Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications
Abstract
:1. Introduction
2. Actuating Mechanism and Materials for Light-Responsive Actuators
2.1. Actuation Mechanisms
2.1.1. Photo-Thermal Conversion Actuation
2.1.2. Photo-Electric Conversion Actuation
2.1.3. Photo-Chemical Conversion Actuation
2.2. Light-Responsive Materials
2.2.1. Liquid Crystal Materials
2.2.2. Shape Memory Polymers
2.2.3. Other Light-Responsive Fillers
3. Structures and Manufacturing Methods for Light-Responsive Soft Actuator
3.1. Films
3.2. Spiral Shapes
3.3. Bulks
4. Performance Characterizations and Influencing Factors for Light-Responsive Soft Actuator
5. Applications for Light-Responsive Soft Actuators
5.1. Bionics
5.2. Microfluidics
6. Summary and Outlooks
6.1. Summary
6.2. Opportunities and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Son, H.; Yoon, C.K. Advances in Stimuli-Responsive Soft Robots with Integrated Hybrid Materials. Actuators 2020, 9, 115. [Google Scholar] [CrossRef]
- Karg, M.; Pich, A.; Hellweg, T.; Hoare, T.; Lyon, L.A.; Crassous, J.J.; Suzuki, D.; Gumerov, R.A.; Schneider, S.; Potemkin, I.I.; et al. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. Langmuir 2019, 35, 6231–6255. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.X.; Lu, W.; Yang, X.X.; He, J.; Le, X.X.; Wang, L.; Zhang, J.W.; Serpe, M.J.; Huang, Y.J.; Chen, T. Bioinspired Anisotropic Hydrogel Actuators with On-Off Switchable and Color-Tunable Fluorescence Behaviors. Adv. Funct. Mater. 2018, 28, 7. [Google Scholar] [CrossRef]
- Roy, S.G.; De, P. pH Responsive Polymers with Amino Acids in the Side Chains and Their Potential Applications. J. Appl. Polym. Sci. 2014, 131, 12. [Google Scholar] [CrossRef]
- Yu, L.L.; Cheng, M.J.; Song, M.M.; Zhang, D.Q.; Xiao, M.; Shi, F. pH-Responsive Round-Way Motions of a Smart Device through Integrating Two Types of Chemical Actuators in One Smart System. Adv. Funct. Mater. 2015, 25, 5786–5793. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, H.; Fei, G.; Yu, B.; Tong, X.; Xia, H.; Zhao, Y. Liquid-Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation. Adv. Mater. 2018, 30, e1706597. [Google Scholar] [CrossRef]
- Lahikainen, M.; Zeng, H.; Priimagi, A. Reconfigurable photoactuator through synergistic use of photochemical and photo-thermal effects. Nat. Commun. 2018, 9, 4148. [Google Scholar] [CrossRef] [Green Version]
- An, N.; Li, M.; Zhou, J. Modeling and understanding locomotion of pneumatic soft robots. Soft Mater. 2018, 16, 151–159. [Google Scholar] [CrossRef]
- Giannaccini, M.E.; Xiang, C.; Atyabi, A.; Theodoridis, T.; Nefti-Meziani, S.; Davis, S. Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning. Soft Robot. 2018, 5, 54–70. [Google Scholar] [CrossRef]
- Calderon, A.A.; Ugalde, J.C.; Chang, L.; Cristobal Zagal, J.; Perez-Arancibia, N.O. An earthworm-inspired soft robot with perceptive artificial skin. Bioinspir. Biomim. 2019, 14, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Chen, B. Quantifying the bending of bilayer temperature-sensitive hydrogels. Proc. Math. Phys. Eng. Sci. 2017, 473, 20170092. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Jho, J.Y. Temperature-Responsive Actuators Fabricated with PVA/PNIPAAm Interpenetrating Polymer Network Bilayers. Macromol. Res. 2018, 26, 659–664. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, B.; Liu, Z.; Jiang, L.; Lei, J.; Wang, R. A temperature-responsive polyurethane film with reversible visible light transmittance change and constant low UV light transmittance. J. Appl. Polym. Sci. 2018, 136, 1–6. [Google Scholar] [CrossRef]
