R.C.; Morrow, R.A.; Fredricks, D.N.; Corey, L. Brief Communication: Fatal Human Metapneumovirus Infection in Stem-Cell Transplant Recipients. Ann. Intern. Med. 2006, 144, 344. [Google Scholar] [CrossRef] [PubMed]
- Mazur, N.I.; Higgins, D.; Nunes, M.C.; Melero, J.A.; Langedijk, A.C.; Horsley, N.; Buchholz, U.J.; Openshaw, P.J.; McLellan, J.S.; Englund, J.A.; et al. The respiratory syncytial virus vaccine landscape: Lessons from the graveyard and promising candidates. Lancet Infect. Dis. 2018, 18, e295–e311. [Google Scholar] [CrossRef] [Green Version]
- Karron, R.A.; San Mateo, J.; Wanionek, K.; Collins, P.L.; Buchholz, U.J. Evaluation of a Live Attenuated Human Metapneumovirus Vaccine in Adults and Children. J. Pediatric Infect. Dis. Soc. 2018, 7, 86–89. [Google Scholar] [CrossRef]
- Murphy, B.R.; Prince, G.A.; Walsh, E.E.; Kim, H.W.; Parrott, R.H.; Hemming, V.G.; Rodriguez, W.J.; Chanock, R.M. Dissociation between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine. J. Clin. Microbiol. 1986, 24, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Waris, M.E.; Tsou, C.; Erdman, D.D.; Zaki, S.R.; Anderson, L.J. Respiratory synctial virus infection in BALB/c mice previously immunized with formalin-inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2-like cytokine pattern. J. Virol. 1996, 70, 2852–2860. [Google Scholar] [CrossRef] [Green Version]
- Kakuk, T.J.; Soike, K.; Brideau, R.J.; Zaya, R.M.; Cole, S.L.; Zhang, J.-Y.; Roberts, E.D.; Wells, P.A.; Wathen, M.W. A Human Respiratory Syncytial Virus (RSV) Primate Model of Enhanced Pulmonary Pathology Induced with a Formalin-Inactivated RSV Vaccine but Not a Recombinant FG Subunit Vaccine. J. Infect. Dis. 1993, 167, 553–561. [Google Scholar] [CrossRef]
- Porter, D.D.; Prince, G.A.; Yim, K.C.; Curtis, S.J. Vaccine-enhanced respiratory syncytial virus disease in cotton rats following immunization with Lot 100 or a newly prepared reference vaccine. J. Gen. Virol. 2001, 82, 2881–2888. [Google Scholar]
- Gershwin, L.J.; Schelegle, E.S.; Gunther, R.A.; Anderson, M.L.; Woolums, A.R.; Larochelle, D.R.; Boyle, G.A.; Friebertshauser, K.E.; Singer, R.S. A bovine model of vaccine enhanced respiratory syncytial virus pathophysiology. Vaccine 1998, 16, 1225–1236. [Google Scholar] [CrossRef]
- Yim, K.C.; Cragin, R.P.; Boukhvalova, M.S.; Blanco, J.C.G.; Hamlin, M.-È.; Boivin, G.; Porter, D.D.; Prince, G.A. Human metapneumovirus: Enhanced pulmonary disease in cotton rats immunized with formalin-inactivated virus vaccine and challenged. Vaccine 2007, 25, 5034–5040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamelin, M.-E.; Couture, C.; Sackett, M.K.; Boivin, G. Enhanced lung disease and Th2 response following human metapneumovirus infection in mice immunized with the inactivated virus. J. Gen. Virol. 2007, 88, 3391–3400. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B.; Walsh, E.E.; Long, C.E.; Schnabel, K.C. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis. 1991, 163, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Tripp, R.A. The Immune Response to Human Metapneumovirus Is Associated with Aberrant Immunity and Impaired Virus Clearance in BALB/c Mice. J. Virol. 2005, 79, 5971–5978. [Google Scholar] [CrossRef] [Green Version]
- Valarcher, J.-F.; Furze, J.; Wyld, S.; Cook, R.; Conzelmann, K.-K.; Taylor, G. Role of alpha/beta interferons in the attenuation and immunogenicity of recombinant bovine respiratory syncytial viruses lacking NS proteins. J. Virol. 2003, 77, 8426–8439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlender, J.; Bossert, B.; Buchholz, U.; Conzelmann, K.K. Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize alpha/beta interferon-induced antiviral response. J. Virol. 2000, 74, 8234–8242. [Google Scholar] [CrossRef] [Green Version]
- Spann, K.M.; Tran, K.-C.; Chi, B.; Rabin, R.L.; Collins, P.L. Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages [corrected]. J. Virol. 2004, 78, 4363–4369. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Liu, T.; Shan, Y.; Li, K.; Garofalo, R.P.; Casola, A. Human metapneumovirus glycoprotein G inhibits innate immune responses. Plos Pathog. 2008, 4, e1000077. [Google Scholar] [CrossRef]
- Cheemarla, N.R.; Guerrero-Plata, A. Human Metapneumovirus Attachment Protein Contributes to Neutrophil Recruitment into the Airways of Infected Mice. Viruses 2017, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Kolli, D.; Liu, T.; Shan, Y.; Garofalo, R.P.; Casola, A. Human Metapneumovirus Small Hydrophobic Protein Inhibits NF- B Transcriptional Activity. J. Virol. 2008, 82, 8224–8229. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Wang, Q.; Kolli, D.; Prusak, D.J.; Tseng, C.-T.K.; Chen, Z.J.; Li, K.; Wood, T.G.; Bao, X. Human Metapneumovirus M2-2 Protein Inhibits Innate Cellular Signaling by Targeting MAVS. J. Virol. 2012, 86, 13049–13061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Liu, G.; Go, J.; Kolli, D.; Zhang, G.; Bao, X. Human Metapneumovirus M2-2 Protein Inhibits Innate Immune Response in Monocyte-Derived Dendritic Cells. PLoS ONE 2014, 9, e91865. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Harrod, K.S.; Shieh, W.-J.; Zaki, S.; Tripp, R.A. Human Metapneumovirus Persists in BALB/c Mice despite the Presence of Neutralizing Antibodies. J. Virol. 2004, 78, 14003–14011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mejías, A.; Chávez-Bueno, S.; Gómez, A.M.; Somers, C.; Estripeaut, D.; Torres, J.P.; Jafri, H.S.; Ramilo, O. Respiratory Syncytial Virus Persistence: Evidence in the Mouse Model. Pediatric Infect. Dis. J. 2008, 27, S60–S62. [Google Scholar] [CrossRef]
- Schwarze, J.; O’Donnell, D.R.; Rohwedder, A.; Openshaw, P.J.M. Latency and Persistence of Respiratory Syncytial Virus Despite T Cell Immunity. Am. J. Respir. Crit. Care Med. 2004, 169, 801–805. [Google Scholar] [CrossRef]
- Dakhama, A.; Vitalis, T.Z.; Hegel, R.G. Persistence of respiratory syncytial virus (RSV) infection and development of RSV-specific IgG1 response in a guinea-pig model of acute brochiolitis. Eur. Respir. J. 1997, 10, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Englund, J.A. Passive protection against respiratory syncytial virus disease in infants: The role of maternal antibody. Pediatric Infect. Dis. J. 1994, 13, 449–453. [Google Scholar] [CrossRef]
- van Erp, E.A.; van Kasteren, P.B.; Guichelaar, T.; Ahout, I.M.L.; de Haan, C.A.M.; Luytjes, W.; Ferwerda, G.; Wicht, O. In Vitro Enhancement of Respiratory Syncytial Virus Infection by Maternal Antibodies Does Not Explain Disease Severity in Infants. J. Virol. 2017, 91, e00851-17. [Google Scholar] [CrossRef] [Green Version]
- Patton, K.; Aslam, S.; Shambaugh, C.; Lin, R.; Heeke, D.; Frantz, C.; Zuo, F.; Esser, M.T.; Paliard, X.; Lambert, S.L. Enhanced immunogenicity of a respiratory syncytial virus (RSV) F subunit vaccine formulated with the adjuvant GLA-SE in cynomolgus macaques. Vaccine 2015, 33, 4472–4478. [Google Scholar] [CrossRef]
- Cseke, G.; Wright, D.W.; Tollefson, S.J.; Johnson, J.E.; Crowe, J.E.; Williams, J.V. Human Metapneumovirus Fusion Protein Vaccines That Are Immunogenic and Protective in Cotton Rats. J. Virol. 2007, 81, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.R.F.; Schultheis, K.; Morrow, M.P.; Kraynyak, K.A.; McCoy, J.R.; Yim, K.C.; Muthumani, K.; Humeau, L.; Weiner, D.B.; Sardesai, N.Y.; et al. Development of an intradermal DNA vaccine delivery strategy to achieve single-dose immunity against respiratory syncytial virus. Vaccine 2017, 35, 2840–2847. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Jiao, Y.-Y.; Yu, Y.-Z.; Jiang, N.; Hua, Y.; Zhang, X.-J.; Fu, Y.-H.; Peng, X.-L.; Zheng, Y.-P.; Anderson, L.; et al. A Built-In CpG Adjuvant in RSV F Protein DNA Vaccine Drives a Th1 Polarized and Enhanced Protective Immune Response. Viruses 2018, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, C.; Lee, H.; Knightly, C.; Kalidindi, S.; Zaks, T.; Smolenov, I.; Panther, L. 2754. Phase 1 Trial of an mRNA-Based Combination Vaccine Against hMPV and PIV3. Open Forum Infect. Dis. 2019, 6, S970. [Google Scholar] [CrossRef] [Green Version]
