Fault-Tolerant Control of Linear Systems with Unmatched Uncertainties Based on Integral Sliding Mode Technique
Abstract
:1. Introduction
- (1)
- (2)
- (3)
- Compared with [26], we purposed a novel integral sliding surface based on a matrix full-rank factorization approach to guarantee a sliding mode existing throughout the whole system response, and a sufficient condition, including actuator faults information and unmatched uncertainty, is derived through linear matrix inequalities (LMIs).
2. System Description and Problem Statement
3. Main Results
3.1. Design of Integral Sliding Mode Surface
3.2. Design of Integral Sliding Mode Fault Tolerant Controller
4. Simulation Results
4.1. Numerical Example
- (1)
- The actuator does not have any faults until t = 15 s.
- (2)
- There is 50% actuator failure in the first actuator; the second one gets stuck at in the meantime.
4.2. Single-Mode Fairing Model
- (1)
- The actuators being normal until t = 15 s.
- (2)
- There is 50% actuator failure in the first actuator, the second one is normal and the third one gets stuck at simultaneously.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.; Yang, Y.; Ding, S.X.; Li, L. Fault-tolerant control for systems with model uncertainty and multiplicative faults. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 514–524. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, D.; Wang, J. Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2156–2167. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, R.; Sun, J.; Kolmanovsky, I.V. Robust control of constrained linear systems with bounded disturbances. IEEE Trans. Autom. Control 2012, 57, 2683–2688. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.F. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Trans. Autom. Control 2010, 55, 2043–2057. [Google Scholar] [CrossRef]
- Hao, L.Y.; Zhang, H.; Li, T.S.; Lin, B.; Chen, C.P. Fault tolerant control for dynamic positioning of unmanned marine vehicles based on TS fuzzy model with unknown membership functions. IEEE Trans. Veh. Technol. 2021, 70, 146–157. [Google Scholar] [CrossRef]
- Hao, L.Y.; Yu, Y.; Li, T.S.; Li, H. Quantized output-feedback control for unmanned marine vehicles with thruster faults via sliding-mode technique. IEEE Trans. Cybern. 2021. [Google Scholar] [CrossRef] [PubMed]
- Shao, K.; Zheng, J.; Huang, K.; Wang, H.; Man, Z.; Fu, M. Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode. IEEE Trans. Ind. Electron. 2020, 67, 6659–6668. [Google Scholar] [CrossRef]
- Shao, K.; Zheng, J.; Wang, H.; Xu, F.; Wang, X.; Liang, B. Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner. Mech. Syst. Signal Process. 2021, 146, 107014. [Google Scholar] [CrossRef]
- Hao, L.Y.; Han, J.C.; Guo, G.; Li, L.L. Robust sliding mode fault-tolerant control for dynamic positioning system of ships with thruster faults. Control Decis. 2020, 35, 1291–1296. [Google Scholar] [CrossRef]
- Li, T.; Zhao, R.; Chen, C.P.; Fang, L.; Liu, C. Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans. Cybern. 2018, 48, 3243–3253. [Google Scholar] [CrossRef]
- Castanos, F.; Fridman, L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 2006, 51, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.J.; Xu, J.X. Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Trans. Autom. Control 2004, 49, 1355–1360. [Google Scholar] [CrossRef]
- Gómez-Peñate, S.; López-Estrada, F.R.; Valencia-Palomo, G.; Rotondo, D.; Guerrero-Sánchez, M.E. Actuator and sensor fault estimation based on a proportional multiple-integral sliding mode observer for linear parameter varying systems with inexact scheduling parameters. Int. J. Robust Nonlinear Control 2021, 31, 8420–8441. [Google Scholar] [CrossRef]
- Hao, L.Y.; Zhang, Y.Q.; Li, H. Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles. Appl. Math. Comput. 2021, 401, 126078. [Google Scholar] [CrossRef]
