Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus
Abstract
:1. Introduction
2. Peculiarities of the Development of Immune Responses to HMPV Infection
3. Overview of Current Approaches to the Development of HMPV Vaccine
3.1. Recombinant Protein and VLP-Based Vaccines
3.2. Live Attenuated HMPV Vaccines
3.3. Vectored HMPV Vaccines
4. Prospects of and Barriers to the Development of Epitope-Based HMPV Vaccines for Humans
4.1. Epitope-Based HMPV Vaccines in Animal Models
4.2. Overview of Human HMPV Immunogenic Epitopes for the Design of Epitope-Based HMPV Vaccines
4.2.1. B-Cell Epitopes
4.2.2. T-Cell Epitopes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Van den Hoogen, B.G.; de Jong, J.C.; Groen, J.; Kuiken, T.; de Groot, R.; Fouchier, R.A.; Osterhaus, A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef]
- Shafagati, N.; Williams, J. Human metapneumovirus—What we know now. F1000Research 2018, 7, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divarathna, M.V.M.; Rafeek, R.A.M.; Noordeen, F. A review on epidemiology and impact of human metapneumovirus infections in children using TIAB search strategy on PubMed and PubMed Central articles. Rev. Med Virol. 2020, 30, e2090. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T.; Hasegawa, S.; Mizutani, M.; Iwai, T.; Ohbuchi, N.; Kawano, S.; Tashiro, N.; Uchida, M.; Hasegawa, M.; Motoyama, M.; et al. Burden of Human Metapneumovirus and Respiratory Syncytial Virus Infections in Asthmatic Children. Pediatri. Infect. Dis. J. 2018, 37, 1107–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, L.E.; Thijsen, S.F.; van Elden, L.; Heemstra, K.A. Human metapneumovirus in adults. Viruses 2013, 5, 87–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.V.; Harris, P.A.; Tollefson, S.J.; Halburnt-Rush, L.L.; Pingsterhaus, J.M.; Edwards, K.M.; Wright, P.F.; Crowe, J.E., Jr. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N. Engl. J. Med. 2004, 350, 443–450. [Google Scholar] [CrossRef]
- Cespedes, P.F.; Palavecino, C.E.; Kalergis, A.M.; Bueno, S.M. Modulation of Host Immunity by the Human Metapneumovirus. Clin. Microbiol. Rev. 2016, 29, 795–818. [Google Scholar] [CrossRef] [Green Version]
- Walsh, E.E.; Peterson, D.R.; Falsey, A.R. Human metapneumovirus infections in adults: Another piece of the puzzle. Arch. Intern. Med. 2008, 168, 2489–2496. [Google Scholar] [CrossRef] [Green Version]
- Widmer, K.; Griffin, M.R.; Zhu, Y.; Williams, J.V.; Talbot, H.K. Respiratory syncytial virus- and human metapneumovirus-associated emergency department and hospital burden in adults. Influenza Other Respir. Viruses 2014, 8, 347–352. [Google Scholar] [CrossRef]
- El Chaer, F.; Shah, D.P.; Kmeid, J.; Ariza-Heredia, E.J.; Hosing, C.M.; Mulanovich, V.E.; Chemaly, R.F. Burden of human metapneumovirus infections in patients with cancer: Risk factors and outcomes. Cancer 2017, 123, 2329–2337. [Google Scholar] [CrossRef]
- Amarasinghe, G.K.; Arechiga Ceballos, N.G.; Banyard, A.C.; Basler, C.F.; Bavari, S.; Bennett, A.J.; Blasdell, K.R.; Briese, T.; Bukreyev, A.; Cai, Y.; et al. Taxonomy of the order Mononegavirales: Update 2018. Arch. Virol. 2018, 163, 2283–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skiadopoulos, M.H.; Biacchesi, S.; Buchholz, U.J.; Riggs, J.M.; Surman, S.R.; Amaro-Carambot, E.; McAuliffe, J.M.; Elkins, W.R.; St Claire, M.; Collins, P.L.; et al. The two major human metapneumovirus genetic lineages are highly related antigenically, and the fusion (F) protein is a major contributor to this antigenic relatedness. J. Virol. 2004, 78, 6927–6937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacPhail, M.; Schickli, J.H.; Tang, R.S.; Kaur, J.; Robinson, C.; Fouchier, R.A.M.; Osterhaus, A.; Spaete, R.R.; Haller, A.A. Identification of small-animal and primate models for evaluation of vaccine candidates for human metapneumovirus (hMPV) and implications for hMPV vaccine design. J. Gen. Virol. 2004, 85, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Escobar, V.A. Current developments and prospects on human metapneumovirus vaccines. Expert Rev. Vaccines 2017, 16, 419–431. [Google Scholar] [CrossRef]