- Skiadopoulos, M.H.; Biacchesi, S.; Buchholz, U.J.; Amaro-Carambot, E.; Surman, S.R.; Collins, P.L.; Murphy, B.R. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 2006, 345, 492–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melero, J.A.; Mas, V. The Pneumovirinae fusion (F) protein: A common target for vaccines and antivirals. Virus Res. 2015, 209, 128–135. [Google Scholar] [CrossRef]
- Ryder, A.B.; Tollefson, S.J.; Podsiad, A.B.; Johnson, J.E.; Williams, J.V. Soluble recombinant human metapneumovirus G protein is immunogenic but not protective. Vaccine 2010, 28, 4145–4152. [Google Scholar] [CrossRef] [Green Version]
- Biacchesi, S.; Skiadopoulos, M.H.; Yang, L.; Lamirande, E.W.; Tran, K.C.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Recombinant Human Metapneumovirus Lacking the Small Hydrophobic SH and/or Attachment G Glycoprotein: Deletion of G Yields a Promising Vaccine Candidate. J. Virol. 2004, 78, 12877–12887. [Google Scholar] [CrossRef] [Green Version]
- Connors, M.; Collins, P.L.; Firestone, C.Y.; Murphy, B.R. Respiratory syncytial virus (RSV) F, G, M2 (22K), and N proteins each induce resistance to RSV challenge, but resistance induced by M2 and N proteins is relatively short-lived. J. Virol. 1991, 65, 1634–1637. [Google Scholar] [CrossRef] [Green Version]
- Olmsted, R.A.; Elango, N.; Prince, G.A.; Murphy, B.R.; Johnson, P.R.; Moss, B.; Chanock, R.M.; Collins, P.L. Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: Comparison of the individual contributions of the F and G glycoproteins to host immunity. Proc. Natl. Acad. Sci. USA 1986, 83, 7462–7466. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.C.; McAuliffe, J.M.; Murphy, B.R.; Collins, P.L. Recombinant Bovine/Human Parainfluenza Virus Type 3 (B/HPIV3) Expressing the Respiratory Syncytial Virus (RSV) G and F Proteins Can Be Used to Achieve Simultaneous Mucosal Immunization against RSV and HPIV3. J. Virol. 2001, 75, 4594–4603. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.C.; Wenzke, D.R.; McAuliffe, J.M.; St Claire, M.; Elkins, W.R.; Murphy, B.R.; Collins, P.L. Mucosal Immunization of Rhesus Monkeys against Respiratory Syncytial Virus Subgroups A and B and Human Parainfluenza Virus Type 3 by Using a Live cDNA-Derived Vaccine Based on a Host Range-Attenuated Bovine Parainfluenza Virus Type 3 Vector Backbone. J. Virol. 2002, 76, 1089–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Zhou, X.; Zhong, Y.; Li, C.; Dong, A.; He, Z.; Zhang, S.; Wang, B. A Recombinant G Protein Plus Cyclosporine A–Based Respiratory Syncytial Virus Vaccine Elicits Humoral and Regulatory T Cell Responses against Infection without Vaccine-Enhanced Disease. J. Immunol. 2016, 196, 1721–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, S.; Klenow, L.; Golding, H.; Khurana, S. Preclinical evaluation of bacterially produced RSV-G protein vaccine: Strong protection against RSV challenge in cotton rat model. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, G.; Su, C.; Li, C.; Zhou, X.; Zhao, W.; Zhong, Y.; He, Z.; Peng, H.; Dong, A.; et al. Neonatal priming and infancy boosting with a novel respiratory syncytial virus vaccine induces protective immune responses without concomitant respiratory disease upon RSV challenge. Hum. Vaccines Immunother. 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLellan, J.S.; Chen, M.; Joyce, M.G.; Sastry, M.; Stewart-Jones, G.B.E.; Yang, Y.; Zhang, B.; Chen, L.; Srivatsan, S.; Zheng, A.; et al. Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus. Science 2013, 342, 592–598. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Surman, S.; Amaro-Carambot, E.; Kabatova, B.; Mackow, N.; Lingemann, M.; Yang, L.; McLellan, J.S.; Graham, B.S.; Kwong, P.D.; et al. Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate. J. Virol. 2015, 89, 9499–9510. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Ngwuta, J.O.; Herbert, R.; Swerczek, J.; Dorward, D.W.; Amaro-Carambot, E.; Mackow, N.; Kabatova, B.; Lingemann, M.; Surman, S.; et al. Packaging and Prefusion Stabilization Separately and Additively Increase the Quantity and Quality of Respiratory Syncytial Virus (RSV)-Neutralizing Antibodies Induced by an RSV Fusion Protein Expressed by a Parainfluenza Virus Vector. J. Virol. 2016, 90, 10022–10038. [Google Scholar] [CrossRef] [Green Version]
- Herfst, S.; Schrauwen, E.J.A.; de Graaf, M.; van Amerongen, G.; van den Hoogen, B.G.; de Swart, R.L.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Immunogenicity and efficacy of two candidate human metapneumovirus vaccines in cynomolgus macaques. Vaccine 2008, 26, 4224–4230. [Google Scholar] [CrossRef]
- Battles, M.B.; Más, V.; Olmedillas, E.; Cano, O.; Vázquez, M.; Rodríguez, L.; Melero, J.A.; McLellan, J.S. Structure and immunogenicity of pre-fusion-stabilized human metapneumovirus F glycoprotein. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Pilaev, M.; Shen, Y.; Carbonneau, J.; Venable, M.-C.; Rhéaume, C.; Lavigne, S.; Couture, C.; Guarné, A.; Hamelin, M.-È.; Boivin, G. Evaluation of pre- and post-fusion Human metapneumovirus F proteins as subunit vaccine candidates in mice. Vaccine 2020, in press. [Google Scholar] [CrossRef]
- Corti, D.; Bianchi, S.; Vanzetta, F.; Minola, A.; Perez, L.; Agatic, G.; Guarino, B.; Silacci, C.; Marcandalli, J.; Marsland, B.J.; et al. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature 2013, 501, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.E.; Cox, R.G.; Hastings, A.K.; Boyd, K.L.; Wadia, J.; Chen, Z.; Burton, D.R.; Williamson, R.A.; Williams, J.V. A Broadly Neutralizing Human Monoclonal Antibody Exhibits In Vivo Efficacy Against Both Human Metapneumovirus and Respiratory Syncytial Virus. J. Infect. Dis. 2015, 211, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, X.; Mousa, J.J.; Bates, J.T.; Lamb, R.A.; Crowe, J.E.; Jardetzky, T.S. Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nat. Microbiol. 2017, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Tang, A.; Cox, K.S.; Wen, Z.; Callahan, C.; Sullivan, N.L.; Nahas, D.D.; Cosmi, S.; Galli, J.D.; Minnier, M.; et al. Characterization of potent RSV neutralizing antibodies isolated from human memory B cells and identification of diverse RSV/hMPV cross-neutralizing epitopes. mAbs 2019, 11, 1415–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousa, J.J.; Binshtein, E.; Human, S.; Fong, R.H.; Alvarado, G.; Doranz, B.J.; Moore, M.L.; Ohi, M.D.; Crowe, J.E. Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins. PLoS Pathog. 2018, 14, e1006837. [Google Scholar] [CrossRef]
- Wen, X.; Pickens, J.; Mousa, J.J.; Leser, G.P.; Lamb, R.A.; Crowe, J.E.; Jardetzky, T.S. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV. PLoS ONE 2016, 11, e0155917. [Google Scholar] [CrossRef] [PubMed]
- Olmedillas, E.; Cano, O.; Martínez, I.; Luque, D.; Terrón, M.C.; McLellan, J.S.; Melero, J.A.; Más, V. Chimeric Pneumoviridae fusion proteins as immunogens to induce cross-neutralizing antibody responses. Embo. Mol. Med. 2018, 10, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Raghunandan, R.; Wu, Y.; Liu, Y.; Massare, M.; Nathan, M.; Zhou, B.; Lu, H.; Boddapati, S.; Li, J.; et al. Respiratory Syncytial Virus Fusion Glycoprotein Expressed in Insect Cells Form Protein Nanoparticles That Induce Protective Immunity in Cotton Rats. PLoS ONE 2012, 7, e50852. [Google Scholar] [CrossRef]
- Glenn, G.M.; Fries, L.F.; Thomas, D.N.; Smith, G.; Kpamegan, E.; Lu, H.; Flyer, D.; Jani, D.; Hickman, S.P.; Piedra, P.A. A Randomized, Blinded, Controlled, Dose-Ranging Study of a Respiratory Syncytial Virus Recombinant Fusion (F) Nanoparticle Vaccine in Healthy Women of Childbearing Age. J. Infect. Dis. 2016, 213, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.; Massare, M.J.; Tian, J.-H.; Guebre-Xabier, M.; Lu, H.; Zhou, H.; Maynard, E.; Scott, D.; Ellingsworth, L.; Glenn, G.; et al. Respiratory syncytial virus prefusogenic fusion (F) protein nanoparticle vaccine: Structure, antigenic profile, immunogenicity, and protection. Vaccine 2019, 37, 6112–6124. [Google Scholar] [CrossRef]
- Novavax Announces Topline Results from Phase 3 PrepareTM Trial of ResVaxTM for Prevention of RSV Disease in Infants via Maternal Immunization. 2019. Available online: https://www.nasdaq.com/press-release/novavax-announces-topline-results-phase-3-preparetm-trial-resvaxtm-prevention-rsv (accessed on 2 November 2019).
