Foot-and-Mouth Disease Space-Time Clusters and Risk Factors in Cattle and Buffalo in Bangladesh
Abstract
:1. Introduction
2. Results
2.1. Descriptive Statistics
2.2. Clustering and Risk Prediction
2.3. Spatial Risk Factors
3. Discussion
4. Materials and Methods
4.1. Data
4.1.1. FMD Case Data
4.1.2. Environmental and Climatic Data
4.2. Analysis
4.2.1. Descriptive Statistics
4.2.2. Spatial Analysis
Cluster Analyses
Geographically Weighted Regression (GWR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brito, B.; Rodriguez, L.L.; Hammond, J.M.; Pinto, J.; Perez, A.M. Review of the Global Distribution of Foot-and-Mouth Disease Virus from 2007 to 2014. Transbound. Emerg. Dis. 2015, 64, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Alexandersen, S.; Mowat, N. Foot-and-Mouth Disease: Host Range and Pathogenesis. In Current Topics in Microbiology and Immunology/Ergebnisse der Microbiologie und Immunitätsforschung; Springer Science and Business Media LLC: Berlin, Germany, 2005; Volume 288, pp. 9–42. [Google Scholar]
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A.J.M. The Pathogenesis and Diagnosis of Foot-and-Mouth Disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Knight-Jones, T.J.; Rushton, J. The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur? Prev. Veter Med. 2013, 112, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Livestock Economy at a Glance. Department of Livestock Services, Ministry of Fisheries and Livestock, Government of the People’s Republic of Bangladesh. Available online: http://dls.portal.gov.bd/sites/default/files/files/dls.portal.gov.bd/page/ee5f4621_fa3a_40ac_8bd9_898fb8ee4700/Livestock Economy at a glance %282017-2018%29.pdf (accessed on 30 November 2019).
- FMD Control Initiatives in Bangladesh. Department of Livestock Services, Bangladesh. Available online: http://www.fao.org/docs/eims/upload/299827/an356e00.pdf (accessed on 25 September 2019).
- Chowdhury, S.M.Z.H.; Rahman, M.F.; Rahman, M.B.; Rahman, M.M. Foot and mouth disease and its effects on morbidity, mortality, milk yield and draft power in Bangladesh. Asian-Australas. J. Anim. Sci. 1993, 6, 423–426. [Google Scholar] [CrossRef]
- Sarker, S.; Talukder, S.; Haque, M.H.; Islam, M.H.; Gupta, S.D. Epidemiological study on foot-and-mouth disease in cattle: Prevalence and risk factor assessment in Rajshahi, Bangladesh. Wayamba J. Anim. Sci. 2011, 3, 71–73. [Google Scholar]
- Mostary, S.; Hussain, K.; Hasan, I.; Rume, F.I. Retrospective study of foot and mouth disease in cattle at Babugonj upazila of Barisal district. Res. Agric. Livest. Fish. 2018, 5, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Loth, L.; Osmani, M.G.; Kalam, M.A.; Chakraborty, R.K.; Wadsworth, J.; Knowles, N.J.; Hammond, J.M.; Benigno, C. Molecular Characterization of Foot-and-Mouth Disease Virus: Implications for Disease Control in Bangladesh. Transbound. Emerg. Dis. 2011, 58, 240–246. [Google Scholar] [CrossRef]
- Nandi, S.P.; Rahman, M.Z.; Momtaz, S.; Sultana, M.; Hossain, M.A. Emergence and Distribution of Foot-and-Mouth Disease Virus Serotype A and O in Bangladesh. Transbound. Emerg. Dis. 2013, 62, 328–331. [Google Scholar] [CrossRef]
