Identification of Haemaphysalis longicornis Genes Differentially Expressed in Response to Babesia microti Infection
Abstract
:1. Introduction
2. Results
2.1. Annotation of Forward and Reverse Subtracted SSH cDNA Library
2.2. Analysis of Contig Repeats and Characterization of Response to Stimulus- and Immune System Process-Related Genes in Forward Suppression Subtraction cDNA Library
2.3. Expression Levels of the Less and Highly Represented Genes in Infected Ticks
2.4. RNA Interference Analysis of Upregulated Genes
3. Discussion
4. Materials and Methods
4.1. Unfed, Uninfected, and B. microti-Infected Ticks
4.2. SSH cDNA Library Construction
4.3. Gene Ontology Analysis
4.4. Sequence Analysis
4.5. Real-Time PCR for Analysis of Differential Gene Expression
4.6. RNA Interference for Functional Analysis of Tick Genes Differentially Expressed in Response to Babesia Infection
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Goal | Gene/Primer | Sequence (5′ to 3′) Forward/Reverse | Length (bp) | Annealing Temperature/Extension Time | References |
---|---|---|---|---|---|
Real-time PCR | Neutrophil elastase inhibitor | TCCGCGAGTCTCCTCACTCACG | 133 | 62 °C/35 s | This study |
/TGTCGTCGCCCTCGCCTTCTTC | |||||
Leukocyte receptor cluster member 8 | GGCCGCAAGGCCAACAAGAAGC | 188 | 62 °C/35 s | This study | |
/AGGCTGGGACCGCAGTTGATGC | |||||
Haemaphysalis flava vitellogenin-like | AGGCTCGCTGAACGACAGCACG | 146 | 62 °C/35 s | This study | |
/AGCACTTCCTGGAGCACCTGGC | |||||
Dermacentor variabilis vitellogenin-like | CGGCACCCTGGTCAAGCACTTC | 172 | 62 °C/35 s | This study | |
/AAGGTAGGCAGACACCACGGGC | |||||
IgE-dependent histamine release factor | ATCGAGGACGCCAAGGCCAAGC | 101 | 62 °C/35 s | This study | |
/CCATCGGCATTGCAGGACTCGC | |||||
YTH domain-containing family protein 1 | AAGGACGTGCCCAACTCGCAGC | 246 | 62 °C/35 s | This study | |
/ACCAAAAGGAGCACCTGGGCCG | |||||
Cathepsin B-like cysteine protease form 1 | TGGGCATTTGGAGCGGTGGAGG | 158 | 62 °C/35 s | This study | |
/TAGTACTCCCACGCTGCCGACG | |||||
Heat shock 70 kDa protein 5 | TCACGCTGTCGTCACTGTGCCC | 190 | 62 °C/35 s | This study | |
/TGTTCCTCCGCCCAGGTCGAAG | |||||
Obg-like ATPase 1 | GAAAAAGGAAGATGAGTCCGAG | 121 | 62 °C/35 s | This study | |
/GGCTGTCAACACGTTGAAG | |||||
Ubiquitin-like protein FUBI | GAAGCCTGGTTGGCGTTGGGTC | 120 | 62 °C/35 s | This study | |
/TGATGGGGGCAAGCCGCTGAAC | |||||
Calreticulin | TGCACCCCGAGATCGACAACCC | 105 | 62 °C/35 s | This study | |
/TGCCCGACTTGACCTGCCACAG | |||||
Vitellogenin 1 | ATGTCGCCACCAAGTACTTCAACTACCT | 408 | 62 °C/35 s | [71] | |
/TCTGGAACATTCGTGTAAACGA | |||||
Vitellogenin 2 | ATCTACTACCTTGCTTTGAACCCCCACTGG | 421 | 62 °C/35 s | [71] | |
/AGAATGTCGCCATGTCCTTC | |||||
GAPDH | TGTCCGTGGTAGACCTGACCTG | 203 | 62 °C/35 s | [72] | |
/GGTCTTGGACAGAGCGATGCCA | |||||
B. microti 18S rRNA | TTGACGGAAGGGCACCACCAGG | 143 | 52 °C/35 s | [26] | |
/AAGAACGGCCATGCACCACCAC | |||||
ITS-2 | TCCGCCGGTACTCCGGTTTCAG | 163 | 62 °C/35 s | [26] | |
/CGTCAAAGAAACGTGCGCCCCC | |||||
Double-stranded RNA synthesis 1 | Calreticulin | GCACCAAGAAGGTTCACGTC | 409 | 64 °C/35 s | This study |
/TTCCACTCGCCCTTGTACTC | |||||
Obg-like ATPase 1 | CGCCGAGAACTTTCCTTTC | 332 | 62 °C/35 s | This study | |
/ACTCCTCGTCTTTCTTCCG | |||||
Vitellogenin 1 | GCAGTACAATTCCATGTACAG | 530 | 68 °C/35 s | [62] | |
/ACTTGTCGGGCCCGATGAACTC | |||||