- Cheemarla, N.R.; Guerrero-Plata, A. Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model. Pathogens 2015, 4, 682–696. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef]
- Yim, K.C.; Cragin, R.P.; Boukhvalova, M.S.; Blanco, J.C.; Hamlin, M.E.; Boivin, G.; Porter, D.D.; Prince, G.A. Human metapneumovirus: Enhanced pulmonary disease in cotton rats immunized with formalin-inactivated virus vaccine and challenged. Vaccine 2007, 25, 5034–5040. [Google Scholar] [CrossRef] [Green Version]
- De Swart, R.L.; van den Hoogen, B.G.; Kuiken, T.; Herfst, S.; van Amerongen, G.; Yuksel, S.; Sprong, L.; Osterhaus, A.D. Immunization of macaques with formalin-inactivated human metapneumovirus induces hypersensitivity to hMPV infection. Vaccine 2007, 25, 8518–8528. [Google Scholar] [CrossRef]
- Herfst, S.; de Graaf, M.; Schrauwen, E.J.A.; Sprong, L.; Hussain, K.; van den Hoogen, B.G.; Osterhaus, A.; Fouchier, R.A.M. Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J. Gen. Virol. 2008, 89, 1553–1562. [Google Scholar] [CrossRef]
- Ogonczyk Makowska, D.; Hamelin, M.E.; Boivin, G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Srivastava, M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease 2018, 29, 434–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karron, R.A.; San Mateo, J.; Wanionek, K.; Collins, P.L.; Buchholz, U.J. Evaluation of a Live Attenuated Human Metapneumovirus Vaccine in Adults and Children. J. Pediatri. Infect. Dis. Soc. 2018, 7, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.; Aerts, L.; Hamelin, M.E.; Granier, C.; Szecsi, J.; Lavillette, D.; Boivin, G.; Cosset, F.L. Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice. Vaccine 2013, 31, 2778–2785. [Google Scholar] [CrossRef]
- Cox, R.G.; Erickson, J.J.; Hastings, A.K.; Becker, J.C.; Johnson, M.; Craven, R.E.; Tollefson, S.J.; Boyd, K.L.; Williams, J.V. Human metapneumovirus virus-like particles induce protective B and T cell responses in a mouse model. J. Virol. 2014, 88, 6368–6379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herfst, S.; Schrauwen, E.J.; de Graaf, M.; van Amerongen, G.; van den Hoogen, B.G.; de Swart, R.L.; Osterhaus, A.D.; Fouchier, R.A. Immunogenicity and efficacy of two candidate human metapneumovirus vaccines in cynomolgus macaques. Vaccine 2008, 26, 4224–4230. [Google Scholar] [CrossRef]
- El Najjar, F.; Cifuentes-Munoz, N.; Chen, J.; Zhu, H.; Buchholz, U.J.; Moncman, C.L.; Dutch, R.E. Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread. PLoS Pathog. 2016, 12, e1005922. [Google Scholar] [CrossRef] [Green Version]
- Cifuentes-Munoz, N.; Ellis Dutch, R. To assemble or not to assemble: The changing rules of pneumovirus transmission. Virus Res. 2019, 265, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Skiadopoulos, M.H.; Biacchesi, S.; Buchholz, U.J.; Amaro-Carambot, E.; Surman, S.R.; Collins, P.L.; Murphy, B.R. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 2006, 345, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.J.; Jones, B.G.; Sealy, R.E.; Surman, S.L.; Mason, J.N.; Hayden, R.T.; Tripp, R.A.; Takimoto, T.; Hurwitz, J.L. A Sendai virus recombinant vaccine expressing a gene for truncated human metapneumovirus (hMPV) fusion protein protects cotton rats from hMPV challenge. Virology 2017, 509, 60–66. [Google Scholar] [CrossRef]
- Tang, R.S.; Mahmood, K.; Macphail, M.; Guzzetta, J.M.; Haller, A.A.; Liu, H.; Kaur, J.; Lawlor, H.A.; Stillman, E.A.; Schickli, J.H.; et al. A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys. Vaccine 2005, 23, 1657–1667. [Google Scholar] [CrossRef]