- Loo, L.; Jumat, M.; Fu, Y.; Ayi, T.; Wong, P.; Tee, N.W.; Tan, B.; Sugrue, R.J. Evidence for the interaction of the human metapneumovirus G and F proteins during virus-like particle formation. Virol. J. 2013, 10, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.C.; Schuster, J.E.; Gilchuk, P.; Boyd, K.L.; Joyce, S.; Williams, J.V. Lung CD8 + T Cell Impairment Occurs during Human Metapneumovirus Infection despite Virus-Like Particle Induction of Functional CD8 + T Cells. J. Virol. 2015, 89, 8713–8726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lévy, C.; Aerts, L.; Hamelin, M.-È.; Granier, C.; Szécsi, J.; Lavillette, D.; Boivin, G.; Cosset, F.-L. Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice. Vaccine 2013, 31, 2778–2785. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.G.; Erickson, J.J.; Hastings, A.K.; Becker, J.C.; Johnson, M.; Craven, R.E.; Tollefson, S.J.; Boyd, K.L.; Williams, J.V. Human Metapneumovirus Virus-Like Particles Induce Protective B and T Cell Responses in a Mouse Model. J. Virol. 2014, 88, 6368–6379. [Google Scholar] [CrossRef] [Green Version]
- McGinnes, L.W.; Gravel, K.A.; Finberg, R.W.; Kurt-Jones, E.A.; Massare, M.J.; Smith, G.; Schmidt, M.R.; Morrison, T.G. Assembly and Immunological Properties of Newcastle Disease Virus-Like Particles Containing the Respiratory Syncytial Virus F and G Proteins. J. Virol. 2011, 85, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Murawski, M.R.; McGinnes, L.W.; Finberg, R.W.; Kurt-Jones, E.A.; Massare, M.J.; Smith, G.; Heaton, P.M.; Fraire, A.E.; Morrison, T.G. Newcastle Disease Virus-Like Particles Containing Respiratory Syncytial Virus G Protein Induced Protection in BALB/c Mice, with No Evidence of Immunopathology. J. Virol. 2010, 84, 1110–1123. [Google Scholar] [CrossRef] [Green Version]
- Quan, F.-S.; Kim, Y.; Lee, S.; Yi, H.; Kang, S.-M.; Bozja, J.; Moore, M.L.; Compans, R.W. Viruslike Particle Vaccine Induces Protection Against Respiratory Syncytial Virus Infection in Mice. J. Infect. Dis. 2011, 204, 987–995. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kwon, Y.-M.; Lee, J.S.; Yoo, S.-E.; Lee, Y.-N.; Ko, E.-J.; Kim, M.-C.; Cho, M.-K.; Lee, Y.-T.; Jung, Y.-J.; et al. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis. Antivir. Res. 2014, 110, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Quan, F.-S.; Kwon, Y.; Sakamoto, K.; Kang, S.-M.; Compans, R.W.; Moore, M.L. Additive protection induced by mixed virus-like particles presenting respiratory syncytial virus fusion or attachment glycoproteins. Antivir. Res. 2014, 111, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Raghunandan, R.; Lu, H.; Zhou, B.; Xabier, M.G.; Massare, M.J.; Flyer, D.C.; Fries, L.F.; Smith, G.E.; Glenn, G.M. An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. Vaccine 2014, 32, 6485–6492. [Google Scholar] [CrossRef] [Green Version]
- Ko, E.-J.; Kwon, Y.-M.; Lee, J.S.; Hwang, H.S.; Yoo, S.-E.; Lee, Y.-N.; Lee, Y.-T.; Kim, M.-C.; Cho, M.K.; Lee, Y.R.; et al. Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinnes Cullen, L.; Schmidt, M.R.; Kenward, S.A.; Woodland, R.T.; Morrison, T.G. Murine Immune Responses to Virus-Like Particle-Associated Pre- and Postfusion Forms of the Respiratory Syncytial Virus F Protein. J. Virol. 2015, 89, 6835–6847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walpita, P.; Johns, L.M.; Tandon, R.; Moore, M.L. Mammalian Cell-Derived Respiratory Syncytial Virus-Like Particles Protect the Lower as well as the Upper Respiratory Tract. PLoS ONE 2015, 10, e0130755. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Lee, Y.-T.; Hwang, H.S.; Kwon, Y.-M.; Kim, M.-C.; Ko, E.-J.; Lee, J.S.; Lee, Y.; Kang, S.-M. Virus-Like Particle Vaccine Containing the F Protein of Respiratory Syncytial Virus Confers Protection without Pulmonary Disease by Modulating Specific Subsets of Dendritic Cells and Effector T Cells. J. Virol. 2015, 89, 11692–11705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimica, V.; Boigard, H.; Bhatia, B.; Fallon, J.T.; Alimova, A.; Gottlieb, P.; Galarza, J.M. Novel Respiratory Syncytial Virus-Like Particle Vaccine Composed of the Postfusion and Prefusion Conformations of the F Glycoprotein. Clin. Vaccine Immunol. 2016, 23, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.S.; Lee, Y.-T.; Kim, K.-H.; Park, S.; Kwon, Y.-M.; Lee, Y.; Ko, E.-J.; Jung, Y.-J.; Lee, J.S.; Kim, Y.-J.; et al. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease. Virology 2016, 494, 215–224. [Google Scholar] [CrossRef]
- Hwang, H.S.; Lee, Y.-T.; Kim, K.-H.; Ko, E.-J.; Lee, Y.; Kwon, Y.-M.; Kang, S.-M. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus. Virology 2017, 511, 142–151. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, K.-H.; Lee, Y.; Lee, Y.-T.; Ko, E.-J.; Park, S.; Lee, J.S.; Lee, B.; Kwon, Y.-M.; Moore, M.L.; et al. Virus-like particle vaccines containing F or F and G proteins confer protection against respiratory syncytial virus without pulmonary inflammation in cotton rats. Hum. Vaccines Immunother. 2017, 13, 1031–1039. [Google Scholar] [CrossRef]
- Kim, A.-R.; Lee, D.-H.; Lee, S.-H.; Rubino, I.; Choi, H.-J.; Quan, F.-S. Protection induced by virus-like particle vaccine containing tandem repeat gene of respiratory syncytial virus G protein. PLoS ONE 2018, 13, e0191277. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Lee, Y.-T.; Ko, E.-J.; Kim, K.-H.; Hwang, H.S.; Park, S.; Kwon, Y.-M.; Kang, S.M. Soluble F proteins exacerbate pulmonary histopathology after vaccination upon respiratory syncytial virus challenge but not when presented on virus-like particles. Hum. Vaccines Immunother. 2017, 13, 2594–2605. [Google Scholar] [CrossRef]
- Blanco, J.C.G.; Pletneva, L.M.; McGinnes-Cullen, L.; Otoa, R.O.; Patel, M.C.; Fernando, L.R.; Boukhvalova, M.S.; Morrison, T.G. Efficacy of a respiratory syncytial virus vaccine candidate in a maternal immunization model. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, B.E.; Patel, N.; Lu, H.; Liu, Y.; Guebre-Xabier, M.; Piedra, P.A.; Glenn, G.; Ellingsworth, L.; Smith, G. Respiratory syncytial virus fusion nanoparticle vaccine immune responses target multiple neutralizing epitopes that contribute to protection against wild-type and palivizumab-resistant mutant virus challenge. Vaccine 2018, 36, 8069–8078. [Google Scholar] [CrossRef] [PubMed]
- McGinnes Cullen, L.; Schmidt, M.R.; Morrison, T.G. Effect of Previous Respiratory Syncytial Virus Infection on Murine Immune Responses to F and G Protein-Containing Virus-Like Particles. J. Virol. 2019, 93, e00087-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, L.; Schmidt, M.; Torres, G.; Capoferri, A.; Morrison, T. Comparison of Immune Responses to Different Versions of VLP Associated Stabilized RSV Pre-Fusion F Protein. Vaccines 2019, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, U.J.; Nagashima, K.; Murphy, B.R.; Collins, P.L. Live vaccines for human metapneumovirus designed by reverse genetics. Expert Rev. Vaccines 2006, 5, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Bull, J.J. Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it? Virus Evol. 2015, 1, vev005. [Google Scholar] [CrossRef]
- Randolph, V.B.; Kandis, M.; Stemler-Higgins, P.; Kennelly, M.S.; McMullen, Y.M.; Speelman, D.J.; Weeks-Levy, C. Attenuated temperature-sensitive respiratory syncytial virus mutants generated by cold adaptation. Virus Res. 1994, 33, 241–259. [Google Scholar] [CrossRef]