- Khan, M.S.U.; Salje, H.; Hannan, A.; Islam, A.; Bhuyan, A.A.M.; Islam, A.; Rahman, M.Z.; Nahar, N.; Hossain, M.J.; Luby, S.; et al. Dynamics of Japanese Encephalitis Virus Transmission among Pigs in Northwest Bangladesh and the Potential Impact of Pig Vaccination. PLoS Negl. Trop. Dis. 2014, 8, e3166. [Google Scholar] [CrossRef] [Green Version]
- Siddique, M.A.; Ali, M.R.; Rubayet-Ul-Alam, A.S.M.; Ullah, H.; Rahman, A.; Chakrabarty, R.P.; Al Amin, M.; Hoque, S.A.; Nandi, S.P.; Sultana, M.; et al. Emergence of two novel sublineages Ind2001BD1 and Ind2001BD2 of foot-and-mouth disease virus serotype O in Bangladesh. Transbound. Emerg. Dis. 2018, 65, 1009–1023. [Google Scholar] [CrossRef]
- Anonymous. Regional collabotation to control Foot-and-mouth disease. In Proceedings of the FAO/OIE Sub-Regional Meeting of Global Framework for the Progressive Control of Transboundary Animal Diseases (GF-TADs) for SAARC Region, Kathmandu, Nepal, 4–5 June 2009. [Google Scholar]
- Mondal, S.; Yamage, M. A Retrospective Study on the Epidemiology of Anthrax, Foot and Mouth Disease, Haemorrhagic Septicaemia, Peste des Petits Ruminants and Rabies in Bangladesh, 2010–2012. PLoS ONE 2014, 9, e104435. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Hossain, M. Amin Socio-economic status of buffalo farmers and the management practices of buffaloes in selected areas of Bagerhat District of Bangladesh. Bangladesh J. Anim. Sci. 2013, 42, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, L. A review of the status of foot and mouth disease in South-East Asia and approaches to control and eradication. Rev. Sci. Tech. de l’OIE 2002, 21, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Azman, A.S.; Lessler, J. Reactive vaccination in the presence of disease hotspots. Proc. R. Soc. B Boil. Sci. 2015, 282, 20141341. [Google Scholar] [CrossRef] [Green Version]
- Mielke, S.R.; Garabed, R. Environmental persistence of foot-and-mouth disease virus applied to endemic regions. Transbound. Emerg. Dis. 2019, 67, 543–554. [Google Scholar] [CrossRef]
- Windsor, P.; Freeman, P.; Abila, R.; Benigno, C.; Verin, B.; Nim, V.; Cameron, A. Foot-and-Mouth Disease Control and Eradication in the Bicol Surveillance Buffer Zone of the Philippines. Transbound. Emerg. Dis. 2011, 58, 421–433. [Google Scholar] [CrossRef]
- Rushton, J.; Knight-Jones, T.J.D. The impact of foot-and-mouth disease. In Proceedings of the FAO/OIE Global Conference on Foot-and-Mouth Disease Control, Bangkok, Thailand, 27–29 June 2012; Available online: https://cgspace.cgiar.org/handle/10568/76285 (accessed on 30 November 2019).
- Kitching, R.; Hughes, G. Clinical variation in foot and mouth disease: Sheep and goats. Rev. Sci. Tech. l’OIE 2002, 21, 505–512. [Google Scholar] [CrossRef]
- Khan, A.; Mushtaq, M.H.; Ahmad, M.U.; Fatima, Z.; Khan, A. Seasonal trends in seroprevalence of FMD in bovines under different environmental conditions in rural KPK, Pakistan. Pak. Vet. J. 2017, 37, 55–58. [Google Scholar]
- Arzt, J.; Juleff, N.; Zhang, Z.; Rodriguez, L.L. The Pathogenesis of Foot-and-Mouth Disease I: Viral Pathways in Cattle. Transbound. Emerg. Dis. 2011, 58, 291–304. [Google Scholar] [CrossRef]
