Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag
Abstract
:1. Introduction
2. Results
2.1. Rescue of Border Disease Virus (BDV) Possessing a Small Reporter High-Affinity NanoBiT (HiBiT) Tag, vBDV FNK/HiBiT
2.2. Characterization of Reporter Pestiviruses with HiBiT Tags
2.3. Development of the Serum Neutralization Test (SNT) Based on the Luciferase Assay
3. Discussion
4. Materials and Methods
4.1. Cells and Viruses
4.2. Reference Antisera
4.3. Construction of BDV FNK2012-1 Full-Length cDNA
4.4. Construction of HiBiT Recombinant Full-Length cDNA of BDV
4.5. In Vitro Transcription and RNA Transfection
4.6. Immunoperoxidase Assay to Detect Pestivirus Antigens
4.7. Virus Titration
4.8. Luciferase Assay
4.9. Serum Neutralization Tests (SNTs)
4.10. The 50% Effective Concentration (EC50) of Each Serum against Marker Virus
4.11. Ethics Statement
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tautz, N.; Tews, B.A.; Meyers, G. The Molecular Biology of Pestiviruses; Academic Press: Cambridge, MA, USA, 2015; Volume 93, ISBN 9780128021798. [Google Scholar]
- Wu, Z.; Liu, B.; Du, J.; Zhang, J.; Lu, L.; Zhu, G.; Han, Y.; Su, H.; Yang, L.; Zhang, S.; et al. Discovery of diverse rodent and bat pestiviruses with distinct genomic and phylogenetic characteristics in several Chinese provinces. Front. Microbiol. 2018, 9, 2562. [Google Scholar]
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Muerhoff, A.S.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar]
- Tao, J.; Liao, J.; Wang, Y.; Zhang, X.; Wang, J.; Zhu, G. Bovine Viral Diarrhea Virus (BVDV) infections in pigs. Vet. Microbiol. 2013, 165, 185–189. [Google Scholar] [CrossRef]
- Braun, U.; Hilbe, M.; Peterhans, E.; Schweizer, M. Border disease in cattle. Vet. J. 2019, 246, 12–20. [Google Scholar] [CrossRef]
- Moennig, V.; Becher, P. Pestivirus control programs: How far have we come and where are we going? Anim. Heal. Res. Rev. 2015, 16, 83–87. [Google Scholar]
- Blome, S.; Staubach, C.; Henke, J.; Carlson, J.; Beer, M. Classical swine fever—An updated review. Viruses 2017, 9, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Organisation for Animal Health. Classical swine fever. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2019. Available online: https://www.oie.int/standard-setting/terrestrial-manual/access-online/ (accessed on 3 March 2020).
- Greiser-Wilke, I.; Blome, S.; Moennig, V. Diagnostic methods for detection of classical swine fever virus-status quo and new developments. Vaccine 2007, 25, 5524–5530. [Google Scholar] [CrossRef] [PubMed]
- Postel, A.; Austermann-Busch, S.; Petrov, A.; Moennig, V.; Becher, P. Epidemiology, diagnosis and control of classical swine fever: Recent developments and future challenges. Transbound. Emerg. Dis. 2018, 65, 248–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floegel-Niesmann, G.; Bunzenthal, C.; Fischer, S.; Moennig, V. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J. Vet. Med. Ser. B 2003, 50, 214–220. [Google Scholar] [CrossRef]
- Moennig, V.; Floegel-Niesmann, G.; Greiser-Wilke, I. Clinical signs and epidemiology of classical swine fever: A review of new knowledge. Vet. J. 2003, 165, 11–20. [Google Scholar] [CrossRef]
- Terpstra, C.; Bloemraad, M.; Gielkens, A.L.J. The neutralizing peroxidase-linked assay for detection of antibody against swine fever virus. Vet. Microbiol. 1984, 9, 113–120. [Google Scholar] [CrossRef]
- Sakoda, Y.; Wakamoto., H.; Tamura, T.; Nomura., T.; Naito., M.; Aoki., H.; Morita., H.; Kida, H.; Fukusho, A. Development and evaluation of indirect enzyme-linked immunosorbent assay for a screening test to detect antibodies against classical swine fever virus. Jpn. J. Vet. Res. 2012, 60, 85–94. [Google Scholar] [PubMed]
- Kameyama, K.; Nishi, T.; Yamada, M.; Masujin, K.; Morioka, K.; Kokuho, T.; Fukai, K. Experimental infection of pigs with a classical swine fever virus isolated in Japan for the first time in 26 years. J. Vet. Med. Sci. 2019, 81, 1277–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postel, A.; Nishi, T.; Kameyama, K.; Meyer, D.; Suckstorff, O.; Fukai, K.; Becher, P. Reemergence of classical swine fever, Japan, 2018. Emerg. Infect. Dis. 2019, 25, 1228–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Agriculture, Forestry and Fisheries, Japan. Update of Classical Swine Fever in Japan. Available online: https://www.maff.go.jp/j/syouan/douei/csf/domestic.html (accessed on 3 March 2020).