- Zhou, S.; Cun, F.; Zhang, Y.; Zhang, L.; Yan, Q.; Sun, Y.; Huang, W. Thermo-responsive aluminum-based polymer composite films with controllable deformation. J. Mater. Chem. C 2019, 7, 7609–7617. [Google Scholar] [CrossRef]
- Yang, M.; Yuan, Z.; Liu, J.; Fang, Z.; Fang, L.; Yu, D.; Li, Q. Photoresponsive Actuators Built from Carbon-Based Soft Materials. Adv. Opt. Mater. 2019, 7, 1–30. [Google Scholar] [CrossRef]
- da Cunha, M.P.; Foelen, Y.; van Raak, R.J.H.; Murphy, J.N.; Engels, T.A.P.; Debije, M.G.; Schenning, A. An Untethered Magnetic- and Light-Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators. Adv. Opt. Mater. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Shao, H.; Wei, S.; Jiang, X.; Holmes, D.P.; Ghosh, T.K. Bioinspired Electrically Activated Soft Bistable Actuators. Adv. Funct. Mater. 2018, 28, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Yim, J.K.; Liang, J.; Shao, Z.; Qi, M.; Zhong, J.; Luo, Z.; Yan, X.; Zhang, M.; Wang, X. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. Res. Artic. 2019, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.B.; Kim, H.C.; Han, C.; Kim, P. A novel actuator system featuring electric-responsive water layers: Preliminary experimental results. Sens. Actuator A—Phys. 2015, 235, 281–291. [Google Scholar] [CrossRef]
- Engel, L.; Berkh, O.; Adesanya, K.; Shklovsky, J.; Vanderleyden, E.; Dubruel, P.; Shacham-Diamand, Y.; Krylov, S. Actuation of a novel Pluronic-based hydrogel: Electromechanical response and the role of applied current. Sens. Actuator B—Chem. 2014, 191, 650–658. [Google Scholar] [CrossRef]
- Medina-Sánchez, M.; Magdanz, V.; Guix, M.; Fomin, V.M.; Schmidt, O.G. Swimming Microrobots: Soft, Reconfigurable, and Smart. Adv. Funct. Mater. 2018, 28, 1707228. [Google Scholar] [CrossRef]
- Xiang, C.; Guo, J.; Rossiter, J. Soft-smart robotic end effectors with sensing, actuation, and gripping capabilities. Smart Mater. Struct. 2019, 28, 055034. [Google Scholar] [CrossRef]
- Lou, B.D.; Ni, Y.J.; Mao, M.H.; Wang, P.; Cong, Y. Optimization of the Kinematic Model for Biomimetic Robotic Fish with Rigid Headshaking Mitigation. Robotics 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Fekih, A.; Mobayen, S.; Chen, C.-C. Adaptive Robust Fault-Tolerant Control Design for Wind Turbines Subject to Pitch Actuator Faults. Energies 2021, 14, 1791. [Google Scholar] [CrossRef]
- De Greef, A.; Lambert, P.; Delchambre, A. Towards flexible medical instruments: Review of flexible fluidic actuators. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2009, 33, 311–321. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, G.; Yang, Q.; Gao, F. Review on flexible pneumatic actuator and its application in dexterous hand. China Mech. Eng. 2008, 19, 2891–2897. [Google Scholar]
- Cai, Z.; Song, Z.; Guo, L. Thermo- and Photoresponsive Actuators with Freestanding Carbon Nitride Films. ACS Appl. Mater. Interfaces 2019, 11, 12770–12776. [Google Scholar] [CrossRef] [PubMed]
- Ikejiri, S.; Takashima, Y.; Osaki, M.; Yamaguchi, H.; Harada, A. Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines. J. Am. Chem Soc. 2018, 140, 17308–17315. [Google Scholar] [CrossRef]
- Pang, X.; Lv, J.; Zhu, C.; Qin, L.; Yu, Y. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. Adv. Mater. 2019, 31, e1904224. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, B.; Huang, S.; Cai, F.; Wang, G.; Yu, H. UV–vis–NIR light-induced bending of shape-memory polyurethane composites doped with azobenzene and upconversion nanoparticles. Polymer 2019, 178, 121644. [Google Scholar] [CrossRef]