- R.C. Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B Stat. Methodol. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 2010, 27, 93–115. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 2010, 24, 189–206. [Google Scholar] [CrossRef]
- Kulldorff, M. A spatial scan statistic. Commun. Stat. Theory Methods 1997, 26, 1481–1496. [Google Scholar] [CrossRef]
- Kulldorff, M. Tests of Spatial Randomness Adjusted for an Inhomogeneity. J. Am. Stat. Assoc. 2006, 101, 1289–1305. [Google Scholar] [CrossRef]
- Kulldorff, M.; Huang, L.; Pickle, L.W.; Duczmal, L. An elliptic spatial scan statistic. Stat. Med. 2006, 25, 3929–3943. [Google Scholar] [CrossRef]
- Ward, M.P.; Carpenter, T.E. Techniques for analysis of disease clustering in space and in time in veterinary epidemiology. Prev. Veter Med. 2000, 45, 257–284. [Google Scholar] [CrossRef]
- Ward, M.; Carpenter, T.E. Analysis of time–space clustering in veterinary epidemiology. Prev. Veter Med. 2000, 43, 225–237. [Google Scholar] [CrossRef]
- Ward, M.P.; Maftei, D.; Apostu, C.; Suru, A. Geostatistical visualisation and spatial statistics for evaluation of the dispersion of epidemic highly pathogenic avian influenza subtype H5N1. Veter Res. 2008, 39, 22. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. In Handbook of Applied Spatial Analysis; Springer Science and Business Media LLC: Berlin, Germany, 2009; pp. 73–89. [Google Scholar]
Variable | Cases (Average Cumulative Incidence per 10,000 Population) | % (95% Confidence Interval) |
---|---|---|
Year | ||
2014 | 153,421 (54.5) | 27.9 (27.8–28.1) |
2015 | 102,767 (36.10) | 18.7 (18.6–18.8) |
2016 | 140,270 (48.2) | 25.6 (25.4–25.7) |
2017 | 152,359 (54.2) | 27.7 (27.6–27.9) |
Month | ||
December | 46,752 | 8.5 (8.4–8.6) |
January | 36,942 | 6.7 (6.6–6.8) |
February | 39,560 | 7.2 (7.1–7.3) |
Winter (December–February) | 123,254 | 22.5 (22.3–22.6) |
March | 36,146 | 6.6 (6.5–6.7) |
April | 40,418 | 7.3 (7.2–7.4) |
May | 37,459 | 6.8 (6.7–6.9) |
Pre-monsoon (March–May) | 114,023 | 20.8 (20.7–20.9) |
June | 44,954 | 8.2 (8.1–8.3) |
July | 44,284 | 8.0 (7.9–8.1) |
August | 49,433 | 9.0 (8.9–9.1) |
Monsoon (June–August) | 138,671 | 25.3 (25.2–25.4) |
September | 57,187 | 10.4 (10.3–10.5) |
October | 54,720 | 9.9 (9.8–10.0) |
November | 60,962 | 11.1 (11.0–11.2) |
Post-monsoon (September–November) | 172,869 | 31.5 (31.4–31.6) |
Division | ||
Barishal | 32,025 (13.8) | 5.8 (5.7–5.9) |
Chattogram | 160,259 (65.6) | 29.2 (29.0–29.3) |
Dhaka | 87,091 (36.9) | 15.9 (15.7–15.9) |
Khulna | 30,528 (11.7) | 5.6 (5.5–5.6) |
Mymensingh | 6,623 (3.9) | 1.2 (1.1–1.2) |
Rajshahi | 90,835 (35.4) | 16.6 (16.5–16.7) |
Rangpur | 53,698 (22.5) | 9.8 (9.7–9.9) |
Sylhet | 87,758 (45.4) | 15.9 (15.8–16.1) |
Total | 548,817 | 100 |
Districts | Radius (Km) | O/E | LLR | Time Period | p-Value |
---|---|---|---|---|---|
Chattogram, Rangamati, Feni | 75.7 | 7.1 | 24,912.5 | 7/1/2017–2/31/2017 | <0.001 |
Sylhet, Maulvibazar, Sunamganj | 64.8 | 5.4 | 13,726.5 | 11/1/2015–4/30/2016 | <0.001 |
Dhaka, Manikganj, Narayanganj, Munshiganj, Gazipur, Faridpur, Narsingdi, Shariatpur, Madaripur | 63.7 | 3.4 | 5513.8 | 9 /1/2014–11/30/2014 | <0.001 |
