Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
Abstract
:1. Introduction
2. Preliminaries
2.1. The Koopman Operator for Control Systems
2.2. Finite Dimensional Approximation
3. Problem Statement
3.1. EDMD for Interconnected Systems
4. Data-Driven Koopman-Based Control Design
Algorithm 1: Decentralized MPC |
Result: Optimal control signals Set ,, R, , . |
Interconnection through the Input
5. Simulations
5.1. Two Duffing Oscillators
5.2. Bipedal Robot Locomotion Model
5.3. Four Water Tanks
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [Google Scholar] [CrossRef]
- Molnar, F.; Nishikawa, T.; Motter, A.E. Asymmetry underlies stability in power grids. Nat. Commun. 2021, 12, 1–9. [Google Scholar]
- Niemann, J.H.; Klus, S.; Schütte, C. Data-driven model reduction of agent-based systems using the Koopman generator. PLoS ONE 2021, 16, e0250970. [Google Scholar] [CrossRef] [PubMed]
- Baggio, G.; Bassett, D.S.; Pasqualetti, F. Data-driven control of complex networks. Nat. Commun. 2021, 12, 1–13. [Google Scholar]
- Jain, S.; Khorrami, F. Decentralized adaptive control of a class of large-scale interconnected nonlinear systems. IEEE Trans. Autom. Control 1997, 42, 136–154. [Google Scholar] [CrossRef]
- Spooner, J.T.; Passino, K.M. Decentralized adaptive control of nonlinear systems using radial basis neural networks. IEEE Trans. Autom. Control 1999, 44, 2050–2057. [Google Scholar] [CrossRef] [Green Version]
- Lymperopoulos, G.; Ioannou, P. Model reference adaptive control for networked distributed systems with strong interconnections and communication delays. J. Syst. Sci. Complex. 2018, 31, 38–68. [Google Scholar] [CrossRef]
- Budišić, M.; Mohr, R.; Mezić, I. Applied Koopmanism. Chaos Interdiscip. J. Nonlinear Sci. 2012, 22, 47510. [Google Scholar] [CrossRef] [Green Version]
- Mauroy, A.; Mezić, I.; Susuki, Y. The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 484. [Google Scholar]
- Santos Gutiérrez, M.; Lucarini, V.; Chekroun, M.D.; Ghil, M. Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 53116. [Google Scholar] [CrossRef] [PubMed]
- Mauroy, A.; Goncalves, J. Koopman-based lifting techniques for nonlinear systems identification. IEEE Trans. Autom. Control 2019, 65, 2550–2565. [Google Scholar] [CrossRef] [Green Version]
- Heersink, B.; Warren, M.A.; Hoffmann, H. Dynamic mode decomposition for interconnected control systems. arXiv 2017, arXiv:1709.02883. [Google Scholar]
- Mauroy, A.; Hendrickx, J. Spectral identification of networks using sparse measurements. SIAM J. Appl. Dyn. Syst. 2017, 16, 479–513. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Nandanoori, S.P.; Yeung, E. Computationally Efficient Learning of Large Scale Dynamical Systems: A Koopman Theoretic Approach. arXiv 2020, arXiv:2007.00835. [Google Scholar]
- Proctor, J.L.; Brunton, S.L.; Kutz, J.N. Generalizing Koopman theory to allow for inputs and control. SIAM J. Appl. Dyn. Syst. 2018, 17, 909–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korda, M.; Mezić, I. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 2018, 93, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, E.; Kutz, J.N.; Brunton, S.L. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. A 2018, 474, 20180335. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Tenorio, C.; Delansnay, G.; Mojica-Nava, E.; Vande Wouwer, A. Trigonometric Embeddings in Polynomial Extended Mode Decomposition—Experimental Application to an Inverted Pendulum. Mathematics 2021, 9, 1119. [Google Scholar] [CrossRef]
- Ferreau, H.J.; Kirches, C.; Potschka, A.; Bock, H.G.; Diehl, M. qpOASES: A parametric active-set algorithm for quadratic programming. Math. Program. Comput. 2014, 6, 327–363. [Google Scholar] [CrossRef]
- Burbano Lombana, D.A.; Di Bernardo, M. Synchronization and local convergence analysis of networks with dynamic diffusive coupling. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 116308. [Google Scholar] [CrossRef] [Green Version]
- Dutra, M.S.; de Pina Filho, A.C.; Romano, V.F. Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol. Biol. Cybern. 2003, 88, 286–292. [Google Scholar] [CrossRef]
- Alvarado, I.; Limon, D.; De La Peña, D.M.; Maestre, J.M.; Ridao, M.; Scheu, H.; Marquardt, W.; Negenborn, R.; De Schutter, B.; Valencia, F.; et al. A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark. J. Process. Control 2011, 21, 800–815. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tellez-Castro, D.; Garcia-Tenorio, C.; Mojica-Nava, E.; Sofrony, J.; Vande Wouwer, A. Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator. Actuators 2022, 11, 151. https://doi.org/10.3390/act11060151
Tellez-Castro D, Garcia-Tenorio C, Mojica-Nava E, Sofrony J, Vande Wouwer A. Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator. Actuators. 2022; 11(6):151. https://doi.org/10.3390/act11060151
Chicago/Turabian StyleTellez-Castro, Duvan, Camilo Garcia-Tenorio, Eduardo Mojica-Nava, Jorge Sofrony, and Alain Vande Wouwer. 2022. "Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator" Actuators 11, no. 6: 151. https://doi.org/10.3390/act11060151
APA StyleTellez-Castro, D., Garcia-Tenorio, C., Mojica-Nava, E., Sofrony, J., & Vande Wouwer, A. (2022). Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator. Actuators, 11(6), 151. https://doi.org/10.3390/act11060151