- Crowe, J. Cold-passaged, temperature-sensitive mutants of human respiratory syncytial virus (RSV) are highly attenuated, immunogenic, and protective in seronegative chimpanzees, even when RSV antibodies are infused shortly before immunization. Vaccine 1995, 13, 847–855. [Google Scholar] [CrossRef]
- Juhasz, K.; Whitehead, S.S.; Bui, P.T.; Biggs, J.M.; Crowe, J.E.; Boulanger, C.A.; Collins, P.L.; Murphy, B.R. The temperature-sensitive (ts) phenotype of a cold-passaged (cp) live attenuated respiratory syncytial virus vaccine candidate, designated cpts530, results from a single amino acid substitution in the L protein. J. Virol. 1997, 71, 5814–5819. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, S.S.; Juhasz, K.; Firestone, C.Y.; Collins, P.L.; Murphy, B.R. Recombinant respiratory syncytial virus (RSV) bearing a set of mutations from cold-passaged RSV is attenuated in chimpanzees. J. Virol. 1998, 72, 4467–4471. [Google Scholar] [CrossRef] [Green Version]
- Herfst, S.; de Graaf, M.; Schrauwen, E.J.A.; Sprong, L.; Hussain, K.; van den Hoogen, B.G.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J. Gen. Virol. 2008, 89, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Herfst, S.; de Graaf, M.; Schickli, J.H.; Tang, R.S.; Kaur, J.; Yang, C.-F.; Spaete, R.R.; Haller, A.A.; van den Hoogen, B.G.; Osterhaus, A.D.M.E.; et al. Recovery of Human Metapneumovirus Genetic Lineages A and B from Cloned cDNA. J. Virol. 2004, 78, 8264–8270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Jiang, J.; Zhan, J.; Li, G.; Jiang, Y.; Guan, X.; Chen, Y.; Fang, Z. Development of a reverse genetics system for respiratory syncytial virus long strain and an immunogenicity study of the recombinant virus. Virol. J. 2014, 11, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karron, R.A.; Luongo, C.; Thumar, B.; Loehr, K.M.; Englund, J.A.; Collins, P.L.; Buchholz, U.J. A gene deletion that up-regulates viral gene expression yields an attenuated RSV vaccine with improved antibody responses in children. Sci. Transl. Med. 2015, 7, 312ra175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, Q.N.; Biacchesi, S.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Chimeric Recombinant Human Metapneumoviruses with the Nucleoprotein or Phosphoprotein Open Reading Frame Replaced by That of Avian Metapneumovirus Exhibit Improved Growth In Vitro and Attenuation In Vivo. J. Virol. 2005, 79, 15114–15122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.; Ren, J.; Bao, X. Recent vaccine development for human metapneumovirus. J. Gen. Virol. 2015, 96, 1515–1520. [Google Scholar]
- Anderson, L.J.; Dormitzer, P.R.; Nokes, D.J.; Rappuoli, R.; Roca, A.; Graham, B.S. Strategic priorities for respiratory syncytial virus (RSV) vaccine development. Vaccine 2013, 31, B209–B215. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.S.; MacPhail, M.; Schickli, J.H.; Kaur, J.; Robinson, C.L.; Lawlor, H.A.; Guzzetta, J.M.; Spaete, R.R.; Haller, A.A. Parainfluenza Virus Type 3 Expressing the Native or Soluble Fusion (F) Protein of Respiratory Syncytial Virus (RSV) Confers Protection from RSV Infection in African Green Monkeys. J. Virol. 2004, 78, 11198–11207. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.S.; Mahmood, K.; Macphail, M.; Guzzetta, J.M.; Haller, A.A.; Liu, H.; Kaur, J.; Lawlor, H.A.; Stillman, E.A.; Schickli, J.H.; et al. A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys. Vaccine 2005, 23, 1657–1667. [Google Scholar] [CrossRef]
- Fields, B.N.; Knipe, D.M.; Howley, P.M. Fields Virology; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2013; ISBN 9781451105636. [Google Scholar]
- Bukreyev, A.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L. Nonsegmented Negative-Strand Viruses as Vaccine Vectors. J. Virol. 2006, 80, 10293–10306. [Google Scholar] [CrossRef] [Green Version]
- Spann, K.M.; Collins, P.L.; Teng, M.N. Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J. Virol. 2003, 77, 11201–11211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef] [PubMed]
- Skiadopoulos, M.H.; Surman, S.R.; Riggs, J.M.; Örvell, C.; Collins, P.L.; Murphy, B.R. Evaluation of the Replication and Immunogenicity of Recombinant Human Parainfluenza Virus Type 3 Vectors Expressing up to Three Foreign Glycoproteins. Virology 2002, 297, 136–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaoka, Y. Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 978-3-662-06099-5. [Google Scholar]
- Beaty, S.M.; Park, A.; Won, S.T.; Hong, P.; Lyons, M.; Vigant, F.; Freiberg, A.N.; tenOever, B.R.; Duprex, W.P.; Lee, B. Efficient and Robust Paramyxoviridae Reverse Genetics Systems. mSphere 2017, 2, e00376-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Hardy, R.W.; Wertz, G.W. Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J. Virol. 1995, 69, 2412–2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosfeld, H.; Hill, M.G.; Collins, P.L. RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J. Virol. 1995, 69, 5677–5686. [Google Scholar] [CrossRef] [Green Version]
- Biacchesi, S.; Skiadopoulos, M.H.; Tran, K.C.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Recovery of human metapneumovirus from cDNA: Optimization of growth in vitro and expression of additional genes. Virology 2004, 321, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Noton, S.L.; Fearns, R. Initiation and regulation of paramyxovirus transcription and replication. Virology 2015, 479–480, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Ruigrok, R.W.; Crépin, T.; Kolakofsky, D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr. Opin. Microbiol. 2011, 14, 504–510. [Google Scholar] [CrossRef]
- Kumar, S.; Nayak, B.; Collins, P.L.; Samal, S.K. Complete genome sequence of avian paramyxovirus type 3 reveals an unusually long trailer region. Virus Res. 2008, 137, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Kolakofsky, D.; Pelet, T.; Garcin, D.; Hausmann, S.; Curran, J.; Roux, L. Paramyxovirus RNA Synthesis and the Requirement for Hexamer Genome Length: The Rule of Six Revisited. J. Virol. 1998, 72, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Alayyoubi, M.; Leser, G.P.; Kors, C.A.; Lamb, R.A. Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein–RNA complex. Proc. Natl. Acad. Sci. USA 2015, 112, E1792–E1799. [Google Scholar] [CrossRef] [Green Version]
- Calain, P.; Roux, L. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J. Virol. 1993, 67, 4822–4830. [Google Scholar] [CrossRef] [Green Version]
- Durbin, A.P.; Siew, J.W.; Murphy, B.R.; Collins, P.L. Minimum protein requirements for transcription and RNA replication of a minigenome of human parainfluenza virus type 3 and evaluation of the rule of six. Virology 1997, 234, 74–83. [Google Scholar] [CrossRef]
- Murphy, S.K.; Parks, G.D. Genome nucleotide lengths that are divisible by six are not essential but enhance replication of defective interfering RNAs of the paramyxovirus simian virus 5. Virology 1997, 232, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Marcos, F.; Ferreira, L.; Cros, J.; Park, M.-S.; Nakaya, T.; García-Sastre, A.; Villar, E. Mapping of the RNA promoter of Newcastle disease virus. Virology 2005, 331, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Samal, S.K.; Collins, P.L. RNA Replication by a Respiratory Syncytial Virus RNA Analog Does Not Obey the Rule of Six and Retains a Nonviral Trinucleotide Extension at the Leader End. J. Virol. 1996, 70, 8. [Google Scholar] [CrossRef] [Green Version]