Vitellogenin 2 | CTTTGGAGAGTACTCCAAGAAC | 515 | 68 °C/15 s | [62] | |
/GGCCGTCGGGCCCGCTCAGGT | |||||
Luciferase (control) | GCTTCCATCTTCCAGGGATACG | 663 | 68 °C/15 s | [70] | |
/CGTCCACAAACACAACTCCTCC | |||||
Babesia detection | B. microti β-tubulin | ATGAGAGARATYGTACACATYCAAGC | 1372 | 54 °C/2 min | [65] |
/TAYTGYTGGTAYTCGCTRACYA | |||||
Ligation/subtraction efficiency analysis | Porin | GGATCCTTCGCGCCGCAGACCGGGAG | 267 | 68 °C/15 s | [26] |
/AAGCTTCTGGAACTCTTGCCCGTCGTTC | |||||
PCR primer 1 | CTAATACGACTCACTATAGGGC | 65 °C/15 s |
Appendix B. Forward and Reverse Subtracted SSH cDNA Libraries Were Successfully Established
References
- Heath, A. Biology, ecology and distribution of the tick, Haemaphysalis longicornis Neumann (Acari: Ixodidae) in New Zealand. N. Z. Vet. J. 2016, 64, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Tufts, D.M.; Van Acker, M.C.; Fernandez, M.P.; De Nicola, A.; Egizi, A.; Diuk-Wasser, M. Distribution, host-seeking phenology, and host and habitat associations of Haemaphysalis longicornis ticks, Staten Island, New York, USA. Emerg. Infect. Dis. 2019, 25, 792–7964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainey, T.; Occi, J.L.; Robbins, R.G.; Egizi, A. Discovery of Haemaphysalis longicornis (Ixodida: Ixodidae) parasitizing a sheep in New Jersey, United States. J. Med. Entomol. 2018, 55, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.J. Parthenogenesis in mites and ticks. Am. Zool. 1971, 11, 283–299. [Google Scholar] [CrossRef]
- Fang, L.Q.; Liu, K.; Li, X.L.; Liang, S.; Yang, Y.; Yao, H.W.; Sun, R.X.; Sun, Y.; Chen, W.J.; Zuo, S.Q.; et al. Emerging tick-borne infections in mainland China: An increasing public health threat. Lancet Infect. Dis. 2015, 15, 1467–1479. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.Q.; Xuan, X.N.; Fu, R.L.; Tao, H.Y.; Liu, Y.Q.; Liu, X.Q.; Li, D.M.; Ma, H.M.; Chen, H.Y. Tick-borne pathogens in ixodid ticks from Poyang Lake Region, southeastern China. Korean J. Parasitol. 2018, 56, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, L.; Du, J.; Cui, X.M.; Li, H.; Tang, F.; Zhang, P.H.; Hu, J.G.; Tong, Y.G.; Feng, Z.C.; Liu, W. Identification of tick-borne pathogen diversity by metagenomic analysis in Haemaphysalis longicornis from Xinyang, China. Infect. Dis. Poverty 2018, 7, 45. [Google Scholar] [CrossRef]
- Zhuang, L.; Sun, Y.; Cui, X.M.; Tang, F.; Hu, J.G.; Wang, L.Y.; Cui, N.; Yang, Z.D.; Huang, D.D.; Zhang, X.A.; et al. Transmission of severe fever with thrombocytopenia syndrome virus by Haemaphysalis longicornis ticks, China. Emerg. Infect. Dis. 2018, 24, 868–871. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.M.; Zhao, L.; Wen, H.L.; Zhang, Z.T.; Liu, J.W.; Fang, L.Z.; Xue, Z.F.; Ma, D.Q.; Zhang, X.S.; Ding, S.J.; et al. Haemaphysalis longicornis ticks as reservoir and vector of severe fever with thrombocytopenia syndrome virus in China. Emerg. Infect. Dis. 2015, 21, 1770–1776. [Google Scholar]
- Kunz, S.E.; Kemp, D.H. Insecticides and acaricides: Resistance and environmental impact. Rev. Sci. Tech. 1994, 13, 1249–1286. [Google Scholar] [CrossRef]
