Coupled Force–Position Control for Dynamic Contact Force Tracking in Uncertain Environment
Abstract
:1. Introduction
- The selection matrix of HFPC is replaced by weighted matrix , and a weight matrix regulator is designed to achieve automatic smooth switching between position and force control by adjusting the matrix weights in real time according to contact force feedback.
- An adaptive impedance controller is proposed to implement force tracking in complicated environment, and its stability is also analyzed.
- Combining the proposed adaptive impedance controller with the modified HFPC method, we present a coupled force–position control (CFPC) method in this paper. This method has the merits of an automatic smooth switching between the free space and the interaction manipulating space without contact force overshoot and system oscillation.
2. Proposal of the Coupled Force–Position Controller
2.1. Contact Force Estimation
2.2. CFPC Modeling
Algorithm 1. Weight Adjustment |
Input , , if , else if , else output |
2.3. Force Controller Design
2.4. Stability Analysis of the Force Controller
3. Simulations and Experiments
3.1. Simulations
3.2. Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Doulgeri, Z.; Arimoto, S. A force commanded impedance control for a robot finger with uncertain kinematics. Int. J. Robot Res. 1999, 18, 1013–1029. [Google Scholar] [CrossRef]
- Kang, G.; Oh, H.; Seo, J.; Kim, U.; Choi, H.R. Variable admittance control of robot manipulators based on human intention. IEEE/ASME Trans. Mechatron. 2019, 24, 1023–1032. [Google Scholar] [CrossRef]
- Hogan, N. Impedance control: An approach to manipulation. Part I—Theory. Part II—Implementation. Part III—Applications. J. Dyn. Syst. Meas. Control 1985, 107, 1–24. [Google Scholar] [CrossRef]
- Gea, J.; Kirchner, F. Modelling and simulation of robot arm interaction forces using impedance control. IFAC Proc. Vol. 2008, 41, 15589–15594. [Google Scholar] [CrossRef] [Green Version]
- Caccavale, F.; Chiacchio, P.; Marino, A.; Villani, L. Six-DOF impedance control of dual-arm cooperative manipulators. IEEE/ASME Trans. Mechatron. 2008, 13, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Yoo, S.; Seo, T.; Kim, H.; Kim, J. Design and force-tracking impedance control of 2-DOF wall-cleaning manipulator via disturbance observer. IEEE/ASME Trans. Mechatron. 2020, 24, 1487–1498. [Google Scholar] [CrossRef]
- Kim, D.; Koh, K.; Cho, G.; Zhang, L. A robust impedance controller design for series elastic actuators using the singular perturbation theory. IEEE/ASME Trans. Mechatron. 2020, 25, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Peng, G.; Li, Y.; Cui, R.; Cheng, L.; Li, Z. Neural networks enhanced adaptive admittance control of optimized robot-environment interaction. IEEE Trans. Cybern. 2019, 49, 2568–2579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Liu, J.; Huang, Z.; Peng, Y.; Pu, H.; Ding, L. Adaptive impedance control of human-robot Cooperation using reinforcement learning. IEEE Trans. Ind. Electron. 2017, 64, 8013–8022. [Google Scholar] [CrossRef]
- Ikeura, R.; Inooka, H. Variable impedance control of a robot for cooperation with a human. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Nagoya, Japan, 21–27 May 1995; pp. 3097–3102. [Google Scholar]
- Lee, K.; Buss, M. Force tracking impedance control with variable target stiffness. IFAC Proc. Vol. 2008, 41, 6751–6756. [Google Scholar] [CrossRef] [Green Version]
- Sheng, X.; Zhang, X. Fuzzy adaptive hybrid impedance control for mirror milling system. Mechatronics 2018, 53, 20–27. [Google Scholar] [CrossRef]
- Mei, C.; Yuan, J.; Guan, R. Adaptive unified impedance and admittance control using online environment estimation. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics, Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1864–1869. [Google Scholar]
- Huynh, B.; Wu, C.; Kuo, Y. Force/position hybrid control for a Hexa robot using gradient Descent Iterative Learning Control Algorithm. IEEE Access 2019, 7, 72329–72342. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Wang, Y.; Liang, W. Adaptive hybrid impedance control of robot manipulators with robustness against environment’s uncertainties. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 1846–1851. [Google Scholar]
- Peng, J.; Ding, S.; Yang, Z.; Zhang, F. Neural network-based hybrid position/force tracking control for robotic systems without velocity measurement. Neural Process Lett. 2020, 51, 1125–1144. [Google Scholar] [CrossRef]
- Lu, Z.; Huang, P.; Liu, Z.; Chen, H. Fuzzy observer-based hybrid force/position control design for a multiple-sampling-rate bimanual teleoperation system. IEEE Trans. Fuzzy Syst. 2019, 27, 1383–1396. [Google Scholar] [CrossRef]
- Ravandi, A.; Khanmirza, E.; Daneshjou, K. Hybrid force/position control of robotic arms manipulating in uncertain environment based on adaptive fuzzy sliding mode control. Appl. Soft Comput. 2018, 70, 864–874. [Google Scholar] [CrossRef]
- Xie, S.; Ren, J. A Hybrid position/force controller for Joint Robots. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; pp. 6415–6421. [Google Scholar]
- Zhang, H.; Li, L.; Zhao, J.; Zhao, J.; Liu, S.; Wu, J. Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID. Int. J. Adv. Manuf. Technol. 2020, 107, 1741–1754. [Google Scholar] [CrossRef]
- Anh, H.; Kien, C. Adaptive neural compliant force-position control of serial PAM robot. J. Intell. Robot. Syst. 2018, 89, 351–369. [Google Scholar] [CrossRef]
- Qian, Y.; Yan, R.; Hu, S. Bearing degradation evaluation using recurrence quantification analysis and Kalman filter. IEEE Trans. Instrum. Meas. 2014, 63, 2599–2610. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Z.; Ma, T. Position/Force tracking impedance control for robotic systems with uncertainties based on adaptive Jacobian and neural network. Complexity 2019, 2019, 1–16. [Google Scholar] [CrossRef]
- Jung, S.; Hsia, T.; Bonitz, G. Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 2004, 12, 474–483. [Google Scholar] [CrossRef]
Parameter | m | |||||||
Value | 0.5 | 120 | 2000 | 5000 | 1.2 | 0.005 | 0.35 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Li, B.; Xu, W.; Li, Z. Coupled Force–Position Control for Dynamic Contact Force Tracking in Uncertain Environment. Actuators 2022, 11, 150. https://doi.org/10.3390/act11060150
Song X, Li B, Xu W, Li Z. Coupled Force–Position Control for Dynamic Contact Force Tracking in Uncertain Environment. Actuators. 2022; 11(6):150. https://doi.org/10.3390/act11060150
Chicago/Turabian StyleSong, Xiaogang, Bing Li, Wenfu Xu, and Zhisen Li. 2022. "Coupled Force–Position Control for Dynamic Contact Force Tracking in Uncertain Environment" Actuators 11, no. 6: 150. https://doi.org/10.3390/act11060150
APA StyleSong, X., Li, B., Xu, W., & Li, Z. (2022). Coupled Force–Position Control for Dynamic Contact Force Tracking in Uncertain Environment. Actuators, 11(6), 150. https://doi.org/10.3390/act11060150