- Shen, W.; Du, B.; Liu, J.; Zhuo, H.; Yang, C.; Chen, S. A facile approach for the preparation of liquid crystalline polyurethane for light-responsive actuator films with self-healing performance. Mater. Chem. Front. 2021, 5, 3192–3200. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, R.; Hou, Y.; Zhang, J.; Chen, S.; Han, Y.; Chen, X.; Hou, X. Light-responsive and corrosion-resistant gas valve with non-thermal effective liquid-gating positional flow control. Light Sci. Appl. 2021, 10, 127. [Google Scholar] [CrossRef]
- da Cunha, M.P.; Debije, M.G.; Schenning, A.P.H.J. Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 2020, 49, 6568–6578. [Google Scholar] [CrossRef]
- Zou, M.; Li, S.; Hu, X.; Leng, X.; Wang, R.; Zhou, X.; Liu, Z. Progresses in Tensile, Torsional, and Multifunctional Soft Actuators. Adv. Funct. Mater. 2021, 31, 7437. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhang, X.; Feng, Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: Design, fabrication, and properties. Mater. Horiz. 2020, 8, 728–757. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Li, Y.; Feng, Y.; Feng, W. Carbon-based functional nanomaterials: Preparation, properties and applications. Compos. Sci. Technol. 2019, 179, 10–40. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, Y. Light-Driven Carbon-Based Soft Materials: Principle, Robotization, and Application. Adv. Opt. Mater. 2021, 9, 2100035. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, Z.; Jia, S.; Wang, F.; Wang, Y. Graphene-Based Polymer Bilayers with Superior Light-Driven Properties for Remote Construction of 3D Structures. Adv. Sci. 2017, 4, 1600437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Jiao, N.; Tung, S.; Liu, L. Photoresponsive Graphene Composite Bilayer Actuator for Soft Robots. ACS Appl. Mater. Int 2019, 11, 30290–30299. [Google Scholar] [CrossRef]
- Timoshenko, S. Analysis of Bi-Metal Thermostats. J. Opt. Soc. Am. 1925, 11, 233–255. [Google Scholar] [CrossRef]
- Ji, M.; Jiang, N.; Chang, J.; Sun, J. Near-Infrared Light-Driven, Highly Efficient Bilayer Actuators Based on Polydopamine-Modified Reduced Graphene Oxide. Adv. Funct. Mater. 2014, 24, 5412–5419. [Google Scholar] [CrossRef]
- Li, C.; Iscen, A.; Palmer, L.C.; Schatz, G.C.; Stupp, S.I. Light-Driven Expansion of Spiropyran Hydrogels. J. Am. Chem Soc. 2020, 142, 8447–8453. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, T.; Li, X.; Zhang, Y.; Yu, H. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites. ACS Appl Mater. Interfaces 2015, 7, 27494–27501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chang, H.; Wu, Y.; Xiao, P.; Yi, N.; Lu, Y.; Ma, Y.; Huang, Y.; Zhao, K.; Yan, X.-Q.; et al. Macroscopic and direct light propulsion of bulk graphene material. Nat. Photonics 2015, 9, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Lv, J.A.; Tian, X.; Wang, Y.; Yu, Y.; Liu, J. Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals. Sci. Rep. 2015, 5, 17414. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Xiao, X.; Zhang, X.; Liu, K. Recent advances for phase-transition materials for actuators. J. Appl. Phys. 2020, 128, 101101. [Google Scholar] [CrossRef]
- Deng, J.; Li, J.; Chen, P.; Fang, X.; Sun, X.; Jiang, Y.; Weng, W.; Wang, B.; Peng, H. Tunable Photothermal Actuators Based on a Pre-programmed Aligned Nanostructure. J. Am. Chem Soc. 2016, 138, 225–230. [Google Scholar] [CrossRef]