- Sealy, R.; Jones, B.G.; Surman, S.L.; Hurwitz, J.L. Robust IgA and IgG-producing antibody forming cells in the diffuse-NALT and lungs of Sendai virus-vaccinated cotton rats associate with rapid protection against human parainfluenza virus-type 1. Vaccine 2010, 28, 6749–6756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudraraju, R.; Surman, S.; Jones, B.; Sealy, R.; Woodland, D.L.; Hurwitz, J.L. Phenotypes and functions of persistent Sendai virus-induced antibody forming cells and CD8+ T cells in diffuse nasal-associated lymphoid tissue typify lymphocyte responses of the gut. Virology 2011, 410, 429–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henrickson, K.J. Parainfluenza viruses. Clin. Microbiol. Rev. 2003, 16, 242–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isakova-Sivak, I.; Tretiak, T.; Rudenko, L. Cold-adapted influenza viruses as a promising platform for viral-vector vaccines. Expert Rev. Vaccines 2016, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Arevalo, M.T.; Zeng, M. Engineering influenza viral vectors. Bioengineered 2013, 4, 9–14. [Google Scholar] [CrossRef]
- Zens, K.D.; Chen, J.K.; Farber, D.L. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 2016, 1. [Google Scholar] [CrossRef]
- Falsey, A.R.; Hennessey, P.A.; Formica, M.A.; Criddle, M.M.; Biear, J.M.; Walsh, E.E. Humoral immunity to human metapneumovirus infection in adults. Vaccine 2010, 28, 1477–1480. [Google Scholar] [CrossRef]
- Alvarez, R.; Tripp, R.A. The immune response to human metapneumovirus is associated with aberrant immunity and impaired virus clearance in BALB/c mice. J. Virol. 2005, 79, 5971–5978. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R.; Harrod, K.S.; Shieh, W.J.; Zaki, S.; Tripp, R.A. Human metapneumovirus persists in BALB/c mice despite the presence of neutralizing antibodies. J. Virol. 2004, 78, 14003–14011. [Google Scholar] [CrossRef] [Green Version]
- Van den Hoogen, B.G.; Herfst, S.; de Graaf, M.; Sprong, L.; van Lavieren, R.; van Amerongen, G.; Yuksel, S.; Fouchier, R.A.; Osterhaus, A.D.; de Swart, R.L. Experimental infection of macaques with human metapneumovirus induces transient protective immunity. J. Gen. Virol. 2007, 88, 1251–1259. [Google Scholar] [CrossRef]
- Hamelin, M.E.; Couture, C.; Sackett, M.K.; Boivin, G. Enhanced lung disease and Th2 response following human metapneumovirus infection in mice immunized with the inactivated virus. J. Gen. Virol. 2007, 88, 3391–3400. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.E.; Lay, M.K.; Jara, E.L.; Espinoza, J.A.; Gomez, R.S.; Soto, J.; Rivera, C.A.; Abarca, K.; Bueno, S.M.; Riedel, C.A.; et al. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection. Virulence 2017, 8, 685–704. [Google Scholar] [CrossRef] [PubMed]
- Kolli, D.; Bataki, E.L.; Spetch, L.; Guerrero-Plata, A.; Jewell, A.M.; Piedra, P.A.; Milligan, G.N.; Garofalo, R.P.; Casola, A. T lymphocytes contribute to antiviral immunity and pathogenesis in experimental human metapneumovirus infection. J. Virol. 2008, 82, 8560–8569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melendi, G.A.; Zavala, F.; Buchholz, U.J.; Boivin, G.; Collins, P.L.; Kleeberger, S.R.; Polack, F.P. Mapping and characterization of the primary and anamnestic H-2(d)-restricted cytotoxic T-lymphocyte response in mice against human metapneumovirus. J. Virol. 2007, 81, 11461–11467. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.E.; Varga, S.M. The CD8 T Cell Response to Respiratory Virus Infections. Front. Immunol. 2018, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Erickson, J.J.; Gilchuk, P.; Hastings, A.K.; Tollefson, S.J.; Johnson, M.; Downing, M.B.; Boyd, K.L.; Johnson, J.E.; Kim, A.S.; Joyce, S.; et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J. Clin. Investig. 2012, 122, 2967–2982. [Google Scholar] [CrossRef] [Green Version]
- Erickson, J.J.; Lu, P.; Wen, S.; Hastings, A.K.; Gilchuk, P.; Joyce, S.; Shyr, Y.; Williams, J.V. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype. J. Immunol. 2015, 195, 4319–4330. [Google Scholar] [CrossRef] [Green Version]
- Erickson, J.J.; Rogers, M.C.; Hastings, A.K.; Tollefson, S.J.; Williams, J.V. Programmed death-1 impairs secondary effector lung CD8(+) T cells during respiratory virus reinfection. J. Immunol. 2014, 193, 5108–5117. [Google Scholar] [CrossRef] [Green Version]
