Development of Hexagonal Pyramid-Shaped Flexible Actuator with Anisotropic Stiffness for Upper-Limb Rehabilitation Device
Abstract
:1. Introduction
2. Previous Reinforced EFPA
3. Hexagonal Pyramid-Shaped Actuator with Anisotropic Stiffness
3.1. Construction of Hexagonal Pyramid-Shaped EFPA
3.2. Characteristic of Hexagonal Pyramid-Shaped Actuator
4. Analytical Model of Hexagonal Pyramid Shape of EFPA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Statistics Bureau of Japan Ageing Society. Available online: https://www.stat.go.jp/data/topics/topi1321.html/ (accessed on 28 December 2022).
- Council of Bureau of Social Welfare and Public Health Tokyo Metropolitan Government. Available online: https://www.fukushihoken.metro.tokyo.lg.jp/iryo/sonota/riha_iryo/kyougi01/rehabiri24.files/siryou242.pdf (accessed on 20 February 2023).
- Zimmermann, Y.; Forino, A.; Riener, R.; Hutter, M. A Versatile and Dynamic Upper-Limb Rehabilitation Robot. IEEE Robot. Autom. Lett. 2019, 4, 3649–3656. [Google Scholar] [CrossRef]
- Tang, L.; Liu, G.; Yang, M.; Li, F.; Ye, F.; Li, C. Joint design and torque feedback experiment of rehabilitation robot. Adv. Mech. Eng. 2020, 12, 1687814020924498. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, S.; Sun, Q. Development and Assist-As-Needed Control of an End-Effector Upper Limb Rehabilitation Robot. Appl. Sci. 2020, 10, 6684. [Google Scholar] [CrossRef]
- Dong, M.; Fan, W.; Li, J.; Zhou, X.; Rong, X.; Kong, Y.; Zhou, Y. A New Ankle Robotic System Enabling Whole-Stage Compliance Rehabilitation Training. IEEE/ASME Trans. Mechatron. 2021, 26, 1490–1500. [Google Scholar] [CrossRef]
- Yokota, M.; Takaiwa, M. Gait Rehabilitation System Using a Non-Wearing Type Pneumatic Power Assist Device. J. Robot. Mechatron. 2021, 33, 927–934. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, J.; Zuo, G.; Li, M.; Jiang, D.; Yang, L. Dual-Modal Hybrid Control for an Upper-Limb Rehabilitation Robot. Machines 2022, 10, 324. [Google Scholar] [CrossRef]
- Mandeljc, A.; Rajhard, A.; Munih, M.; Kamnik, R. Robotic Device for Out-of-Clinic Post-Stroke Hand Rehabilitation. Appl. Sci. 2022, 12, 1092. [Google Scholar] [CrossRef]
- Li, Y.; Gong, Y.; Zhuang, J.; Yang, J.; Osawa, K.; Nakagawa, K.; Lee, H.; Yuge, L.; Tanaka, E. Development of Automatic Controlled Walking Assistive Device Based on Fatigue and Emotion Detection. J. Robot. Mechatron. 2022, 34, 1383–1397. [Google Scholar] [CrossRef]
- Nguyen, T.; Bui, T.; Pham, H. Using proposed optimization algorithm for solving inverse kinematics of human upper limb applying in rehabilitation robotic. Artif. Intell. Rev. 2022, 55, 679–705. [Google Scholar] [CrossRef]
- Sasaki, D.; Noritsugu, T.; Yamamoto, T.; Takaiwa, M. Development of Power Assist Glove using Pneumatic Artificial Rubber Muscle. J. Robot. Mechatron. 2006, 24, 640–646. [Google Scholar]
- Noritsugu, T.; Takaiwa, M.; Sasaki, D. Development of Power Assist Wear Using Pneumatic Rubber Artificial Muscles. J. Robot. Mechatron. 2009, 21, 607–613. [Google Scholar] [CrossRef]
- Kawasaki, H.; Ito, S.; Ishigure, Y.; Nishimoto, Y.; Aoki, T.; Abe, M.; Sakaeda, H.; Ojika, T.; Mouri, T.; Ueki, S. Hand Rehabilitation Assist Robot Designed with Assistance for Thumb Opposability. Trans. Jp. Soc. Mech. Eng. 2008, 74, 3019–3027. [Google Scholar] [CrossRef]
- Taniguchi, H.; Wakimoto, S.; Suzumori, K. Development of a hand rehabilitation system to prevent contracture for finger joints based on the therapy of occupational therapists. Trans. Jp. Soc. Mech. Eng. 2014, 80, TRANS0348. [Google Scholar]
- Polygerinos, P.; Wang, Z.; Galloway, K.; Wood, R.; Walsh, C. Soft robotic glove for combined assistance and at-home rehabilitation. Robo. Auto. Sys. 2015, 73, 135–143. [Google Scholar] [CrossRef]
- Aliff, M.; Dohta, S.; Akagi, T. Simple Trajectory Control Method of Robot Arm Using Flexible Pneumatic Cylinders. J. Robot. Mechatron. 2015, 27, 698–705. [Google Scholar] [CrossRef]