- Kobayashi, M.; Abe, J. Optical motion control of maglev graphite. J. Am. Chem Soc. 2012, 134, 20593–20596. [Google Scholar] [CrossRef] [PubMed]
- Maragó, O.M.; Bonaccorso, F.; Saija, R.; Privitera, G.; Gucciardi, P.G.; Iatì, M.A.; Calogero, G.; Jones, P.H.; Borghese, F.; Denti, P. Brownian Motion of Graphene. ACS Nano 2010, 4, 7515–7523. [Google Scholar] [CrossRef] [Green Version]
- 50. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Fra.antzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett 2012, 108, 155501. [Google Scholar]
- Tang, S.; Dresselhaus, M.S. Constructing anisotropic single-Dirac-cones in Bi(1-x)Sb(x) thin films. Nano Lett 2012, 12, 2021–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauro, M. Gel-based soft actuators driven by light. J. Mater. Chem. B 2019, 7, 9. [Google Scholar] [CrossRef]
- Taniguchi, T.; Blanc, L.; Asahi, T.; Koshima, H.; Lambert, P. Statistical Modeling of Photo-Bending Actuation of Hybrid Silicones Mixed with Azobenzene Powder. Actuators 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, D.; Tsujioka, H.; Tong, F.; Dong, X.; Bardeen, C.J.; Kobatake, S. Control of Photomechanical Crystal Twisting by Illumination Direction. J. Am. Chem Soc. 2018, 140, 4208–4212. [Google Scholar] [CrossRef]
- Kuenstler, A.S.; Hayward, R.C. Light-induced shape morphing of thin films. Curr. Opin. Colloid Interface Sci. 2019, 40, 70–86. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Tasmim, S.; Wang, S.; Abdelrahman, M.K.; Zimmern, P.E.; Ware, T.H. Processing advances in liquid crystal elastomers provide a path to biomedical applications. J. Appl. Phys. 2020, 128, 140901. [Google Scholar] [CrossRef] [PubMed]
- Bladon, P.; Terentjev, E.M.; Warner, M. Transitions and instabilities in liquid crystal elastomers. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1993, 47, R3838–R3840. [Google Scholar] [CrossRef]
- Davis, F.J.; Mitchell, G.R. Liquid crystal elastomers: Controlled cross-linking in the liquid crystal phase. Polymer 1996, 37, 1345–1351. [Google Scholar] [CrossRef]
- Thanh-Son, N.; Selinger, J.V. Theory of liquid crystal elastomers and polymer networks. Eur. Phys. J. E 2017, 40, 1–9. [Google Scholar]
- Mehta, K.; Peeketi, A.R.; Liu, L.; Broer, D.; Onck, P.; Annabattula, R.K. Design and applications of light responsive liquid crystal polymer thin films. Appl. Phys. Rev. 2020, 7, 041306. [Google Scholar] [CrossRef]
- de Haan, L.T.; Sanchez-Somolinos, C.; Bastiaansen, C.M.; Schenning, A.P.; Broer, D.J. Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem. Int. Ed. Engl. 2012, 51, 12469–12472. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Xiao, Y.Y.; Tong, X.; Zhao, Y. Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Light-Fueled Locomotion. Angew. Chem. Int. Ed. Engl. 2019, 58, 5332–5337. [Google Scholar] [CrossRef]
- Deng, D.; Zhu, G.; Song, F.; Xiao, F.; Wang, J. Advances in liquid crystal elastomers. Prog. Chem. 2006, 18, 1352–1360. [Google Scholar]
- Ji, B.; Ma, Y.-z.; Feng, X.-Z. Study of responsive liquid crystalline material. Chin. J. Liq. Cryst. Disp. 2008, 23, 700–706. [Google Scholar]
- Naciri, J.; Srinivasan, A.; Jeon, H.; Nikolov, N.; Keller, P.; Ratna, B.R. Nematic Elastomer Fiber Actuator. Macromolecules 2003, 36, 8499–8505. [Google Scholar] [CrossRef]
- Davidson, E.C.; Kotikian, A.; Li, S.; Aizenberg, J.; Lewis, J.A. 3D Printable and Reconfigurable Liquid Crystal Elastomers with Light-Induced Shape Memory via Dynamic Bond Exchange. Adv. Mater. 2019, 32, e1905682. [Google Scholar] [CrossRef] [PubMed]