- Erickson, J.J.; Rogers, M.C.; Tollefson, S.J.; Boyd, K.L.; Williams, J.V. Multiple Inhibitory Pathways Contribute to Lung CD8+ T Cell Impairment and Protect against Immunopathology during Acute Viral Respiratory Infection. J. Immunol. 2016, 197, 233–243. [Google Scholar] [CrossRef]
- Rogers, M.C.; Williams, J.V. Reining in the CD8+ T cell: Respiratory virus infection and PD-1-mediated T-cell impairment. PLoS Pathog. 2019, 15, e1007387. [Google Scholar] [CrossRef] [Green Version]
- Uche, I.K.; Guerrero-Plata, A. Interferon-Mediated Response to Human Metapneumovirus Infection. Viruses 2018, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Banos-Lara Mdel, R.; Ghosh, A.; Guerrero-Plata, A. Critical role of MDA5 in the interferon response induced by human metapneumovirus infection in dendritic cells and in vivo. J. Virol. 2013, 87, 1242–1251. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Liu, T.; Shan, Y.; Li, K.; Garofalo, R.P.; Casola, A. Human metapneumovirus glycoprotein G inhibits innate immune responses. PLoS Pathog. 2008, 4, e1000077. [Google Scholar] [CrossRef] [PubMed]
- Goutagny, N.; Jiang, Z.; Tian, J.; Parroche, P.; Schickli, J.; Monks, B.G.; Ulbrandt, N.; Ji, H.; Kiener, P.A.; Coyle, A.J.; et al. Cell type-specific recognition of human metapneumoviruses (HMPVs) by retinoic acid-inducible gene I (RIG-I) and TLR7 and viral interference of RIG-I ligand recognition by HMPV-B1 phosphoprotein. J. Immunol. 2010, 184, 1168–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Wang, Q.; Kolli, D.; Prusak, D.J.; Tseng, C.T.; Chen, Z.J.; Li, K.; Wood, T.G.; Bao, X. Human metapneumovirus M2-2 protein inhibits innate cellular signaling by targeting MAVS. J. Virol. 2012, 86, 13049–13061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, X.; Kolli, D.; Liu, T.; Shan, Y.; Garofalo, R.P.; Casola, A. Human metapneumovirus small hydrophobic protein inhibits NF-kappaB transcriptional activity. J. Virol. 2008, 82, 8224–8229. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Plata, A. Dendritic cells in human Pneumovirus and Metapneumovirus infections. Viruses 2013, 5, 1553–1570. [Google Scholar] [CrossRef]
- Kolli, D.; Bao, X.; Liu, T.; Hong, C.; Wang, T.; Garofalo, R.P.; Casola, A. Human metapneumovirus glycoprotein G inhibits TLR4-dependent signaling in monocyte-derived dendritic cells. J. Immunol. 2011, 187, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Sakai, M.; Funayama, M.; Itoh, M.; Gotoh, B. Human Metapneumovirus M2-2 Protein Acts as a Negative Regulator of Alpha Interferon Production by Plasmacytoid Dendritic Cells. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, X.; Kolli, D.; Esham, D.; Velayutham, T.S.; Casola, A. Human Metapneumovirus Small Hydrophobic Protein Inhibits Interferon Induction in Plasmacytoid Dendritic Cells. Viruses 2018, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Le Nouen, C.; Hillyer, P.; Brock, L.G.; Winter, C.C.; Rabin, R.L.; Collins, P.L.; Buchholz, U.J. Human metapneumovirus SH and G glycoproteins inhibit macropinocytosis-mediated entry into human dendritic cells and reduce CD4+ T cell activation. J. Virol. 2014, 88, 6453–6469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cespedes, P.F.; Gonzalez, P.A.; Kalergis, A.M. Human metapneumovirus keeps dendritic cells from priming antigen-specific naive T cells. Immunology 2013, 139, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Plata, A.; Kolli, D.; Hong, C.; Casola, A.; Garofalo, R.P. Subversion of pulmonary dendritic cell function by paramyxovirus infections. J. Immunol. 2009, 182, 3072–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lay, M.K.; Cespedes, P.F.; Palavecino, C.E.; Leon, M.A.; Diaz, R.A.; Salazar, F.J.; Mendez, G.P.; Bueno, S.M.; Kalergis, A.M. Human metapneumovirus infection activates the TSLP pathway that drives excessive pulmonary inflammation and viral replication in mice. Eur. J. Immunol. 2015, 45, 1680–1695. [Google Scholar] [CrossRef]
- Herd, K.A.; Nelson, M.; Mahalingam, S.; Tindle, R.W. Pulmonary infection of mice with human metapneumovirus induces local cytotoxic T-cell and immunoregulatory cytokine responses similar to those seen with human respiratory syncytial virus. J. Gen. Virol. 2010, 91, 1302–1310. [Google Scholar] [CrossRef]