- Corrigan, P.J.; Seneviratna, P. Occurrence of organochlorine residues in Australian meat. Aust. Vet. J. 1990, 67, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Reck, J.; Klafke, G.M.; Webster, A.; Dall’Agnol, B.; Scheffer, R.; Souza, U.A.; Corassini, V.B.; Vargas, R.; dos Santos, J.S.; Martins, J.R. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Vet. Parasitol. 2014, 201, 128–136. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, J.; Merino, O. Vaccinomics, the new road to tick vaccines. Vaccine 2013, 31, 5923–5929. [Google Scholar] [CrossRef]
- Antunes, S.; Galindo, R.C.; Almazán, C.; Rudenko, N.; Golovchenko, M.; Grubhoffer, L.; Shkap, V.; do Rosário, V.; de la Fuente, J.; Domingos, A. Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int. J. Parasitol. 2012, 42, 187–195. [Google Scholar] [CrossRef]
- Boozer, A.L.; Macintire, D.K. Canine babesiosis. Vet. Clin. Small Anim. 2003, 33, 885–904. [Google Scholar] [CrossRef]
- Bock, R.; Jackson, L.; Vos, A.D.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef]
- Homer, M.J.; Aguilar-Delfin, I.; Telford, S.R.; Krause, P.J.; Persing, D.H. Babesiosis. Clin. Microbiol. Rev. 2000, 13, 451–469. [Google Scholar] [CrossRef]
- Vannier, E.; Krause, P.J. Human babesiosis. N. Engl. J. Med. 2012, 366, 2397–2407. [Google Scholar] [CrossRef] [Green Version]
- Krause, P.J. Human babesiosis. Int. J. Parasitol. 2019, 49, 165–174. [Google Scholar] [CrossRef]
- Wei, Q.; Tsuji, M.; Zamoto, A.; Kohsaki, M.; Matsui, T.; Shiota, T.; Telford, S.; Ishihara, C. Human babesiosis in Japan: Isolation of Babesia microti-like parasites from an asymptomatic transfusion donor and from a rodent from an area where babesiosis is endemic. J. Clin. Microbiol. 2001, 39, 2178–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, M.; Wei, Q.; Zamoto, A.; Morita, C.; Arai, S.; Shiota, T.; Fujimagari, M.; Itagaki, A.; Fujita, H.; Ishihara, C. Human babesiosis in Japan: Epizootiologic survey of rodent reservoir and isolation of new type of Babesia microti-like parasite. J. Clin. Microbiol. 2001, 39, 4316–4322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Cho, S.H.; Joo, H.N.; Tsuji, M.; Cho, S.R.; Park, I.J.; Chung, G.T.; Ju, J.W.; Cheun, H.I. First Case of Human babesiosis in Korea: Detection and characterization of a novel type of Babesia sp. (KO1) similar to ovine Babesia. J. Clin. Microbiol. 2007, 45, 2084–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marathe, A.; Tripathi, J.; Handa, V.; Date, V. Human babesiosis-a case report. Indian J. Med. Microbiol. 2005, 23, 267–269. [Google Scholar] [PubMed]
- Chen, Z.; Li, H.; Gao, X.; Bian, A.; Yan, H.; Kong, D.; Liu, X. Human babesiosis in China: A systematic review. Parasitol. Res. 2019, 118, 1103–1112. [Google Scholar] [CrossRef]
- Zheng, W.; Umemiya-Shirafuji, R.; Zhang, Q.; Okado, K.; Adjou Moumouni, F.P.; Suzuki, H.; Chen, H.; Liu, M.; Xuan, X. Porin expression profiles in Haemaphysalis longicornis ticks infected with Babesia microti. Front. Physiol. 2020, 11, 502. [Google Scholar]
- Hovius, J.W.; Van dam, A.P.; Fikrig, E. Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007, 23, 434–438. [Google Scholar] [CrossRef]
- De la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-pathogen interactions and vector competence: Identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Cabezas-Cruz, A.; Alberdi, P.; Valdes, J.J.; Villar, M.; de la Fuente, J. Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum. Front. Biosci. 2017, 22, 1830–1844. [Google Scholar]