- Han, D.-D.; Zhang, Y.-L.; Ma, J.-N.; Liu, Y.-Q.; Han, B.; Sun, H.-B. Light-Mediated Manufacture and Manipulation of Actuators. Adv. Mater. 2016, 28, 8328–8343. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-M.; Wang, L.; Zhou, S.-B. Recent Progress in Shape Memory Polymers for Biomedical Applications. Chin. J. Polym. Sci. 2018, 36, 905–917. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Zheng, Z.; Ding, X. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds. Macromol. Rapid Commun. 2018, 39, e1800128. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.L.; Hu, J.L.; Li, T.C.; Wong, Y.W. Morphology and shape memory effect of segmented polyurethanes. Part I: With crystalline reversible phase. Polymer 2007, 48, 5133–5145. [Google Scholar] [CrossRef]
- Li, Y.; Zhuo, H.; Chen, H.; Chen, S. Novel photo-thermal staged-responsive supramolecular shape memory polyurethane complex. Polymer 2019, 179. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, J.; Chang, L.; Yang, L.; Xu, A.; Qi, K.; Lu, P.; Wu, G.; Chen, W.; Wu, Y. Electrically and Sunlight-Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite. Adv. Funct. Mater. 2017, 27, 1704388. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Zhu, W.; Lai, T.; Peng, J.; Lyu, D.; Guo, D.; Yuan, Y.; Lewis, E.; Yang, M. Graphene–Gold–Au@Ag NPs-PDMS Films Coated Fiber Optic for Refractive Index and Temperature Sensing. IEEE Photonics Technol. Lett. 2019, 31, 1205–1208. [Google Scholar] [CrossRef]
- Sun, Z.; Yamauchi, Y.; Araoka, F.; Kim, Y.S.; Bergueiro, J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T. An Anisotropic Hydrogel Actuator Enabling Earthworm-Like Directed Peristaltic Crawling. Angew. Chem. 2018, 26, 15998–16002. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, J.; Lee, P.S. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Adv. Mater. 2020, 33, e2002640. [Google Scholar] [CrossRef] [PubMed]
- Han, D.-D.; Liu, Y.-Q.; Ma, J.-N.; Mao, J.-W.; Chen, Z.-D.; Zhang, Y.-L.; Sun, H.-B. Biomimetic Graphene Actuators Enabled by Multiresponse Graphene Oxide Paper with Pretailored Reduction Gradient. Adv. Mater. Technol. 2018, 3, 1800258. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Y.; Bi, H.; Yin, K.; Wan, S.; Sun, L. Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 2013, 3, 2117. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Li, J.; Hou, C.; Shao, Y.; Zhang, Q.; Li, Y.; Wang, H. A remote controllable fiber-type near-infrared light-responsive actuator. Chem. Commun. 2017, 53, 11118–11121. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Feng, J.; Peng, L.; Ni, Y.; Liang, H.; He, L.; Xie, Y. Large-area graphene realizing ultrasensitive photo-thermal actuator with high transparency: New prototype robotic motions under infrared-light stimuli. J. Mater. Chem. 2011, 21, 18584–18591. [Google Scholar] [CrossRef]
- Xu, H.; Xu, X.; Xu, J.; Dai, S.; Dong, X.; Han, F.; Yuan, N.; Ding, J. An ultra-large deformation bidirectional actuator based on a carbon nanotube/PDMS composite and a chitosan film. J. Mater. Chem B 2019, 7, 7558–7565. [Google Scholar] [CrossRef] [PubMed]