- Rogers, M.C.; Lamens, K.D.; Shafagati, N.; Johnson, M.; Oury, T.D.; Joyce, S.; Williams, J.V. CD4(+) Regulatory T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J. Immunol. 2018, 201, 1253–1266. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.C.; Schuster, J.E.; Gilchuk, P.; Boyd, K.L.; Joyce, S.; Williams, J.V. Lung CD8+ T Cell Impairment Occurs during Human Metapneumovirus Infection despite Virus-Like Particle Induction of Functional CD8+ T Cells. J. Virol. 2015, 89, 8713–8726. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, U.J.; Nagashima, K.; Murphy, B.R.; Collins, P.L. Live vaccines for human metapneumovirus designed by reverse genetics. Expert Rev. Vaccines 2006, 5, 695–706. [Google Scholar] [CrossRef]
- Pham, Q.N.; Biacchesi, S.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avian metapneumovirus exhibit improved growth in vitro and attenuation in vivo. J. Virol. 2005, 79, 15114–15122. [Google Scholar] [CrossRef] [Green Version]
- Biacchesi, S.; Pham, Q.N.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. J. Virol. 2005, 79, 12608–12613. [Google Scholar] [CrossRef] [Green Version]
- Biacchesi, S.; Skiadopoulos, M.H.; Yang, L.; Lamirande, E.W.; Tran, K.C.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Recombinant human Metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: Deletion of G yields a promising vaccine candidate. J. Virol. 2004, 78, 12877–12887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, U.J.; Biacchesi, S.; Pham, Q.N.; Tran, K.C.; Yang, L.; Luongo, C.L.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L. Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: Effects on RNA synthesis, attenuation, and immunogenicity. J. Virol. 2005, 79, 6588–6597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schickli, J.H.; Kaur, J.; Macphail, M.; Guzzetta, J.M.; Spaete, R.R.; Tang, R.S. Deletion of human metapneumovirus M2-2 increases mutation frequency and attenuates growth in hamsters. Virol. J. 2008, 5, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Shu, Z.; Qin, X.; Dou, Y.; Zhao, Y.; Zhao, X. A live attenuated human metapneumovirus vaccine strain provides complete protection against homologous viral infection and cross-protection against heterologous viral infection in BALB/c mice. Clin. Vaccine Immunol. CVI 2013, 20, 1246–1254. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wei, Y.; Zhang, X.; Cai, H.; Niewiesk, S.; Li, J. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J. Virol. 2014, 88, 11411–11429. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.A. Immunologic basis of vaccine vectors. Immunity 2010, 33, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Mok, H.; Tollefson, S.J.; Podsiad, A.B.; Shepherd, B.E.; Polosukhin, V.V.; Johnston, R.E.; Williams, J.V.; Crowe, J.E., Jr. An alphavirus replicon-based human metapneumovirus vaccine is immunogenic and protective in mice and cotton rats. J. Virol. 2008, 82, 11410–11418. [Google Scholar] [CrossRef] [Green Version]
- Bates, J.T.; Pickens, J.A.; Schuster, J.E.; Johnson, M.; Tollefson, S.J.; Williams, J.V.; Davis, N.L.; Johnston, R.E.; Schultz-Darken, N.; Slaughter, J.C.; et al. Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates. Vaccine 2016, 34, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Palavecino, C.E.; Cespedes, P.F.; Gomez, R.S.; Kalergis, A.M.; Bueno, S.M. Immunization with a recombinant bacillus Calmette-Guerin strain confers protective Th1 immunity against the human metapneumovirus. J. Immunol. 2014, 192, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Soto, J.A.; Galvez, N.M.S.; Rivera, C.A.; Palavecino, C.E.; Cespedes, P.F.; Rey-Jurado, E.; Bueno, S.M.; Kalergis, A.M. Recombinant BCG Vaccines Reduce Pneumovirus-Caused Airway Pathology by Inducing Protective Humoral Immunity. Front. Immunol. 2018, 9, 2875. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, T.; Elbahesh, H.; Saletti, G.; Rimmelzwaan, G.F. Recombinant influenza A viruses as vaccine vectors. Expert Rev. Vaccines 2019, 18, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Korenkov, D.; Isakova-Sivak, I.; Rudenko, L. Basics of CD8 T-cell immune responses after influenza infection and vaccination with inactivated or live attenuated influenza vaccine. Expert Rev. Vaccines 2018, 17, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Mohn, K.G.; Smith, I.; Sjursen, H.; Cox, R.J. Immune responses after live attenuated influenza vaccination. Hum. Vaccines Immunother. 2018, 14, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Cullen, J.G.; McQuilten, H.A.; Quinn, K.M.; Olshansky, M.; Russ, B.E.; Morey, A.; Wei, S.; Prier, J.E.; La Gruta, N.L.; Doherty, P.C.; et al. CD4(+) T help promotes influenza virus-specific CD8(+) T cell memory by limiting metabolic dysfunction. Proc. Natl. Acad. Sci. USA 2019, 116, 4481–4488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhao, J.; Mangalam, A.K.; Channappanavar, R.; Fett, C.; Meyerholz, D.K.; Agnihothram, S.; Baric, R.S.; David, C.S.; Perlman, S. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity 2016, 44, 1379–1391. [Google Scholar] [CrossRef] [Green Version]
- Kotomina, T.; Isakova-Sivak, I.; Matyushenko, V.; Kim, K.H.; Lee, Y.; Jung, Y.J.; Kang, S.M.; Rudenko, L. Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease. Antivir. Res. 2019, 168, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Isakova-Sivak, I.; Matyushenko, V.; Stepanova, E.; Matushkina, A.; Kotomina, T.; Mezhenskaya, D.; Prokopenko, P.; Kudryavtsev, I.; Kopeykin, P.; Sivak, K.; et al. Recombinant Live Attenuated Influenza Vaccine Viruses Carrying Conserved T-cell Epitopes of Human Adenoviruses Induce Functional Cytotoxic T-Cell Responses and Protect Mice against Both Infections. Vaccines 2020, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Edgtton, K.; Gould, A.; Guo, H.; Mather, M.; Haigh, O.; Cochrane, M.; Kattenbelt, J.; Thomson, S.; Tindle, R. HBsAg-vectored vaccines simultaneously deliver CTL responses to protective epitopes from multiple viral pathogens. Virology 2010, 398, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Herd, K.A.; Mahalingam, S.; Mackay, I.M.; Nissen, M.; Sloots, T.P.; Tindle, R.W. Cytotoxic T-lymphocyte epitope vaccination protects against human metapneumovirus infection and disease in mice. J. Virol. 2006, 80, 2034–2044. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Guo, L.; Kong, M.; Su, X.; Yang, D.; Zou, M.; Liu, Y.; Lu, L. Design and Evaluation of a Multi-Epitope Peptide of Human Metapneumovirus. Intervirology 2015, 58, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Rock, M.T.; McKinney, B.A.; Yoder, S.M.; Prudom, C.E.; Wright, D.W.; Crowe, J.E., Jr. Identification of potential human respiratory syncytial virus and metapneumovirus T cell epitopes using computational prediction and MHC binding assays. J. Immunol. Methods 2011, 374, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, X.; Krause, J.C.; Leser, G.P.; Cox, R.G.; Lamb, R.A.; Williams, J.V.; Crowe, J.E., Jr.; Jardetzky, T.S. Structure of the human metapneumovirus fusion protein with neutralizing antibody identifies a pneumovirus antigenic site. Nat. Struct. Mol. Biol. 2012, 19, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Pickens, J.; Mousa, J.J.; Leser, G.P.; Lamb, R.A.; Crowe, J.E., Jr.; Jardetzky, T.S. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV. PLoS ONE 2016, 11, e0155917. [Google Scholar] [CrossRef]
- Ulbrandt, N.D.; Ji, H.; Patel, N.K.; Barnes, A.S.; Wilson, S.; Kiener, P.A.; Suzich, J.; McCarthy, M.P. Identification of antibody neutralization epitopes on the fusion protein of human metapneumovirus. J. Gen. Virol. 2008, 89, 3113–3118. [Google Scholar] [CrossRef]