- Ayllón, N.; Villar, M.; Busby, A.T.; Kocan, K.M.; Blouin, E.F.; Bonzón-Kulichenko, E.; Galindo, R.C.; Mangold, A.J.; Alberdi, P.; Lastra, J.L.; et al. Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect. Immun. 2013, 81, 2415–2425. [Google Scholar] [CrossRef] [Green Version]
- Ayllón, N.; Villar, M.; Galindo, R.C.; Kocan, K.M.; Šíma, R.; López, J.A.; Vázquez, J.; Alberdi, P.; Cabezas-Cruz, A.; Kopáček, P.; et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 2015, 11, e1005120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar, M.; Ayllón, N.; Alberdi, P.; Moreno, A.; Moreno, M.; Tobes, R.; Mateos-Hernández, L.; Weisheit, S.; Bell-Sakyi, L.; de la Fuente, J. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell. Proteomics 2015, 14, 3154–3172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberdi, P.; Ayllón, N.; Cabezas-Cruz, A.; Bell-Sakyi, L.; Zweygarth, E.; Stuen, S.; Cabezas-Cruz, J.L. Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death. Ticks Tick. Borne Dis. 2015, 6, 758–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, S.; Rosa, C.; Couto, J.; Joana, F.; Domingos, A. Deciphering Babesia-vector interactions. Front. Cell. Infect. Microbiol. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Antunes, S.; Couto, J.; Ferrolho, J.; Sanches, G.S.; Charrez, J.M.; Cruz, H.L.; Mazuz, M.; Villar, M.; Shkap, V.; de la Fuente, J.; et al. Transcriptome and proteome response of Rhipicephalus annulatus tick vector to Babesia bigemina infection. Front. Physiol. 2019, 10, 318. [Google Scholar] [CrossRef]
- Espinosa, P.J.; Alberdi, P.; Villar, M.; Cabezas-Cruz, A.; de la Fuente, J. Heat shock proteins in vector-pathogen interactions: The Anaplasma phagocytophilum model in Asea, A. In Heat Shock Proteins in Veterinary Medicine and Sciences; Kaur, P., Ed.; Springer: Cham, Switzerland, 2018; pp. 375–398. [Google Scholar]
- Bourne, H.R.; Sanders, D.A.; McCormick, F. The GTPase superfamily: A conserved switch for diverse cell functions. Nature 1990, 348, 125–132. [Google Scholar] [CrossRef]
- Sprang, S.R. G protein, effectors and GAPs: Structure and mechanism. Curr. Opin. Struct. Biol. 1997, 7, 849–856. [Google Scholar] [CrossRef]
- Vetter, I.R.; Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 2001, 294, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Gradia, D.F.; Rau, K.; Umaki, A.C.; de Souza, F.S.; Probst, C.M.; Correa, A.; Holetz, F.B.; Avila, A.R.; Krieger, M.; Goldenberg, S.; et al. Characterization of a novel Obg-like ATPase in the protozoan Trypanosoma cruzi. Int. J. Parasitol. 2009, 39, 49–58. [Google Scholar] [CrossRef]
- Koller-Eichhorn, R.; Marquardt, T.; Gail, R.; Wittinghofer, A.; Kostrewa, D.; Kutay, U.; Kambach, C. OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J. Biol. Chem. 2007, 282, 11993–19928. [Google Scholar] [CrossRef] [Green Version]
- Mao, R.F.; Rubio, V.; Chen, H.; Bai, L.; Mansour, O.C.; Shi, Z.Z. OLA1 protects cells in heat shock by stabilizing HSP70. Cell Death Dis. 2013, 4, e491. [Google Scholar] [CrossRef] [PubMed]
- Schultz, A.; Olorundami, O.A.; Teng, R.J.; Jarzembowski, J.; Shi, Z.Z.; Kumar, S.N.; Pritchard, K.J.; Konduri, G.G.; Afolayan, A.J. Decreased OLA1 (Obg-Like ATPase-1) expression drives ubiquitin-proteasome pathways to downregulate mitochondrial SOD2 (superoxide dismutase) in persistent pulmonary hypertension of the newborn. Hypertension 2019, 74, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rubio, V.; Lieberman, M.W.; Shi, Z.Z. OLA1, an Obg-like ATPase, suppresses antioxidant response via nontranscriptional mechanisms. Proc. Natl. Acad. Sci. USA 2009, 106, 11536–15356. [Google Scholar] [CrossRef] [Green Version]