- Bhella, D.; Ralph, A.; Murphy, L.B.; Yeo, R.P. Significant differences in nucleocapsid morphology within the Paramyxoviridae. J. Gen. Virol. 2002, 83, 1831–1839. [Google Scholar] [CrossRef]
- Kato, A.; Kiyotani, K.; Hasan, M.K.; Shioda, T.; Sakai, Y.; Yoshida, T.; Nagai, Y. Sendai virus gene start signals are not equivalent in reinitiation capacity: Moderation at the fusion protein gene. J. Virol. 1999, 73, 9237–9246. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Paterson, R.G.; Ward, C.D.; Lamb, R.A. Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 1997, 237, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Wignall-Fleming, E.B.; Hughes, D.J.; Vattipally, S.; Modha, S.; Goodbourn, S.; Davison, A.J.; Randall, R.E. Analysis of Paramyxovirus Transcription and Replication by High-Throughput Sequencing. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Mackow, N.; Amaro-Carambot, E.; Liang, B.; Surman, S.; Lingemann, M.; Yang, L.; Collins, P.L.; Munir, S. Attenuated Human Parainfluenza Virus Type 1 (HPIV1) Expressing the Fusion Glycoprotein of Human Respiratory Syncytial Virus (RSV) as a Bivalent HPIV1/RSV Vaccine. J. Virol 2015, 89, 10319–10332. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Munir, S.; Amaro-Carambot, E.; Surman, S.; Mackow, N.; Yang, L.; Buchholz, U.J.; Collins, P.L.; Schaap-Nutt, A. Chimeric Bovine/Human Parainfluenza Virus Type 3 Expressing Respiratory Syncytial Virus (RSV) F Glycoprotein: Effect of Insert Position on Expression, Replication, Immunogenicity, Stability, and Protection against RSV Infection. J. Virol. 2014, 88, 4237–4250. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.S.; Schickli, J.H.; MacPhail, M.; Fernandes, F.; Bicha, L.; Spaete, J.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Spaete, R.; Haller, A.A. Effects of Human Metapneumovirus and Respiratory Syncytial Virus Antigen Insertion in Two 3′ Proximal Genome Positions of Bovine/Human Parainfluenza Virus Type 3 on Virus Replication and Immunogenicity. J. Virol. 2003, 77, 10819–10828. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H. Recombinant Newcastle disease virus as a viral vector: Effect of genomic location of foreign gene on gene expression and virus replication. J. Gen. Virol. 2003, 84, 781–788. [Google Scholar] [CrossRef]
- Carnero, E.; Li, W.; Borderia, A.V.; Moltedo, B.; Moran, T.; Garcia-Sastre, A. Optimization of Human Immunodeficiency Virus Gag Expression by Newcastle Disease Virus Vectors for the Induction of Potent Immune Responses. J. Virol. 2009, 83, 584–597. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, A.; Samal, S.K. Avian Paramyxovirus Type-3 as a Vaccine Vector: Identification of a Genome Location for High Level Expression of a Foreign Gene. Front. Microbiol. 2017, 8, 693. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.G.; Sealy, R.E.; Rudraraju, R.; Traina-Dorge, V.L.; Finneyfrock, B.; Cook, A.; Takimoto, T.; Portner, A.; Hurwitz, J.L. Sendai virus-based RSV vaccine protects African green monkeys from RSV infection. Vaccine 2012, 30, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Hurwitz, J.L.; Krishnamurthy, S.; Takimoto, T.; Boyd, K.; Scroggs, R.A.; Surman, S.; Portner, A.; Slobod, K.S. Respiratory syncytial virus (RSV) fusion protein expressed by recombinant Sendai virus elicits B-cell and T-cell responses in cotton rats and confers protection against RSV subtypes A and B. Vaccine 2007, 25, 8782–8793. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.J.; Jones, B.G.; Sealy, R.E.; Surman, S.L.; Mason, J.N.; Hayden, R.T.; Tripp, R.A.; Takimoto, T.; Hurwitz, J.L. A Sendai virus recombinant vaccine expressing a gene for truncated human metapneumovirus (hMPV) fusion protein protects cotton rats from hMPV challenge. Virology 2017, 509, 60–66. [Google Scholar] [CrossRef]
- Skiadopoulos, M.H.; Surman, S.R.; Durbin, A.P.; Collins, P.L.; Murphy, B.R. Long Nucleotide Insertions between the HN and L Protein Coding Regions of Human Parainfluenza Virus Type 3 Yield Viruses With Temperature-Sensitive and Attenuation Phenotypes. Virology 2000, 272, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liang, B.; Ngwuta, J.; Liu, X.; Surman, S.; Lingemann, M.; Kwong, P.D.; Graham, B.S.; Collins, P.L.; Munir, S. Attenuated Human Parainfluenza Virus Type 1 Expressing the Respiratory Syncytial Virus (RSV) Fusion (F) Glycoprotein from an Added Gene: Effects of Prefusion Stabilization and Packaging of RSV F. J. Virol. 2017, 91, e01101-17. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.C.; McAuliffe, J.M.; Huang, A.; Surman, S.R.; Bailly, J.E.; Elkins, W.R.; Collins, P.L.; Murphy, B.R.; Skiadopoulos, M.H. Bovine parainfluenza virus type 3 (BPIV3) fusion and hemagglutinin-neuraminidase glycoproteins make an important contribution to the restricted replication of BPIV3 in primates. J. Virol. 2000, 74, 8922–8929. [Google Scholar] [CrossRef] [Green Version]
- Karron, R.A.; Thumar, B.; Schappell, E.; Surman, S.; Murphy, B.R.; Collins, P.L.; Schmidt, A.C. Evaluation of two chimeric bovine-human parainfluenza virus type 3 vaccines in infants and young children. Vaccine 2012, 30, 3975–3981. [Google Scholar] [CrossRef]
- Tang, R.S.; Spaete, R.R.; Thompson, M.W.; MacPhail, M.; Guzzetta, J.M.; Ryan, P.C.; Reisinger, K.; Chandler, P.; Hilty, M.; Walker, R.E.; et al. Development of a PIV-vectored RSV vaccine: Preclinical evaluation of safety, toxicity, and enhanced disease and initial clinical testing in healthy adults. Vaccine 2008, 26, 6373–6382. [Google Scholar] [CrossRef]
- Gomez, M.; Mufson, M.A.; Dubovsky, F.; Knightly, C.; Zeng, W.; Losonsky, G. Phase-I study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children. Pediatr. Infect. Dis. J. 2009, 28, 655–658. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Malkin, E.; Abughali, N.; Falloon, J.; Yi, T.; Dubovsky, F. Phase 1 Study of the Safety and Immunogenicity of a Live, Attenuated Respiratory Syncytial Virus and Parainfluenza Virus Type 3 Vaccine in Seronegative Children. Pediatric Infect. Dis. J. 2012, 31, 109–114. [Google Scholar] [CrossRef]
- Haller, A.A. Bovine parainfluenza virus type 3 (PIV3) expressing the respiratory syncytial virus (RSV) attachment and fusion proteins protects hamsters from challenge with human PIV3 and RSV. J. Gen. Virol. 2003, 84, 2153–2162. [Google Scholar] [CrossRef]
- van Wyke Coelingh, K.L.; Winter, C.C.; Tierney, E.L.; London, W.T.; Murphy, B.R. Attenuation of bovine parainfluenza virus type 3 in nonhuman primates and its ability to confer immunity to human parainfluenza virus type 3 challenge. J. Infect. Dis. 1988, 157, 655–662. [Google Scholar] [CrossRef]
- Belshe, R.B.; Karron, R.A.; Newman, F.K.; Anderson, E.L.; Nugent, S.L.; Steinhoff, M.; Clements, M.L.; Wilson, M.H.; Hall, S.L.; Tierney, E.L. Evaluation of a live attenuated, cold-adapted parainfluenza virus type 3 vaccine in children. J. Clin. Microbiol. 1992, 30, 2064–2070. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, G.A.; Hall, C.B.; Iwane, M.K.; Poehling, K.A.; Edwards, K.M.; Griffin, M.R.; Staat, M.A.; Curns, A.T.; Erdman, D.D.; Szilagyi, P.G. Parainfluenza Virus Infection of Young Children: Estimates of the Population-Based Burden of Hospitalization. J. Pediatrics 2009, 154, 694–699.e1. [Google Scholar] [CrossRef]