- Na, J.H.; Evans, A.A.; Bae, J.; Chiappelli, M.C.; Santangelo, C.D.; Lang, R.J.; Hull, T.C.; Hayward, R.C. Programming Reversibly Self-Folding Origami with Micropatterned Photo-Crosslinkable Polymer Trilayers. Adv. Mater. 2015, 27, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Verpaalen, R.C.P.; da Cunha, M.P.; Engels, T.A.P.; Debije, M.G.; Schenning, A.P.H.J. Liquid Crystal Networks on Thermoplastics: Reprogrammable Photo-Responsive Actuators. Angew. Chem. Int. Ed. 2020, 59, 4532–4536. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wang, Z.; Chen, Y.; Shao, J.; Gao, T.; Cai, S. Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. ACS Appl. Mater. Interfaces 2018, 10, 8307–8316. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, W. A Photothermal Soft Actuator Based on MoS2 and PDMS. In Proceedings of the 2018 IEEE 1st International Conference on Micro/Nano Sensors for AI, Healthcare, and Robotics (NSENS), Shenzhen, China, 5–7 December 2018. [Google Scholar]
- Rishani, N.; Elayan, H.; Shubair, R.; Kiourti, A. Wearable, Epidermal, and Implantable Sensors for Medical Applications. arXiv 2018, arXiv:1810.00321. [Google Scholar]
- Aliev, A.E.; Oh, J.; Kozlov, M.E.; Kuznetsov, A.A.; Fang, S.; Fonseca, A.F.; Baughman, R.H.; Lima, M.D.; Haque, M.H.; Ovalle, R.; et al. Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles. Science 2009, 323, 1575–1578. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, C.; Sun, D.; Li, M.; Yan, K.; Wang, D. Photothermal and Moisture Actuator Made with Graphene Oxide and Sodium Alginate for Remotely Controllable and Programmable Intelligent Devices. ACS Appl. Mater. Int 2019, 11, 21926–21934. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-W.; Zhu, D.; Jiang, H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 2011, 7, 5604–5609. [Google Scholar] [CrossRef]
- Jiang, W.; Niu, D.; Wei, L.; Ye, G.; Wang, L.; Liu, H.; Chen, P.; Luo, F.; Lu, B. Controllable actuation of photomechanical bilayer nanocomposites for in vitro cell manipulation. Carbon 2018, 139, 1048–1056. [Google Scholar] [CrossRef]
- Jiang, W.; Niu, D.; Liu, H.; Wang, C.; Zhao, T.; Yin, L.; Shi, Y.; Chen, B.; Ding, Y.; Lu, B. Photoresponsive Soft-Robotic Platform: Biomimetic Fabrication and Remote Actuation. Adv. Funct. Mater. 2014, 24, 7598–7604. [Google Scholar] [CrossRef]
- Rogóż, M.; Zeng, H.; Xuan, C.; Wiersma, D.S.; Wasylczyk, P. Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale. Adv. Opt. Mater. 2016, 4, 1689–1694. [Google Scholar] [CrossRef]
- Wani, O.M.; Zeng, H.; Priimagi, A. A light-driven artificial flytrap. Nat Commun 2017, 8, 15546. [Google Scholar] [CrossRef]
- Qin, J.; Chu, K.-B.; Huang, Y.; Zhu, X.; Hofkens, J.; He, G.; Parkin, I.P.; Lai, F.; Liu, T. The bionic sunflower: A bio-inspired autonomous light tracking photocatalytic system. Energy Environ. Sci. 2021, 14, 3931–3937. [Google Scholar] [CrossRef]
- Qian, J.Y.; Hou, C.W.; Li, X.J.; Jin, Z.J. Actuation Mechanism of Microvalv.ves: A Review. Micromachines 2020, 11, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Huang, H.; Zhu, Y.; Liu, Z.; Xing, X.; Cheng, F.; Yu, Y. Photodeformable CLCP material: Study on photo-activated microvalve applications. Appl. Phys. A 2010, 102, 667–672. [Google Scholar] [CrossRef]
- Lv, J.A.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179–184. [Google Scholar] [CrossRef]
- Miriyev, A. A Focus on Soft Actuation. Actuators 2019, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.; Hou, C.; Wang, H.; Li, Y.; Zhang, Q.; Zhu, M. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci. Adv. 2015, 1, e1500533. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Desai, M.S.; Lee, S.W. Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett. 2013, 13, 2826–2830. [Google Scholar] [CrossRef] [Green Version]