- Hastings, A.K.; Gilchuk, P.; Joyce, S.; Williams, J.V. Novel HLA-A2-restricted human metapneumovirus epitopes reduce viral titers in mice and are recognized by human T cells. Vaccine 2016, 34, 2663–2670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herd, K.A.; Nissen, M.D.; Hopkins, P.M.; Sloots, T.P.; Tindle, R.W. Major histocompatibility complex class I cytotoxic T lymphocyte immunity to human metapneumovirus (hMPV) in individuals with previous hMPV infection and respiratory disease. J. Infect. Dis. 2008, 197, 584–592. [Google Scholar] [CrossRef]
- Ryder, A.B.; Tollefson, S.J.; Podsiad, A.B.; Johnson, J.E.; Williams, J.V. Soluble recombinant human metapneumovirus G protein is immunogenic but not protective. Vaccine 2010, 28, 4145–4152. [Google Scholar] [CrossRef] [Green Version]
- Corti, D.; Bianchi, S.; Vanzetta, F.; Minola, A.; Perez, L.; Agatic, G.; Guarino, B.; Silacci, C.; Marcandalli, J.; Marsland, B.J.; et al. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature 2013, 501, 439–443. [Google Scholar] [CrossRef]
- Mas, V.; Rodriguez, L.; Olmedillas, E.; Cano, O.; Palomo, C.; Terron, M.C.; Luque, D.; Melero, J.A.; McLellan, J.S. Engineering, Structure and Immunogenicity of the Human Metapneumovirus F Protein in the Postfusion Conformation. Plos Pathog. 2016, 12, e1005859. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Mousa, J.J.; Bates, J.T.; Lamb, R.A.; Crowe, J.E., Jr.; Jardetzky, T.S. Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nat. Microbiol. 2017, 2, 16272. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solberg, O.D.; Mack, S.J.; Lancaster, A.K.; Single, R.M.; Tsai, Y.; Sanchez-Mazas, A.; Thomson, G. Balancing selection and heterogeneity across the classical human leukocyte antigen loci: A meta-analytic review of 497 population studies. Hum. Immunol. 2008, 69, 443–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamens, K.D.; Rogers, M.C.; Tometich, J.T.; Hand, T.W.; Williams, J.V. Uncharted Territory: The CD4+ T cell response to human metapneumovirus. J. Immunol. 2019, 202, 198.2. [Google Scholar]
- Tapia-Calle, G.; Born, P.A.; Koutsoumpli, G.; Gonzalez-Rodriguez, M.I.; Hinrichs, W.L.J.; Huckriede, A.L.W. A PBMC-Based System to Assess Human T Cell Responses to Influenza Vaccine Candidates in Vitro. Vaccines 2019, 7, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szomolay, B.; Liu, J.; Brown, P.E.; Miles, J.J.; Clement, M.; Llewellyn-Lacey, S.; Dolton, G.; Ekeruche-Makinde, J.; Lissina, A.; Schauenburg, A.J.; et al. Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors. Immunol. Cell Biol. 2016, 94, 573–582. [Google Scholar] [CrossRef] [Green Version]
IEDB ID | Epitope Sequence | Reference |
---|---|---|
174346 | L19, K20, E21, S22, Y23, L24, E25, E26, I31, E33, G34, P282, C283, W284, K312, T317, E345, R348, E349, N351, I352, N353, T356, N358, L378, T411, Q413, D414 | [92,93] |
101452 | K386 | [94] |
101453 | S132, G152 | [94] |
101454 | V397 | [94] |
101455 | A238, G239, I241, K242, L245 | [94] |
101456 | A238, I241, K242, L245 | [94] |
101457 | I177, N178, K179 | [94] |
101458 | K242 | [94] |
Protein (Position) | IEDB ID | Epitope Sequence | Allele | Method | Reference |
---|---|---|---|---|---|
F (10–19) | 159109 | SLLITPQHGL | HLA-A*02:01 | MHC binding | [91] |
F (35–44) | 159230 | YLSVLRTGWY | HLA-A*01:01 | MHC binding | [91] |
F (36–44) | 158990 | LSVLRTGWY | HLA-A*01:01 | MHC binding | [91] |
F (63–71) | 21782 | GPSLIKTEL | HLA-B*07:02 | MHC binding | [91] |
F (97–105) | 45470 | NPRQSRFVL | HLA-B*07:02 | MHC binding | [91] |
F (103–112) | 158788 | FVLGAIALGV | HLA-A*02:01 | MHC binding | [91] |
F (104–112) | 159188 | VLGAIALGV | HLA-A*02:01 | MHC binding | [91] |
F (153–161) | 547003 | NGVRVLATA | HLA-A*02:01 | PBMC (51 chromium cytotoxicity) | [105] |
F (157–165) | 69387 | VLATAVREL | HLA-A*02:01 | PBMC (ELISPOT IFNγ release, 51 chromium cytotoxicity) | [96] |
F (242–251) | 158894 | KLMLENRAMV | HLA-A*02:01 | MHC binding | [91] |
F (269–278) | 159238 | YMVQLPIFGV | HLA-A*02:01 | MHC binding | [91] |
F (429–438) | 33979 | KVEGEQHVIK | HLA class I | PBMC (ELISPOT IFNγ release, 51 chromium cytotoxicity) | [96] |
L (12–21) | 159227 | YLPDSYLKGV | HLA-A*02:01 | MHC binding | [91] |
L (249–258) | 158907 | KLYETVDYML | HLA-A*02:01 | MHC binding | [91] |