- Bartlett, E.J.; Castaño, A.; Surman, S.R.; Collins, P.L.; Skiadopoulos, M.H.; Murphy, B.R. Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1) vaccine candidates containing stabilized mutations in the P/C and L genes. Virol. J. 2007, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Karron, R.A.; San Mateo, J.; Thumar, B.; Schaap-Nutt, A.; Buchholz, U.J.; Schmidt, A.C.; Bartlett, E.J.; Murphy, B.R.; Collins, P.L. Evaluation of a Live-Attenuated Human Parainfluenza Type 1 Vaccine in Adults and Children. J. Pediatric Infect. Dis. Soc. 2015, 4, e143–e146. [Google Scholar] [CrossRef] [Green Version]
- Sealy, R.; Jones, B.G.; Surman, S.L.; Hurwitz, J.L. Robust IgA and IgG-producing antibody forming cells in the diffuse-NALT and lungs of Sendai virus-vaccinated cotton rats associate with rapid protection against human parainfluenza virus-type 1. Vaccine 2010, 28, 6749–6756. [Google Scholar] [CrossRef] [Green Version]
- Hurwitz, J.L.; Soike, K.F.; Sangster, M.Y.; Portner, A.; Sealy, R.E.; Dawson, D.H.; Coleclough, C. Intranasal Sendai virus vaccine protects African green monkeys from infection with human parainfluenza virus-type one. Vaccine 1997, 15, 533–540. [Google Scholar] [CrossRef]
- Slobod, K.S.; Shenep, J.L.; Luján-Zilbermann, J.; Allison, K.; Brown, B.; Scroggs, R.A.; Portner, A.; Coleclough, C.; Hurwitz, J.L. Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine 2004, 22, 3182–3186. [Google Scholar] [CrossRef]
- Adderson, E.; Branum, K.; Sealy, R.E.; Jones, B.G.; Surman, S.L.; Penkert, R.; Freiden, P.; Slobod, K.S.; Gaur, A.H.; Hayden, R.T.; et al. Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- to 6-year-old children. Clin. Vaccine Immunol. 2015, 22, 298–303. [Google Scholar] [CrossRef]
- Vulliemoz, D.; Roux, L. “Rule of Six”: How Does the Sendai Virus RNA Polymerase Keep Count? J. Virol. 2001, 75, 4506–4518. [Google Scholar] [CrossRef] [Green Version]
- Sakai, Y.; Kiyotani, K.; Fukumura, M.; Asakawa, M.; Kato, A.; Shioda, T.; Yoshida, T.; Tanaka, A.; Hasegawa, M.; Nagai, Y. Accommodation of foreign genes into the Sendai virus genome: Sizes of inserted genes and viral replication. FEBS Lett. 1999, 456, 221–226. [Google Scholar] [CrossRef]
- Takimoto, T.; Hurwitz, J.L.; Coleclough, C.; Prouser, C.; Krishnamurthy, S.; Zhan, X.; Boyd, K.; Scroggs, R.A.; Brown, B.; Nagai, Y.; et al. Recombinant Sendai Virus Expressing the G Glycoprotein of Respiratory Syncytial Virus (RSV) Elicits Immune Protection against RSV. J. Virol. 2004, 78, 6043–6047. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.G.; Sealy, R.E.; Surman, S.L.; Portner, A.; Russell, C.J.; Slobod, K.S.; Dormitzer, P.R.; DeVincenzo, J.; Hurwitz, J.L. Sendai virus-based RSV vaccine protects against RSV challenge in an in vivo maternal antibody model. Vaccine 2014, 32, 3264–3273. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Slobod, K.S.; Jones, B.G.; Sealy, R.E.; Takimoto, T.; Boyd, K.; Surman, S.; Russell, C.J.; Portner, A.; Hurwitz, J.L. Sendai virus recombinant vaccine expressing a secreted, unconstrained respiratory syncytial virus fusion protein protects against RSV in cotton rats. Int. Immunol. 2015, 27, 229–236. [Google Scholar] [CrossRef]
- Zhan, X.; Slobod, K.S.; Krishnamurthy, S.; Luque, L.E.; Takimoto, T.; Jones, B.; Surman, S.; Russell, C.J.; Portner, A.; Hurwitz, J.L. Sendai virus recombinant vaccine expressing hPIV-3 HN or F elicits protective immunity and combines with a second recombinant to prevent hPIV-1, hPIV-3 and RSV infections. Vaccine 2008, 26, 3480–3488. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.; Zhan, X.; Mishin, V.; Slobod, K.S.; Surman, S.; Russell, C.J.; Portner, A.; Hurwitz, J.L. Human PIV-2 recombinant Sendai virus (rSeV) elicits durable immunity and combines with two additional rSeVs to protect against hPIV-1, hPIV-2, hPIV-3, and RSV. Vaccine 2009, 27, 1848–1857. [Google Scholar] [CrossRef] [Green Version]
- Lippmann, O. Human conjunctivitis due to the Newcastle-disease virus of fowls. Am. J. Ophthalmol. 1952, 35, 1021–1028. [Google Scholar] [CrossRef]
- Nelson, C.B.; Pomeroy, B.S.; Schrall, K.; Park, W.E.; Lindeman, R.J. An outbreak of conjunctivitis due to Newcastle disease virus (NDV) occurring in poultry workers. Am. J. Public Health Nations Health 1952, 42, 672–678. [Google Scholar] [CrossRef]
- Samal, S.K. Newcastle disease and related avian paramyxoviruses. In The Biology of Paramyxoviruses; Caister Academic Press: Norfolk, UK, 2011; pp. 69–114. [Google Scholar]
- Wilson, D.E.; Chosewood, L.C. Biosafety in Microbiological and Biomedical Laboratories, 5th ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2009. [Google Scholar]
- Bukreyev, A.; Huang, Z.; Yang, L.; Elankumaran, S.; St Claire, M.; Murphy, B.R.; Samal, S.K.; Collins, P.L. Recombinant Newcastle Disease Virus Expressing a Foreign Viral Antigen Is Attenuated and Highly Immunogenic in Primates. J. Virol. 2005, 79, 13275–13284. [Google Scholar] [CrossRef] [Green Version]
- Honda, K.; Sakaguchi, S.; Nakajima, C.; Watanabe, A.; Yanai, H.; Matsumoto, M.; Ohteki, T.; Kaisho, T.; Takaoka, A.; Akira, S.; et al. Selective contribution of IFN- / signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc. Natl. Acad. Sci. USA 2003, 100, 10872–10877. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Samal, S. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Sobrido, L.; Gitiban, N.; Fernandez-Sesma, A.; Cros, J.; Mertz, S.E.; Jewell, N.A.; Hammond, S.; Flano, E.; Durbin, R.K.; García-Sastre, A.; et al. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J. Virol. 2006, 80, 1130–1139. [Google Scholar] [CrossRef] [Green Version]
- DiNapoli, J.M.; Kotelkin, A.; Yang, L.; Elankumaran, S.; Murphy, B.R.; Samal, S.K.; Collins, P.L.; Bukreyev, A. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc. Natl. Acad. Sci. USA 2007, 104, 9788–9793. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Roth, J.P.; Estevez, C.N.; Zsak, L.; Liu, B.; Yu, Q. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys. Vaccine 2011, 29, 8624–8633. [Google Scholar] [CrossRef]
- Yu, Q.; Roth, J.P.; Hu, H.; Estevez, C.N.; Zhao, W.; Zsak, L. Protection by Recombinant Newcastle Disease Viruses (NDV) Expressing the Glycoprotein (G) of Avian Metapneumovirus (aMPV) Subtype A or B against Challenge with Virulent NDV and aMPV. World J. Vaccines 2013, 03, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Roth, J.P.; Zsak, L.; Yu, Q. Engineered Newcastle disease virus expressing the F and G proteins of AMPV-C confers protection against challenges in turkeys. Sci. Rep. 2017, 7, 4025. [Google Scholar] [CrossRef] [Green Version]
- Khattar, S.K.; Manoharan, V.; Bhattarai, B.; LaBranche, C.C.; Montefiori, D.C.; Samal, S.K. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges. MBio 2015, 6, e01005. [Google Scholar] [CrossRef] [Green Version]
- Khattar, S.K.; DeVico, A.L.; LaBranche, C.C.; Panda, A.; Montefiori, D.C.; Samal, S.K. Enhanced Immune Responses to HIV-1 Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting with gp120 and SOSIP gp140 Proteins. J. Virol. 2016, 90, 1682–1686. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Xue, C.; Liu, X.; Li, J.; Fei, Y.; Liu, Z.; Mu, J.; Bi, Y.; Qian, J.; Yin, R.; et al. A novel recombinant attenuated Newcastle disease virus expressing H9 subtype hemagglutinin protected chickens from challenge by genotype VII virulent Newcastle disease virus and H9N2 avian influenza virus. Vet. Microbiol. 2019, 228, 173–180. [Google Scholar] [CrossRef]