Bhola, Patuakhali, Noakhali, Lakshmipur, Jhalokati, Barishal | 65.4 | 2.3 | 3446.4 | 6/1/2014–11/30/2014 | <0.001 |
Naogaon, Joypurhat, Rajshahi | 49.2 | 2.7 | 2141.9 | 10/1/2014–12/31/2014 | <0.001 |
Variables | Categories | Coefficient | SE | p-Value |
---|---|---|---|---|
Solar radiation (KJ m−2) | Winter | 0.0001 | 0.0001 | 0.4450 |
Pre-monsoon | −0.00004 | 0.0001 | 0.7429 | |
Monsoon | −0.00008 | 0.0002 | 0.6049 | |
Post-monsoon | 0.0004 | 0.0003 | 0.1109 | |
Temperature (℃) | Winter | 0.0603 | 0.0865 | 0.4858 |
Pre-monsoon | −0.1127 | 0.0759 | 0.1374 | |
Monsoon | −0.1834 | 0.0892 | 0.0398 | |
Post-monsoon | 0.0578 | 0.1189 | 0.6273 | |
Precipitation (mm) | Winter | 0.0015 | 0.0180 | 0.9301 |
Pre-monsoon | 0.0034 | 0.0010 | 0.0008 | |
Monsoon | 0.0007 | 0.0004 | 0.1263 | |
Post-monsoon | 0.0028 | 0,0021 | 0.1853 | |
Wind speed (m s−1) | Winter | −0.0065 | 0.2153 | 0.9758 |
Pre-monsoon | −0.0059 | 0.1392 | 0.8526 | |
Monsoon | −0.0202 | 0.1166 | 0.8625 | |
Post-monsoon | −0.0143 | 0.1841 | 0.9381 | |
Elevation (m) | - | −0.0016 | 0.0013 | 0.2100 |
Length of river (km) | - | −0.0002 | 0.0001 | 0.3227 |
Area of inland water bodies (km−2) | - | −0.00006 | 0.00008 | 0.4345 |
Length of road (km) | - | 0.00007 | 0.0002 | 0.7548 |
Length of rail road (km) | - | −0.0003 | 0.0005 | 0.6384 |
Land cover | Tree-cover, broadleaved, evergreen | 0.0012 | 0.0011 | 0.2774 |
Tree-cover, broadleaved, deciduous, closed | 0.0028 | 0.0021 | 0.1954 | |
Tree-cover, regularly flooded, saline water | −0.0002 | 0.0001 | 0.1517 | |
Mosaic: tree-cover and other natural vegetation | 0.00009 | 0.0002 | 0.5511 | |
Tree-cover, burnt | 0.0000005 | 0.00005 | 0.9926 | |
Shrub-cover, closed-open, evergreen | 0.0006 | 0.0003 | 0.0616 | |
Shrub-cover, closed-open, deciduous | −0.2111 | 0.1471 | 0.1512 | |
Cultivated and managed areas | −0.00001 | 0.00003 | 0.7029 | |
Mosaic: cropland, tree-cover, other natural vegetation | 0.00006 | 0.0001 | 0.9533 | |
Artificial surface and associated areas | 0.0002 | 0.0008 | 0.7928 | |
Water bodies | 0.0005 | 0.0002 | 0.0385 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, A.K.M.A.; Islam, S.S.; Sufian, M.A.; Talukder, M.H.; Ward, M.P.; Martínez-López, B. Foot-and-Mouth Disease Space-Time Clusters and Risk Factors in Cattle and Buffalo in Bangladesh. Pathogens 2020, 9, 423. https://doi.org/10.3390/pathogens9060423
Rahman AKMA, Islam SS, Sufian MA, Talukder MH, Ward MP, Martínez-López B. Foot-and-Mouth Disease Space-Time Clusters and Risk Factors in Cattle and Buffalo in Bangladesh. Pathogens. 2020; 9(6):423. https://doi.org/10.3390/pathogens9060423
Chicago/Turabian StyleRahman, A K M Anisur, SK Shaheenur Islam, Md. Abu Sufian, Md. Hasanuzzaman Talukder, Michael P. Ward, and Beatriz Martínez-López. 2020. "Foot-and-Mouth Disease Space-Time Clusters and Risk Factors in Cattle and Buffalo in Bangladesh" Pathogens 9, no. 6: 423. https://doi.org/10.3390/pathogens9060423
APA StyleRahman, A. K. M. A., Islam, S. S., Sufian, M. A., Talukder, M. H., Ward, M. P., & Martínez-López, B. (2020). Foot-and-Mouth Disease Space-Time Clusters and Risk Factors in Cattle and Buffalo in Bangladesh. Pathogens, 9(6), 423. https://doi.org/10.3390/pathogens9060423