L (350–358) | 159027 | NLENAAELY | HLA-A*01:01 | MHC binding | [91] |
L (350–359) | 159028 | NLENAAELYY | HLA-A*01:01 | MHC binding | [91] |
L (400–409) | 158756 | FILRIIKGFV | HLA-A*02:01 | MHC binding | [91] |
L (663–671) | 159101 | SLFCWLHLI | HLA-A*02:01 | MHC binding | [91] |
L (717–726) | 158906 | KLWTMEAISL | HLA-A*02:01 | MHC binding | [91] |
L (733–741) | 158941 | KTRCQMTSL | HLA-B*07:02 | MHC binding | [91] |
L (740–749) | 159110 | SLLNGDNQSI | HLA-A*02:01 | MHC binding | [91] |
L (859–867) | 159108 | SLILRNFWL | HLA-A*02:01 | MHC binding | [91] |
L (938–946) | 158765 | FLTEAISHV | HLA-A*02:01 | MHC binding | [91] |
L (1092–1100) | 159116 | SMMLENLGL | HLA-A*02:01 | MHC binding | [91] |
L (1092–1101) | 159117 | SMMLENLGLL | HLA-A*02:01 | MHC binding | [91] |
L (1093–1101) | 159009 | MMLENLGLL | HLA-A*02:01 | MHC binding | [91] |
L (1198–1206) | 159195 | VPVYNRQIL | HLA-B*07:02 | MHC binding | [91] |
L (1253–1261) | 158976 | LPRFMSVNF | HLA-B*07:02 | MHC binding | [91] |
L (1253–1262) | 158977 | LPRFMSVNFL | HLA-B*07:02 | MHC binding | [91] |
L (1270–1278) | 159071 | RPMEFPASV | HLA-B*07:02 | MHC binding | [91] |
L (1512–1520) | 158851 | IMLYDVKFL | HLA-A*02:01 | MHC binding | [91] |
L (1513–1522) | 159008 | MLYDVKFLSL | HLA-A*02:01 | MHC binding | [91] |
L (1563–1571) | 159228 | YLQLIEQSL | HLA-A*02:01 | MHC binding | [91] |
L (1723–1732) | 158716 | DLDHHYPLEY | HLA-A*01:01 | MHC binding | [91] |
L (1826–1834) | 158898 | KLPFFVRSV | HLA-A*02:01 | MHC binding | [91] |
L (1897–1906) | 159111 | SLLSGLRIPI | HLA-A*02:01 | MHC binding | [91] |
N (39–47) | 159112 | SLQQEITLL | HLA-A*02:01 | PBMC/Tg mice (ELISPOT IFNγ release, qualitative binding) | [95] |
N (111–119) | 158979 | LQMLDIHGV | HLA-A*02:01 | MHC binding | [91] |
N (151–159) | 159072 | RPSAPDTPI | HLA-B*07:02 | MHC binding | [91] |
N (183–191) | 159177 | TVRRANRVL | HLA-B*07:02 | MHC binding | [91] |
N (264–272) | 158831 | IARSSNNIM | HLA-B*07:02 | MHC binding | [91] |
N (307–315) | 60092 | SPKAGLLSL | HLA-B*07 | PBMC (ELISPOT IFNγ release, 51 chromium cytotoxicity) | [96] |
N (339–347) | 159061 | RGRVPNTEL | HLA-B*07:02 | MHC binding | [91] |
M (4–12) | 159233 | YLVDTYQGI | HLA-A*02:01 | MHC binding | [91] |
M (12–20) | 28126 | IPYTAAVQV | HLA-B*07 | PBMC (ELISPOT IFNγ, 51 chromium cytotoxicity) | [96] |
M (39–47) | 539268 | FQANTPPAV | HLA-A*02:01 | PBMC/Tg mice (ELISPOT IFNγ release, qualitative binding, pathogen burden after challenge) | [95] |
M (47–55) | 159190 | VLLDQLKTL | HLA-A*02:01 | MHC binding | [91] |
M (160–169) | 158853 | IPAFIKSVSI | HLA-B*07:02 | MHC binding | [91] |
M (194–203) | 25388 | IAPYAGLIMI | HLA class I | PBMC (ELISPOT IFNγ release, 51 chromium cytotoxicity) | [96] |
M (195–203) | 158691 | APYAGLIMI | HLA-B*07:02 | Tg mice (ICS IFNγ, pathogen burden after challenge, degranulation) | [46,47] |
M (195–204) | 158692 | APYAGLIMIM | HLA-B*07:02 | MHC binding | [91] |
M (208–216) | 159031 | NPKGIFKKL | HLA-B*07:02 | MHC binding | [91] |
M2-2 (5–13) | 159011 | MPCKTVKAL | HLA-B*07:02 | MHC binding | [91] |
M2-2 (57–66) | 159220 | YLENIEIIYV | HLA-A*02:01 | MHC binding | [91] |
P (182–190) | 158903 | KLSMILGLL | HLA-A*02:01 | MHC binding | [91] |
P (199–207) | 158806 | GPTAARDGI | HLA-B*07:02 | MHC binding | [91] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanova, E.; Matyushenko, V.; Rudenko, L.; Isakova-Sivak, I. Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens 2020, 9, 481. https://doi.org/10.3390/pathogens9060481
Stepanova E, Matyushenko V, Rudenko L, Isakova-Sivak I. Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens. 2020; 9(6):481. https://doi.org/10.3390/pathogens9060481
Chicago/Turabian StyleStepanova, Ekaterina, Victoria Matyushenko, Larisa Rudenko, and Irina Isakova-Sivak. 2020. "Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus" Pathogens 9, no. 6: 481. https://doi.org/10.3390/pathogens9060481
APA StyleStepanova, E., Matyushenko, V., Rudenko, L., & Isakova-Sivak, I. (2020). Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens, 9(6), 481. https://doi.org/10.3390/pathogens9060481