- Kong, D.; Wen, Z.; Su, H.; Ge, J.; Chen, W.; Wang, X.; Wu, C.; Yang, C.; Chen, H.; Bu, Z. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology 2012, 432, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Bukreyev, A.; Rollin, P.E.; Tate, M.K.; Yang, L.; Zaki, S.R.; Shieh, W.-J.; Murphy, B.R.; Collins, P.L.; Sanchez, A. Successful topical respiratory tract immunization of primates against Ebola virus. J. Virol. 2007, 81, 6379–6388. [Google Scholar] [CrossRef] [Green Version]
- Schnell, M.J.; Buonocore, L.; Whitt, M.A.; Rose, J.K. The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J. Virol. 1996, 70, 2318–2323. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, A.K.; Wertz, G.W. Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. J. Virol. 1990, 64, 2948–2957. [Google Scholar] [CrossRef] [Green Version]
- van den Pol, A.N.; Dalton, K.P.; Rose, J.K. Relative Neurotropism of a Recombinant Rhabdovirus Expressing a Green Fluorescent Envelope Glycoprotein. J. Virol. 2002, 76, 1309–1327. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.E.; Nasar, F.; Coleman, J.W.; Price, R.E.; Javadian, A.; Draper, K.; Lee, M.; Reilly, P.A.; Clarke, D.K.; Hendry, R.M.; et al. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. VirolOGY 2007, 360, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Buonocore, L.; Price, R.; Forman, J.; Rose, J.K. Attenuated vesicular stomatitis viruses as vaccine vectors. J. Virol. 1999, 73, 3723–3732. [Google Scholar] [CrossRef] [Green Version]
- Forger, J.M.; Bronson, R.T.; Huang, A.S.; Reiss, C.S. Murine infection by vesicular stomatitis virus: Initial characterization of the H-2d system. J. Virol. 1991, 65, 4950–4958. [Google Scholar] [CrossRef] [Green Version]
- Fellowes, O.N.; Dimopoullos, G.T.; Callis, J.J. Isolation of vesicular stomatitis virus from an infected laboratory worker. Am. J. Vet. Res. 1955, 16, 623–626. [Google Scholar]
- Hanson, R.P.; Rasmussen, A.F.; Brandly, C.A.; Brown, J.W. Human infection with the virus of vesicular stomatitis. J. Lab. Clin. Med. 1950, 36, 754–758. [Google Scholar]
- Johnson, K.M.; Peralta, P.H.; Vogel, J.E. Clinical and Serological Response to Laboratory-Acquired Human Infection by Indiana Type Vesicular Stomatitis Virus (VSV). Am. J. Trop. Med. Hyg. 1966, 15, 244–246. [Google Scholar] [CrossRef]
- Moreno, N.; Quiroz, E.; Tesh, R.B.; Peralta, P.H. A Human Case of Encephalitis Associated with Vesicular Stomatitis Virus (Indiana Serotype) Infection. Am. J. Trop. Med. Hyg. 1988, 39, 312–314. [Google Scholar]
- Wachtman, L.; Mansfield, K. Viral Diseases of Nonhuman Primates. In Nonhuman Primates in Biomedical Research; Abee, C., Mansfield, M., Tardif, S., Morris, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–104. ISBN 978-0-12-381366-4. [Google Scholar]
- Tober, R.; Banki, Z.; Egerer, L.; Muik, A.; Behmuller, S.; Kreppel, F.; Greczmiel, U.; Oxenius, A.; von Laer, D.; Kimpel, J. VSV-GP: A Potent Viral Vaccine Vector That Boosts the Immune Response upon Repeated Applications. J. Virol. 2014, 88, 4897–4907. [Google Scholar] [CrossRef] [Green Version]
- Wilmschen, S.; Schneider, S.; Peters, F.; Bayer, L.; Issmail, L.; Bánki, Z.; Grunwald, T.; von Laer, D.; Kimpel, J. RSV Vaccine Based on Rhabdoviral Vector Protects after Single Immunization. Vaccines 2019, 7, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, J.S.; Schnell, M.J.; Buonocore, L.; Rose, J.K. Recombinant Vesicular Stomatitis Virus Expressing Respiratory Syncytial Virus (RSV) Glycoproteins: RSV Fusion Protein Can Mediate Infection and Cell Fusion. Virology 1999, 254, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, J.S.; Roberts, A.; Weibel, C.; Buonocore, L.; Rose, J.K. Replication-Competent or Attenuated, Nonpropagating Vesicular Stomatitis Viruses Expressing Respiratory Syncytial Virus (RSV) Antigens Protect Mice against RSV Challenge. J. Virol. 2001, 75, 11079–11087. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.E.; McNeil, L.K.; Megati, S.; Witko, S.E.; Roopchand, V.S.; Obregon, J.H.; Illenberger, D.M.; Kotash, C.S.; Nowak, R.M.; Braunstein, E.; et al. Non-propagating, recombinant vesicular stomatitis virus vectors encoding respiratory syncytial virus proteins generate potent humoral and cellular immunity against RSV and are protective in mice. Immunol. Lett. 2013, 150, 134–144. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, B.G.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Analysis of the Genomic Sequence of a Human Metapneumovirus. Virology 2002, 295, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.E.; Schnell, M.J.; Buonocore, L.; Rose, J.K. Specific targeting to CD4+ cells of recombinant vesicular stomatitis viruses encoding human immunodeficiency virus envelope proteins. J. Virol. 1997, 71, 5060–5068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bresk, C.; Hofer, T.; Wilmschen, S.; Krismer, M.; Beierfuß, A.; Effantin, G.; Weissenhorn, W.; Hogan, M.; Jordan, A.; Gelman, R.; et al. Induction of Tier 1 HIV Neutralizing Antibodies by Envelope Trimers Incorporated into a Replication Competent Vesicular Stomatitis Virus Vector. Viruses 2019, 11, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chimeric Vaccine | Immunization | Increase in Serum Antibody Titers Post Immunization | Challenge | Challenge Virus Titers in RT [log10 PFU/g ± SE] | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Vector | Insert | Animal Model | Dose | Virus A-Neutralizing B | IgG ELISA Titers C | URT | LRT | ||
rB/HPIV3 | RSV-F1st | hamsters | 1 × 106 TCID50 | 9.3 ± 0.5, 26 dpi | 9.4, 26 dpi | 1 × 106 PFU of RSV, 28 dpi | 2.9 ± 0.4, 5 dpc | 2.1 ± 0.2, 5 dpc | [62] |
RSV-G1st | 10.0 ± 0.3, 26 dpi | 6.5, 26 dpi | 1.9 ± 0.2, 5 dpc | ≤1.7, 5 dpc | |||||
RSVA-F1st | Rhesus macaques | 2 D × 105 TCID50 | 7.3 ± 0.0, 27 dpi | 8.0, 27 dpi | No challenge was performed | [63] | |||
RSVA-G1st | 7.3 ± 1.4, 27 dpi | 5.5, 27 dpi | |||||||
RSVA-F1st G1st | 8.8 ± 1.0, 27 dpi | 8.0 (anti-F), 5.5 (anti-G), 27 dpi | |||||||
RSVA-F1st + H RSVA-G1st | 7.3 ± 0.8, 27 dpi | 5.5 (anti-F), 5.5 (anti-G), 27 dpi | |||||||
RSVB-F1st | 6.8 ± 0.5, 27 dpi | 4.0, 27 dpi | |||||||
RSVB-G1st | 7.8 ± 1.0, 27 dpi | 5.5, 27 dpi | |||||||
RSVB-F1st G1st | 7.3 ± 0.8, 27 dpi | 1.5 (anti-F), 5.5 (anti-G), 27 dpi | |||||||
RSV-F1st | hamsters | 1 × 106 TCID50 | 10.1 ± 0.2, 28 dpi | nd | 1 × 106 PFU of RSV, 31 dpi | 3.4 ± 0.2, 3 dpc | 2.9 ± 0.2, 3 dpc | [148] | |
RSV-F2nd | 10.7 ± 0.3, 28 dpi | 3.1 ± 0.1, 3 dpc | 3.0 ± 0.2, 3 dpc | ||||||
RSV-F3rd | 10.4 ± 0.2, 28 dpi | 3.6 ± 0.2, 3 dpc | ≤2.7, 3 dpc | ||||||
RSV-F6th | 11.0 ± 0.4, 28 dpi | 4.0 ± 0.2, 3 dpc | 3.1 ± 0.3, 3 dpc | ||||||
BPIV3 | RSVA-F6th G6th | 1 × 106 PFU | 5.4 ± 0.7, 21 dpi | 1 × 106 PFU of RSV, 21 dpi | 1.7 ± 0.5, 4 dpc | 1.4 ± 0.5, 4 dpc | [163] | ||
rB/HPIV3 | RSV-F1st | 1 × 106 PFU | 5.5 ± 0.5, 28 dpi | 1 × 106 PFU of RSV, 28 dpi | <0.8 ± 0.1, 4 dpc | <0.5 ± 0.0, 4 dpc | [149] | ||
RSV-F2nd | 6.9 ± 0.7, 28 dpi | <1.3 ± 0.6, 4 dpc | <1.6 ± 1.0, 4 dpc | ||||||
RSV-G1st | 3.4 ± 0.5, 28 dpi | <1.0 ± 0.3, 4 dpc | <0.7 ± 0.1, 4 dpc | ||||||
RSV-G2nd | 3.4 ± 0.5, 28 dpi | <0.8 ± 0.1, 4 dpc | <0.8 ± 0.3, 4 dpc | ||||||