- Brauer, A.; Lange, E.; Kaden, V. Oral immunisation of wild boar against classical swine fever: Uptake studies of new baits and investigations on the stability of lyophilised C-strain vaccine. Eur. J. Wildl. Res. 2006, 52, 271–276. [Google Scholar] [CrossRef]
- Rossi, S.; Staubach, C.; Blome, S.; Guberti, V.; Thulke, H.H.; Vos, A.; Koenen, F.; Le Potier, M.F. Controlling of CSFV in European wild boar using oral vaccination: A review. Front. Microbiol. 2015, 6, 1141. [Google Scholar] [CrossRef]
- Moennig, V. The control of classical swine fever in wild boar. Front. Microbiol. 2015, 6, 1211. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Furuuchi, S.; Kumagai, T.; Sasahara, J. A mutant of hog cholera virus inducing interference in swine testicle cell cultures. Am. J. Vet. Res. 1970, 31, 1787–1794. [Google Scholar]
- Nagai, M.; Aoki, H.; Sakoda, Y.; Kozasa, T.; Tominaga-Teshima, K.; Mine, J.; Abe, Y.; Tamura, T.; Kobayashi, T.; Nishine, K.; et al. Molecular, biological, and antigenic characterization of a border disease virus isolated from a pig during classical swine fever surveillance in Japan. J. Vet. Diagn. Investig. 2014, 26, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Takaku, H.; Igarashi, Y.; Kiyohara, H.; Ohyama, K.; Kurosawa, A.; Saitoh, M.; Miyane, K.; Hiramatsu, M. Detection of antibodies against Bovine viral diarrhea virus from field pigs. J. Jpn. Vet. Med. Assoc. 2007, 60, 125–130. [Google Scholar] [CrossRef]
- Sakoda, Y.; Hikawa, M.; Tamura, T.; Fukusho, A. Establishment of a serum-free culture cell line, CPK-NS, which is useful for assays of classical swine fever virus. J. Virol. Methods 1998, 75, 59–68. [Google Scholar] [CrossRef]
- Moser, C.; Tratschin, J.D.; Hofmann, M.A. A recombinant classical swine fever virus stably expresses a marker gene. J. Virol. 1998, 72, 5318–5322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z.C.; Bird, R.C. An improved reverse genetics system for generation of bovine viral diarrhea virus as a BAC cDNA. J. Virol. Methods 2008, 149, 309–315. [Google Scholar] [CrossRef]
- Wegelt, A.; Reimann, I.; Granzow, H.; Beer, M. Characterization and purification of recombinant bovine viral diarrhea virus particles with epitopetagged envelope proteins. J. Gen. Virol. 2011, 92, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Li, Y.; Chen, J.; Li, C.; Huang, J.; Luo, Y.; Sun, Y.; Li, S.; Qiu, H. Generation of a recombinant classical swine fever virus stably expressing the firefly luciferase gene for quantitative antiviral assay. Antivir. Res. 2014, 109, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.S.; Schwinn, M.K.; Hall, M.P.; Zimmerman, K.; Otto, P.; Lubben, T.H.; Butler, B.L.; Binkowski, B.F.; MacHleidt, T.; Kirkland, T.A.; et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 2016, 11, 400–408. [Google Scholar] [CrossRef]
- Tamura, T.; Fukuhara, T.; Uchida, T.; Ono, C.; Mori, H.; Sato, A.; Fauzyah, Y.; Okamoto, T.; Kurosu, T.; Setoh, Y.X.; et al. Characterization of recombinant Flaviviridae viruses possessing a small reporter tag. J. Virol. 2018, 92, e01582-17. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Igarashi, M.; Enkhbold, B.; Suzuki, T.; Okamatsu, M.; Ono, C.; Mori, H.; Izumi, T.; Sato, A.; Fauzyah, Y.; et al. In vivo dynamics of reporter Flaviviridae viruses. J. Virol. 2019, 93, e01191-19. [Google Scholar] [CrossRef]
- Schwinn, M.K.; Machleidt, T.; Zimmerman, K.; Eggers, C.T.; Dixon, A.S.; Hurst, R.; Hall, M.P.; Encell, L.P.; Binkowski, B.F.; Wood, K.V. CRISPR-mediated tagging of endogenous proteins with a Luminescent Peptide. ACS Chem. Biol. 2018, 13, 467–474. [Google Scholar] [CrossRef]
- Hayama, Y.; Shimizu, Y.; Murato, Y.; Sawai, K.; Yamamoto, T. Estimation of infection risk on pig farms in infected wild boar areas—Epidemiological analysis for the reemergence of classical swine fever in Japan in 2018. Prev. Vet. Med. 2020, 175, 104873. [Google Scholar] [CrossRef]