- Jeyabal, P.V.; Rubio, V.; Zhang, J.W.; Shi, Z.Z. Role of OBG like ATPase 1 (OLA1) in F-actin polymerization and cell adhesion. In Proceedings of the 104th Annual Meeting of the American Association for Cancer Research, Washington, DC, USA, 6 April 2013. [Google Scholar]
- Balasingam, N. Elucidating the Role of Human Obg Like ATPase1 (hOLA1) in Apoptosis. Master’ Thesis, University of Lethbridge, Lethbridge, AB, Canada, 2017. [Google Scholar]
- Jaworski, D.C.; Higgins, J.A.; Radulovic, S.; Vaughan, J.A.; Azad, A.F. Presence of calreticulin in vector fleas (Siphonaptera). J. Med. Entomol. 1996, 33, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.A.; Da Silva, V.I.; da Silva, S.S.; Haag, K.L.; Valenzuela, J.G.; Masuda, A. Cloning and partial characterization of a Boophilus microplus (Acari: Ixodidae) calreticulin. Exp. Parasitol. 2002, 101, 25–34. [Google Scholar] [CrossRef]
- Valenzuela, J.G.; Pham, V.M.; Garfield, M.K.; Francischetti, I.M.; Ribeiro, J.M. Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 2002, 32, 1101–1122. [Google Scholar] [CrossRef]
- Suchitra, S.; Joshi, P. Characterization of Haemonchus contortus calreticulin suggests its role in feeding and immune evasion by the parasite. Biochim. Biophys. Acta 2005, 1722, 293–303. [Google Scholar] [CrossRef]
- Suchitra, S.; Anbu, K.A.; Rathore, D.K.; Mahawar, M.; Singh, B.P.; Joshi, P. Haemonchus contortus calreticulin binds to C-reactive protein of its host, a novel survival strategy of the parasite. Parasite Immunol. 2008, 30, 371–374. [Google Scholar] [CrossRef]
- Gao, J.; Luo, J.; Fan, R.; Fingerle, V.; Guan, G.; Liu, Z.; Li, Y.; Zhao, H.; Ma, M.; Liu, J.; et al. Cloning and characterization of a cDNA clone encoding calreticulin from Haemaphysalis qinghaiensis (Acari: Ixodidae). Parasitol. Res. 2008, 102, 737–746. [Google Scholar] [CrossRef]
- Kim, T.K.; Ibelli, A.M.; Mulenga, A. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade. Ticks Tick Borne Dis. 2015, 6, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Antunes, S.; Merino, O.; Lérias, J.; Domingues, N.; Mosqueda, J.; de la Fuente, J.; Domingos, A. Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition. Ticks Tick Borne Dis. 2015, 6, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, S.; Pang, Q. Vitellogenin is a novel player in defense reactions. Fish Shellfish. Immunol. 2006, 20, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Regitz, C.; Kull, R.; Boll, M.; Wenzel, U. Vitellogenins increase stress resistance of Caenorhabditis elegans after Photorhabdus luminescens infection depending on the steroid-signaling pathway. Microbes Infect. 2013, 15, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, M.; Hurd, H. The effects of Onchocerca lienalis infection on vitellogenesis in the British blackfly, Simulium ornatum. Parasitology 1994, 109, 337–343. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Maingon, R.; Romans, P.; Hurd, H. Effects of malaria infection on vitellogenesis in Anopheles gambiae during two gonotrophic cycles. Insect Mol. Biol. 2001, 10, 347–356. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Liu, Q. Vitellogenin functions as a multivalent pattern recognition receptor with an opsonic activity. PLoS ONE 2008, 3, e1940. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.; Munro, E.S.; Monte, M.M.; Fourrier, M.C.; Whitelaw, J.; Smail, D.; Ellis, A.E. Atlantic salmon (Salmo salar L.) serum vitellogenin neutralises infectivity of infectious pancreatic necrosis virus (IPNV). Fish Shellfish Immunol. 2010, 29, 293–297. [Google Scholar] [CrossRef]