HMPV-F1st | 7.8 ± 1.0, 28 dpi | 1 × 106 PFU of HMPV, 28 dpi | 3.5 ± 0.8, 4 dpc | <0.5 ± 0.2, 4 dpc | |||||
HMPV-F2nd | 7.4 ± 1.0, 28 dpi | <0.9 ± 0.4, 4 dpc | <0.5 ± 0.1, 4 dpc | ||||||
HMPV-F2nd | AGMs | 6.4 × 105 PFU | 7.1 ± 1.2 (HMPV_A), 2.7 ± 1.1 (HMPV_B), 28 dpi | 5 × 105 PFU of HMPV, 28 dpi | 2.3 ± 1.1 E | <1.3 ± 0.0 F | [122] | ||
RSV-F2nd | 2D × 2–3 × 105 PFU | 4.0 ± 1.0 (RSV_A), 3.4 ± 1.8 (RSV_B), 28 dpi | 8.2, 28 dpi | 7 × 105 PFU of RSV, 28 dpi | <1.2 ± 0.4 E | <1.2 ± 0.3 G | [121] | ||
RSV-F2nd(SOL) | 4.1 ± 1.5 (RSV_A), 4.6 ± 1.4 (RSV_B), 28 dpi | 8.0, 28 dpi | <1.1 ± 0.2 E | <1.1 ± 0.0 G |
Chimeric Vaccine | Immunization | Increase in Serum Virus A-Neutralizing Antibody Titers Post Immunization B | Challenge | Challenge Virus Titers in RT [log10 PFU/g ± SE] | Reference | |||
---|---|---|---|---|---|---|---|---|
Vector | Insert | Animal Model | Dose | URT | LRT | |||
HPIV1 | HMPV-F1st | hamsters | 1 × 106/106.4 TCID50 D | 8.3 ± 0.4, 26 dpi | 1 × 105.7 TCID50 of RSV, 28 dpi | 3.3 ± 0.2 C, 4 dpc | ≤1.5 ± 0.0 C, 4 dpc | [54] |
HMPV-SH3rd | ≤2.9 ± 0.0, 26 dpi | 5.3 ± 0.2 C, 4 dpc | 2.7 ± 0.1 C, 4 dpc | |||||
HMPV-G3rd | 1 × 106/107.4 TCID50 D | ≤2.9 ± 0.0, 26 dpi | 4.6 ± 0.5 C, 4 dpc | 2.4 ± 0.4 C, 4 dpc | ||||
HMPVA-F1st | 1 × 105 TCID50 | 6.0 ± 0.8 (HMPV_B), 8.6 ± 0.2 (HMPV_A), 33 dpi | 1 × 105.5 TCID50 of HMPV_A or B, 50 dpi | 2.9 ± 0.3 (HMPV_B), 3.9 ± 0.1 (HMPV_A), 4 dpc | nd | [6] | ||
rHPIV1- LY942A | RSV-F1st | <3.3, 28 dpi | 1 × 106 PFU of RSV, 30 dpi | 7.0, 3 dpc | 6.1, 3 dpc | [145] | ||
RSV-F2nd | <3.3, 28 dpi | 6.9, 3 dpc | 4.9, 3 dpc | |||||
RSV-F3rd | <3.3, 28 dpi | 6.7, 3 dpc | 6.0, 3 dpc | |||||
rHPIV1- CΔ170 | RSV-F1st | 7.3 ± 0.3, 28 dpi | 4.8, 3 dpc | 3.7, 3 dpc | ||||
RSV-F2nd | 4.7 ± 0.7, 28 dpi | 6.2, 3 dpc | 4.3, 3 dpc | |||||
RSV-F3rd | 6.7 ± 0.8, 28 dpi | 5.5, 3 dpc | 4.3, 3 dpc | |||||
RSV-F1st(PF) | 1 × 106 TCID50 | 9.58/ 4.87 E, 28 dpi | 4.47, 3 dpc | 3.04, 3 dpc | [155] | |||
RSV-F2nd(PF) | 6.90/ 2.58 E, 28 dpi | 4.81, 3 dpc | 4.16, 3 dpc | |||||
RSV-F1st(PF,TMCT) | 6.08/ 3.33 E, 28 dpi | 4.76, 3 dpc | 4.04, 3 dpc | |||||
RSV-F2nd(PF,TMCT) | 4.38/ 2.53 E, 28 dpi | 5.38, 3 dpc | 4.65, 3 dpc |
Chimeric Vaccine | Immunization | Virus A-Neutralization by Diluted Sera from Vaccinated Animals | Challenge | Challenge Virus Titers in LRT | Reference | ||
---|---|---|---|---|---|---|---|
Vector | Insert | Animal Model | Dose | ||||
SeV | RSV-G5th | hamsters | 2 × 108 PFU | 50–60% B, 14 dpi | 106 PFU of RSV, 28 dpi | <dl E | [173] |
RSV-G5th | 2 × 106 PFU | 58 ± 12% (RSV_A) B, 35 ± 19% (RSV_B) B, 28 dpi | 7.5 × 106 PFU of RSV_A, 35 dpi | 103–104 PFU/rat, 3 dpc | [152] | ||
RSV-F5th | 82 ± 7% (RSV_A) B, 84 ± 12% (RSV_B) B, 28 dpi | 103–104 PFU/rat, 3 dpc | |||||
1.5 × 106 PFU of RSV_A or B, 35 dpi | <dl, 3 dpc | ||||||
RSV-F5th(SOL) | >80% (RSV_A) B, >80% (RSV_B) B, 28 dpi | 1.5 × 106 PFU of RSV, 35 dpi | <dl, 3 dpc | [175] | |||
RSV-F5th | AGMs | 1 × 106 EID50 | 9.7 C, 25 dpi | 1.4 × 106 PFU of RSV, 28 dpi | <dl, 3 dpc | [151] | |
HMPV-F5th(TR) | cotton rats | 2 × 106 TCID50 | ~200 IC50 D, 28–42 dpi (HMPV_A) | 2 × 105– 3 × 106 TCID50 of HMPV, 28–42 dpi | 102–103 TCID50/lung, 4 dpc | [153] |
Chimeric Vaccine | Immunization | Sera positive for virus A-Neutralizing antibodies B | Challenge | Challenge Virus in LRT | Reference | ||
---|---|---|---|---|---|---|---|
Vector | Insert | Animal Model | Dose | ||||
NDV | RSV-F3rd | BALB/c mice | 5 × 105 PFU | nd | 1 × 107 PFU of RSV, 28 dpi | 1 × 104 PFU/g, 5 dpc | [185] |
AMPVC-G5th | turkeys | 1 × 106 TCID50 | 40% C | 4.2 × 103 ID50 of AMPV_C, 14 dpi | 100%/90%/70% E | [187] | |
2D × 106 TCID50 | 40%/50%C | 100%/100%/80% E | |||||
AMPVA-G5th | 1 × 106 TCID50 | nd | 1 × 102 ID50 of AMPV_A or B, 14 dpi | 100%/100%/30% F | [188] | ||
AMPVB-G5th | 100%/100%/50% F | ||||||
AMPVC-G5th | 1 × 106 TCID50 | 40% C | 100%/100%/80% E | [189] | |||
AMPVC-G5th F5th | 70% C | 100%/100%/60% E | |||||
AMPVC-G5th | 2 D × 106 TCID50 | 40%/50% C | 100%/90%/70% E | ||||
AMPVC-G5th F5th | 60%/100% C | 100%/80%/20% E |
Chimeric Vaccine | Immunization | Serum Neutralizing Antibody Titers Post Immunization | RSV ELISA Titer B | Challenge | Challenge Virus Titers in RT | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Vector | Insert | Animal Model | Dose | URT | LRT | ||||
VSV | RSV-F4th | BALB/c mice | 2 D × 104 PFU | 1:32 A | 4.096 | 1.2 × 105 PFU of RSV, 28 dpi | <50 PFU/ mL, 4 dpc | <50 PFU/mL, 4 dpc | [209] |
RSV-G4th | 1:16 A | 128 | <50 PFU/ mL, 4 dpc | <50 PFU/mL, 4 dpc | |||||
rVSVΔG | RSV-F4th | 3 E × 1.25 × 103 PFU | <1:8 A | 1.024 | <50 PFU/ mL, 4 dpc | <50 PFU/mL, 4 dpc | |||
RSV-G4th | 3 E × 104 PFU | <1:8 A | <64 | 1 × 104.2 PFU/ mL, 4 dpc | 1 × 105.4 PFU/mL, 4 dpc | ||||
rVSV-GP | RSV-F5th CO | 1 × 107 TCID50 | ~6.9 log2 IC50 G | nd | 1 × 106 PFU of RSV, 28 dpi | nd | ~4.45 log10 RSV copies/µg RNA, 5 dpc | [207] | |
3 F × 107 TCID50 | ~6.53/~9.5/~8.68 H log2 IC50 G | ~5.4 log10 RSV copies/µg RNA, 5 dpc | |||||||
rVSV-GSTEM | RSV-F1st | 2 × 107 PFU I | prime: 3.2/1.8; boost: 3.8/3.0 (RSV_A); 2.4 (RSV_B) J | 1 × 106 PFU of RSV_A or 2 × 105 PFU of RSV_B, 28 dpi | ~1 × 101 PFU/g, 100%M | 1 × 100–101 PFU/g, 100% M | [210] | ||
RSV-F3rd | prime: 3.3/1.9; boost: 3.4/3.0 (RSV_A); 2.7 (RSV_B) J | ~1 × 101 PFU/g, 100%M | 1 × 100–101 PFU/g, 100% M | ||||||
RSV-F1st | 1 × 106 PFU K | 2.19/1.34 L | 1 × 106 PFU of RSV_A, 28 dpi | 1 × 102–103 PFU/g, 0% M | 1 × 103 PFU/g, 70% M | ||||
RSV-F3rd | 2.65/1.46 L | 1 × 101–102 PFU/g, 10% M | 1 × 102–103 PFU/g, 90% M | ||||||
RSV-F5th | 2.63/1.62 L | 1 × 101–102 PFU/g, 0% M | 1 × 102–103 PFU/g, 80% M | ||||||
RSV-F3rd | 1 × 105 PFU | 4.68 (anti-F), <2.0 (anti-G) | 1 × 102–103 PFU/g, 0% M | 1 × 101–102 PFU/g, 40% M | |||||
RSV-G3rd | <2.0 (anti-F), 4.42 (anti-G) | ~1 × 103 PFU/g, 0% M | 1 × 101–102 PFU/g, 50% M | ||||||
RSV-F3rd and G3rd | 1 × 105 PFU of the two viruses | 4.55 (anti-F), 4.58 (anti-G) | 1 × 102–103 PFU/g, 0% M | 1 × 100–101 1 PFU/g, 100% M |
Chimeric Vaccine | Immunization | HMPV-Neutralizing Antibody Titers Prior to Challenge [log2± SE] | Challenge | Mean Peak HMPV Titer in RT | Reference | ||
---|---|---|---|---|---|---|---|
Animal Model | Dose | URT | LRT | ||||
rHMPV-NA | hamsters | 1 × 105.7 PFU | 5.6 ± 0.6, 27 dpi | 1 × 105.7 PFU of HMPV, 28 dpi | ≤1.5, 0% A, 3 dpc | ≤1.5, 0% A, 3 dpc | [116] |
rHMPV-PA | 4.9 ± 0.6, 27 dpi | ≤1.5, 0% A, 3 dpc | ≤1.5, 0% A, 3 dpc | ||||
rHMPV-NA | AGMs | 2 B × 106 PFU | 5.4 ± 0.4, 28 dpi | 2 B × 106 PFU of HMPV, 28 dpi | <0.7, 0% C | <0.7, 0% C | |
rHMPV-PA | 5.0 ± 0.5, 28 dpi | <0.7, 0% C | <0.7, 0% C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogonczyk Makowska, D.; Hamelin, M.-È.; Boivin, G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020, 9, 135. https://doi.org/10.3390/pathogens9020135
Ogonczyk Makowska D, Hamelin M-È, Boivin G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens. 2020; 9(2):135. https://doi.org/10.3390/pathogens9020135
Chicago/Turabian StyleOgonczyk Makowska, Daniela, Marie-Ève Hamelin, and Guy Boivin. 2020. "Engineering of Live Chimeric Vaccines against Human Metapneumovirus" Pathogens 9, no. 2: 135. https://doi.org/10.3390/pathogens9020135
APA StyleOgonczyk Makowska, D., Hamelin, M. -È., & Boivin, G. (2020). Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens, 9(2), 135. https://doi.org/10.3390/pathogens9020135