- Ito, S.; Jurado, C.; Bosch, J.; Ito, M.; Sánchez-vizcaíno, J.M.; Isoda, N.; Sakoda, Y. Role of Wild Boar in the spread of classical swine fever in Japan. Pathogens 2019, 8, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y. Eradication of classical swine fever in Japan. Bull. NARO Natl. Inst. Anim. Heal. 2013, 119, 1–9. [Google Scholar]
- Meyers, G.; Tautz, N.; Becher, P.; Thiel, H.J.; Kümmerer, B.M. Recovery of cytopathogenic and noncytopathogenic bovine viral diarrhea viruses from cDNA constructs. J. Virol. 1996, 70, 8606–8613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, T.; Sakoda, Y.; Yoshino, F.; Nomura, T.; Yamamoto, N.; Sato, Y.; Okamatsu, M.; Ruggli, N.; Kida, H. Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B. J. Virol. 2012, 86, 8602–8613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, M.; Sakoda, Y.; Mori, M.; Hayashi, M.; Kida, H.; Akashi, H. Insertion of cellular sequence and RNA recombination in the structural protein coding region of cytopathogenic bovine viral diarrhoea virus. J. Gen. Virol. 2003, 84, 447–452. [Google Scholar] [CrossRef]
- Fahnøe, U.; Pedersen, A.G.; Risager, P.C.; Nielsen, J.; Belsham, G.J.; Höper, D.; Beer, M.; Rasmussen, T.B. Rescue of the highly virulent classical swine fever virus strain “Koslov” from cloned cDNA and first insights into genome variations relevant for virulence. Virology 2014, 468, 379–387. [Google Scholar] [CrossRef]
- Kameyama, K.; Sakoda, Y.; Tamai, K.; Nagai, M.; Akashi, H.; Kida, H. Genetic recombination at different points in the Npro-coding region of bovine viral diarrhea viruses and the potentials to change their antigenicities and pathogenicities. Virus Res. 2006, 116, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 435–469. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
Marker Virus | SNT Titer* of Antiserum against | |||
---|---|---|---|---|
CSFV GPE− | BVDV-1 Nose | BVDV-2 KZ91-NCP | BDV FNK2012-1 | |
vCSFV GPE−/HiBiT | 1024 | <2 | <2 | <2 |
vCSFV GPE−-WT | 1024 | <2 | <2 | <2 |
vBVDV-1 NCP7/HiBiT | <2 | 32 | 32 | <2 |
vBVDV-1 NCP7-WT | <2 | 32 | 32 | <2 |
BVDV-1 Nose-WT | <2 | 64 | 8 | <2 |
vBDV FNK/HiBiT | 8 | 2 | 4 | 128 |
BDV FNK-WT | 8 | 4 | 8 | 128 |
Marker Virus | SNT Method (dpi) | SNT Titer and EC50* of Antiserum against | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CSFV GPE− | BVDV-1 Nose | BVDV-2 KZ91-NCP | BDV FNK2012-1 | |||||||
vCSFV GPE−/HiBIT | Luciferase-based | (2) | 1024 | 11.3 | 2 | 6.73 | 2 | 7.04 | 4 | 5.19 |
(3) | 1024 | 11.1 | <2 | 2.46 | <2 | 4.59 | <2 | 3.65 | ||
(4) | 1024 | 10.8 | <2 | 1.65 | <2 | 3.75 | <2 | 1.86 | ||
Immunoperoxidase | (4) | 1024 | <2 | <2 | <2 | |||||
vBVDV-1 NCP7/HiBiT | Luciferase-based | (2) | 2 | 4.98 | 128 | 8.47 | 128 | 9.57 | <2 | 2.77 |
(3) | <2 | 3.97 | 32 | 8.17 | 32 | 7.97 | <2 | 2.01 | ||
(4) | <2 | 2.93 | 32 | 7.91 | 64 | 9.52 | <2 | N/A | ||
Immunoperoxidase | (4) | <2 | 32 | 32 | <2 | |||||
vBDV FNK/HiBiT | Luciferase-based | (2) | 64 | 7.36 | 8 | 4.92 | 64 | 7.20 | 2048 | 10.83 |
(3) | 8 | 4.77 | 2 | 2.22 | 2 | 3.34 | 256 | 9.01 | ||
(4) | 2 | 1.01 | <2 | N/A | <2 | 1.22 | 128 | 7.11 | ||
Immunoperoxidase | (4) | 8 | 2 | 4 | 128 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetsuo, M.; Matsuno, K.; Tamura, T.; Fukuhara, T.; Kim, T.; Okamatsu, M.; Tautz, N.; Matsuura, Y.; Sakoda, Y. Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens 2020, 9, 188. https://doi.org/10.3390/pathogens9030188
Tetsuo M, Matsuno K, Tamura T, Fukuhara T, Kim T, Okamatsu M, Tautz N, Matsuura Y, Sakoda Y. Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens. 2020; 9(3):188. https://doi.org/10.3390/pathogens9030188
Chicago/Turabian StyleTetsuo, Madoka, Keita Matsuno, Tomokazu Tamura, Takasuke Fukuhara, Taksoo Kim, Masatoshi Okamatsu, Norbert Tautz, Yoshiharu Matsuura, and Yoshihiro Sakoda. 2020. "Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag" Pathogens 9, no. 3: 188. https://doi.org/10.3390/pathogens9030188
APA StyleTetsuo, M., Matsuno, K., Tamura, T., Fukuhara, T., Kim, T., Okamatsu, M., Tautz, N., Matsuura, Y., & Sakoda, Y. (2020). Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens, 9(3), 188. https://doi.org/10.3390/pathogens9030188