- Guo, Y.J.; Dong, S.Z.; Yang, X.L.; Cheng, L.; Wan, F.H.; Liu, S.S.; Zhou, X.P.; Ye, G.Y. Enhanced vitellogenesis in a whitefly via feeding on a begomovirus-infected plant. PLoS ONE 2012, 7, e43567. [Google Scholar] [CrossRef] [Green Version]
- Boldbaatar, D.; Umemiya-Shirafuji, R.; Liao, M.; Tanaka, T.; Xuan, X.; Fujisaki, K. Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. J. Insect Physiol. 2010, 56, 1587–1598. [Google Scholar] [CrossRef]
- Agbede, R.; Kemp, D.H.; Hoyte, H.M. Babesia bovis infection of secretory cells in the gut of the vector tick Boophilus microplus. Int. J. Parasitol. 1986, 16, 109–114. [Google Scholar] [CrossRef]
- Umemiya-Shirafuji, R.; Mihara, R.; Fujisaki, K.; Suzuki, H. Intracellular localization of vitellogenin receptor mRNA and protein during oogenesis of a parthenogenetic tick, Haemaphysalis longicornis. Parasit. Vectors 2019, 12, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, H.; Kawai, S.; Maeda, M.; Jinnai, M.; Fujisawa, K.; Katakai, Y.; Hikosaka, K.; Tanabe, K.; Yasutomi, Y.; Ishihara, C. Identification and phylogenetic analysis of Japanese Macaque Babesia-1 (JM-1) detected from a Japanese Macaque (Macaca fuscata fuscata). Am. J. Trop. Med. Hyg. 2011, 85, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Biotechnology Information. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome (accessed on 15 January 2020).
- Kyoto Encyclopedia of Genes and Genomes. Available online: https://www.genome.jp/tools/blast/ (accessed on 15 January 2020).
- Bioinformatics Resource for Invertebrate Vectors of Human Pathogens. Available online: https://www.vectorbase.org/blast (accessed on 15 January 2020).
- Liao, M.; Zhou, J.; Gong, H.; Boldbaatar, D.; Shirafuji, R.; Battur, B.; Nishikawa, Y.; Fujisaki, K. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis. J. Insect Physiol. 2009, 55, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Hatta, T.; Umemiya, R.; Liao, M.; Gong, H.; Harnnoi, T.; Tanaka, M.; Miyoshi, T.; Boldbaatar, D.; Battsetseg, B.; Zhou, J.; et al. RNA interference of cytosolic leucine aminopeptidase reduces fecundity in the hard tick, Haemaphysalis longicornis. Parasitol. Res. 2007, 100, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Boldbaatar, D.; Battur, B.; Umemiya-Shirafuji, R.; Liao, M.; Tanaka, T.; Fujisaki, K. GATA transcription, translation and regulation in Haemaphysalis longicornis tick: Analysis of the cDNA and an essential role for vitellogenesis. Insect Biochem. Mol. Biol. 2010, 40, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Kawano, S.; Umemiya-Shirafuji, R.; Boldbaatar, D.; Matsuoka, K.; Tanaka, T.; Fujisaki, K. Cloning and characterization of the autophagy-related gene 6 from the hard tick, Haemaphysalis longicornis. Parasitol. Res. 2011, 109, 1341–1349. [Google Scholar] [CrossRef]
Unigene(s) | Sequences for the Unigene (FSN 1) | Standardized SPK 2 |
---|---|---|