- Shahsavan, H.; Aghakhani, A.; Zeng, H.; Guo, Y.; Davidson, Z.S.; Priimagi, A.; Sitti, M. Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc. Natl Acad. Sci. USA 2020, 117, 5125–5133. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Dong, Y.; Tang, C.Y.; Zhong, L.; Law, W.C.; Tsui, G.C.P.; Yang, Y.; Xie, X. Development of Direct-Laser-Printable Light-Powered Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 19541–19553. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.A.; Ambulo, C.P.; Lee, H.B.; Kim, S.H.; Naik, V.V.; Haines, C.S.; Aliev, A.E.; Ovalle-Robles, R.; Baughman, R.H.; et al. Intelligently Actuating Liquid Crystal Elastomer-Carbon Nanotube Composites. Adv. Funct. Mater. 2019, 29, 1905063. [Google Scholar] [CrossRef]
Actuation Mechanisms | Materials | Characteristics |
---|---|---|
Photo-thermal conversion actuation | Carbon nanoparticles, metal nanoparticles, semiconductor nanostructures, transition metal carbides, and nitrides | Higher light-to-thermal conversion efficiency, low cost, |
SMP, Poly-pyrrole, Poly-dopamine | Better compatibility with polymer matrix | |
Photo-chemical conversion actuation | Liquid crystal polymer, liquid crystal elastomer | Low cost, low density, and biocompatibility |
Shape Memory Polyurethane, Cross-linked Polymer Structure | Biocompatibility and biodegradability | |
Spiropyran, divinylidene, Azo-benzene and its derivatives | Fast response, good biocompatibility | |
Photo-electric conversion actuation | Carbon nanoparticles, silicone, Bi1−xSbx thin films | Raw material selection is more difficult |
Materials | Structure | Size of Sample (mm) | Mode of Deformation | Performance | Light Source | Cycles | Ref. |
---|---|---|---|---|---|---|---|
CNT/PDMS | Bilayer | 25 × 3.5 | Angle change | 280° | Sunlight | 20 | [72] |
GO/PDMS | Bilayer | 20 × 3 | Displacement change | 7.9 mm | NIR 980 nm | 5 | [39] |
RGO–TEM–PDMS/PDMS | Bilayer | 20 × 2 | Angle change | 180° | IR lamp | 0 | [38] |
GO–PDA/RGO | Dual gradient structure | 10 × 8 | Angle change | 60° | NIR light | 500 | [98] |
PDA-RGO/NOA-63 | Bilayer | 12 × 5 | Angle change | 90° | NIR light | 40 | [41] |
PDA/LCE | Bilayer | 30 × 7 | Displacement change | 22.5 mm | NIR 808 nm | 0 | [83] |
ELP(elastin-like polypeptides)-rGO | Bilayer | Width 2 | Angle change | 70° | NIR 808 nm | 0 | [99] |
Liquid crystal gels (LCGs) | Composite | 16 × 3 | Displacement change | 20 mm | UV lamp 532 nm, | 0 | [100] |
PDLC(polymer-dispersed liquid crystal)/GO | Composite | 20 × 5 | Bending degree | 0.9 | NIR 808 nm | 300 | [101] |
LCE/CNT | Bilayer | 50 × 0.7 | Angle change | 100° | Visible-light | 1000 | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yu, Q.; Su, C.; Jiang, J.; Chen, N.; Shao, H. Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications. Actuators 2021, 10, 298. https://doi.org/10.3390/act10110298
Huang Y, Yu Q, Su C, Jiang J, Chen N, Shao H. Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications. Actuators. 2021; 10(11):298. https://doi.org/10.3390/act10110298
Chicago/Turabian StyleHuang, Yaoli, Qinghua Yu, Chuanli Su, Jinhua Jiang, Nanliang Chen, and Huiqi Shao. 2021. "Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications" Actuators 10, no. 11: 298. https://doi.org/10.3390/act10110298
APA StyleHuang, Y., Yu, Q., Su, C., Jiang, J., Chen, N., & Shao, H. (2021). Light-Responsive Soft Actuators: Mechanism, Materials, Fabrication, and Applications. Actuators, 10(11), 298. https://doi.org/10.3390/act10110298