- Jadidi, S.; Badihi, H.; Zhang, Y. Passive fault-tolerant control strategies for power converter in a hybrid microgrid. Energies 2020, 13, 5625. [Google Scholar] [CrossRef]
- Patel, H.R.; Shah, V. Fuzzy logic based passive fault tolerant control strategy for a single-tank system with system fault and process disturbances. In Proceedings of the 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), Istanbul, Turkey, 3–5 May 2018; IEEE: New York, NY, USA, 2018; pp. 257–262. [Google Scholar] [CrossRef]
- Gao, Z.; Zhou, Z.; Qian, M.S.; Lin, J. Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults. IET Control Theory Appl. 2018, 12, 405–412. [Google Scholar] [CrossRef]
- Li, H.; Gao, H.; Shi, P.; Zhao, X. Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 2014, 50, 1825–1834. [Google Scholar] [CrossRef]
- Corradini, M.; Orlando, G.; Parlangeli, G. A fault tolerant sliding mode controller for accommodating actuator failures. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; IEEE: New York, NY, USA, 2005; pp. 3091–3096. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, X. Sliding mode control design for uncertain delay systems with partial actuator degradation. Int. J. Syst. Sci. 2009, 40, 403–409. [Google Scholar] [CrossRef]
- Liang, Y.W.; Xu, S.D. Reliable control of nonlinear systems via variable structure scheme. IEEE Trans. Autom. Control 2006, 51, 1721–1726. [Google Scholar] [CrossRef]
- Singh, S.; Lee, S. Design of integral sliding mode control using decoupled disturbance compensator with mismatched disturbances. Int. J. Control Autom. Syst. 2021, 19, 3264–3272. [Google Scholar] [CrossRef]
- Zhang, X. SMC for nonlinear systems with mismatched uncertainty using Lyapunov-function integral sliding mode. Int. J. Control 2021, 1–16. [Google Scholar] [CrossRef]
- Hao, L.Y.; Park, J.H.; Ye, D. Integral sliding mode fault-tolerant control for uncertain linear systems over networks with signals quantization. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2088–2100. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H. LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Trans. Autom. Control 2007, 52, 736–742. [Google Scholar] [CrossRef]
- Hao, L.Y.; Yang, G.H. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization. ISA Trans. 2013, 52, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.Y.; Zhang, H.; Guo, G.; Li, H. Quantized sliding mode control of unmanned marine vehicles: Various thruster faults tolerated with a unified model. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2012–2026. [Google Scholar] [CrossRef]
- Choi, H.H. On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 1999, 35, 1707–1715. [Google Scholar] [CrossRef]
- Utkin, V. Variable structure systems with sliding modes. IEEE Trans. Autom. Control 1977, 22, 212–222. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, G.H. Adaptive integral sliding mode control fault tolerant control for a class of uncertain nonlinear systems. IET Control Theory Appl. 2018, 12, 1864–1872. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, L.-Y.; Zhou, L.-S. Fault-Tolerant Control of Linear Systems with Unmatched Uncertainties Based on Integral Sliding Mode Technique. Actuators 2022, 11, 241. https://doi.org/10.3390/act11080241
Hao L-Y, Zhou L-S. Fault-Tolerant Control of Linear Systems with Unmatched Uncertainties Based on Integral Sliding Mode Technique. Actuators. 2022; 11(8):241. https://doi.org/10.3390/act11080241
Chicago/Turabian StyleHao, Li-Ying, and Lian-Sheng Zhou. 2022. "Fault-Tolerant Control of Linear Systems with Unmatched Uncertainties Based on Integral Sliding Mode Technique" Actuators 11, no. 8: 241. https://doi.org/10.3390/act11080241
APA StyleHao, L. -Y., & Zhou, L. -S. (2022). Fault-Tolerant Control of Linear Systems with Unmatched Uncertainties Based on Integral Sliding Mode Technique. Actuators, 11(8), 241. https://doi.org/10.3390/act11080241