Neutrophil elastase inhibitor (nei) | 5 sequences (46,60, 99, 203, 371) | 0.0717 |
Cytochrome c oxidase subunit VII | 1 sequence (87) | 0.0217 |
Cathepsin L-like cysteine protease (clcp) | 2 sequences (15, 31) | 0.0206 |
Acyl-CoA-binding protein | 1 sequence (287) | 0.0177 |
Putative secreted salivary peptide | 1 sequence (220) | 0.0156 |
Cytochrome b5 | 2 sequences (368, 388) | 0.0151 |
Cathepsin B-like cysteine protease (cbcp1) | 2 sequences (105, 380) | 0.0132 |
Gene | Function |
---|---|
Calreticulin (crt) | Response to stimulus |
Cbcp1 | Response to stimulus/immune system process |
Chemosensory protein CSP5 | Response to stimulus |
Leukocyte receptor cluster member 8 (lr8) | Immune system process |
IgE-dependent histamine release factor (ihr) | Immune system process |
Heat shock 70 kDa protein 5(hsp5) | Response to stimulus |
Nei | Response to stimulus |
Obg-like ATPase 1(ola1) | Response to stimulus |
Ubiquitin-like protein FUBI (fubi) | Response to stimulus/immune system process |
Vgs1 | Response to stimulus |
YTH domain-containing family protein 1(yth) | Immune system process |
Group | Target Genes for RNAi | n | Gene Silencing (%) (Mean ± S.D.) | EFW (mg) (Mean ± S.D.) | BFP (d) (25% Percentile–75% Percentile) |
---|---|---|---|---|---|
Infected | Crt | 16 | 84.97 ± 2.67 | 65.44 ± 22.32 a | 6.00–7.00 a |
Ola1 | 16 | 96.48 ± 0.37 | 116.26 ± 12.58 | 6.75–9.00 | |
Vg1 | 14 | 65.83 ± 2.46 | 68.71 ± 20.77 a | 7.00–9.00 a | |
Vg2 | 16 | 82.04 ± 2.37 | 110.89 ± 26.03 | 6.00–6.00 a | |
Control | 16 | - | 101.30 ± 7.84 | 7.00–7.00 | |
Uninfected | Crt | 12 | 93.91 ± 1.23 | 75.88 ± 5.60 | 5.75–7.00 |
Ola1 | 12 | 97.44 ± 0.74 | 88.30 ± 6.44 | 5.00–5.75 a | |
Vg1 | 14 | 98.82 ± 0.13 | 92.06 ± 7.62 | 6.00–7.00 | |
Control | 16 | - | 82.52 ± 13.78 | 6.25–7.75 |
Gene | B. microti Burdens (Mean ± S.D.) | Test/Control (Mean ± S.D.) |
---|---|---|
Crt | 0.26 ± 0.06 | 0.95 ± 0.21 |
Ola1 | 0.34 ± 0.08 | 1.25 ± 0.29 |
Vg 1 | 0.26 ± 0.08 | 0.94 ± 0.22 |
Vg 2 | 0.14 ± 0.03 | 0.51 ± 0.10 a |
Control | 0.27 ± 0.05 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Umemiya-Shirafuji, R.; Chen, S.; Okado, K.; Adjou Moumouni, P.F.; Suzuki, H.; Yang, S.; Liu, M.; Xuan, X. Identification of Haemaphysalis longicornis Genes Differentially Expressed in Response to Babesia microti Infection. Pathogens 2020, 9, 378. https://doi.org/10.3390/pathogens9050378
Zheng W, Umemiya-Shirafuji R, Chen S, Okado K, Adjou Moumouni PF, Suzuki H, Yang S, Liu M, Xuan X. Identification of Haemaphysalis longicornis Genes Differentially Expressed in Response to Babesia microti Infection. Pathogens. 2020; 9(5):378. https://doi.org/10.3390/pathogens9050378
Chicago/Turabian StyleZheng, Weiqing, Rika Umemiya-Shirafuji, Shengen Chen, Kiyoshi Okado, Paul Franck Adjou Moumouni, Hiroshi Suzuki, Shu Yang, Mingming Liu, and Xuenan Xuan. 2020. "Identification of Haemaphysalis longicornis Genes Differentially Expressed in Response to Babesia microti Infection" Pathogens 9, no. 5: 378. https://doi.org/10.3390/pathogens9050378
APA StyleZheng, W., Umemiya-Shirafuji, R., Chen, S., Okado, K., Adjou Moumouni, P. F., Suzuki, H., Yang, S., Liu, M., & Xuan, X. (2020). Identification of Haemaphysalis longicornis Genes Differentially Expressed in Response to Babesia microti Infection. Pathogens, 9(5), 378. https://doi.org/10.3390/pathogens9050378