- Abe, T.; Koizumi, S.; Nabae, H.; Endo, G.; Suzumori, K.; Sato, N.; Adachi, M.; Takamizawa, F. Fabrication of “18 Weave” Muscles and Their Application to Soft Power Support Suit for Upper Limbs Using Thin McKibben Muscle. IEEE Robot. Auto. Lett. 2019, 4, 2532–2538. [Google Scholar] [CrossRef]
- Takada, M.; Wakimoto, S.; Oshikawa, T.; Ueda, T.; Kanda, T. Active Cloth Fabricated by a Flat String Machine and its Application to a Safe Wheelchair System. J. Robot. Mechatron. 2020, 32, 1010–1018. [Google Scholar] [CrossRef]
- Nguyen, P.; Zhang, W. Design and Computational Modeling of Fabric Soft Pneumatic Actuators for Wearable Assistive Devices. Sci. Rep. 2020, 10, 9638. [Google Scholar] [CrossRef]
- Thalman, C.; Hertzell, T.; Lee, H. Toward A Soft Robotic Ankle-Foot Orthosis (SR-AFO) Exosuit for Human Locomotion: Preliminary Results in Late Stance Plantarflexion Assistance. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics, New Haven, CT, USA, 15 May–15 July 2020; p. 19763790. [Google Scholar]
- Yuan, P.; Kawano, G.; Tsukagoshi, H. Design and Modeling of Soft Pneumatic Helical Actuator with High Contraction Ratio. J. Robo. Mechatron. 2020, 32, 1061–1070. [Google Scholar] [CrossRef]
- Kimura, S.; Suzuki, R.; Machida, K.; Kashima, M.; Okui, M.; Nishihama, R.; Nakamura, T. Development of an Exoskeleton-Type Assist Suit Utilizing Variable Stiffness Control Devices Based on Human Joint Characteristics. Actuators 2021, 10, 17. [Google Scholar] [CrossRef]
- Miyazaki, T.; Kawase, T.; Kanno, T.; Sogabe, M.; Nakajima, Y.; Kawashima, K. Running Motion Assistance Using a Soft Gait-Assistive Suit and Its Experimental Validation. IEEE Access 2021, 9, 94700–94713. [Google Scholar] [CrossRef]
- Hoang, T.T.; Sy, L.; Bussu, M.; Thai, T.M.; Low, H.; Phan, T.P.; Davies, J.; Nguyen, C.C.; Lovell, H.N.; Do, N.T. A Wearable Soft Fabric Sleeve for Upper Limb Augmentation. Sensors 2021, 21, 7638. [Google Scholar] [CrossRef]
- Pan, M.; Yuan, C.; Liang, X.; Dong, T.; Liu, T.; Zhang, J.; Zou, J.; Yang, H.; Bowen, C. Soft Actuators and Robotic Devices for Rehabilitation and Assistance. Adv. Int. Sys. 2021, 4, 2100140. [Google Scholar] [CrossRef]
- SPORTS-Health “Guide to Shoulder Anatomy”. Available online: https://www.sports-health.com/sports-injuries/shoulder-injuries/guide-shoulder-anatomy (accessed on 28 January 2023).
- Senda, M.; Katayama, Y.; Kaneda, D. Rehabilitation in the Shoulder Disease. Jp. J. Reha. Med. 2016, 53, 928–933. [Google Scholar] [CrossRef]
- Ogawa, K. Evidence-Based Nursing Ergonomics and Body-Mechanics; Tokyo Denki University Press: Tokyo, Japan, 2008; p. 28. [Google Scholar]
- National Institute of Health and Nutrition. Physical Condition Survey. Available online: https://www.nibiohn.go.jp/eiken/kenkounippon21/eiyouchousa/keinen_henka_shintai.html (accessed on 28 January 2023).
- Shimooka, S.; Akagi, T.; Dohta, S.; Shinohara, T.; Alif, M. Development of Reinforced Extension Type Flexible Pneumatic Actuator with Circumferential Restraints and Its Application for Rehabilitation Device. Int. J. Automot. Mech. Eng. 2020, 17, 931–938. [Google Scholar] [CrossRef]
- Artificial Intelligence Research Center (AIST). Database of Human Body Dimensions. Available online: https://www.airc.aist.go.jp/dhrt/91-92/data/list.html (accessed on 28 January 2023).
- Matsui, Y.; Akagi, T.; Dohta, S.; Kobayashi, W.; Tamaki, H. Development of Flexible Spherical Actuator with 3D Coordinate Measuring Device. J. Flow. Control Meas. Vis. 2018, 6, 95–106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimooka, S.; Himuro, H.; Gofuku, A. Development of Hexagonal Pyramid-Shaped Flexible Actuator with Anisotropic Stiffness for Upper-Limb Rehabilitation Device. Actuators 2023, 12, 424. https://doi.org/10.3390/act12110424
Shimooka S, Himuro H, Gofuku A. Development of Hexagonal Pyramid-Shaped Flexible Actuator with Anisotropic Stiffness for Upper-Limb Rehabilitation Device. Actuators. 2023; 12(11):424. https://doi.org/10.3390/act12110424
Chicago/Turabian StyleShimooka, So, Hiroki Himuro, and Akio Gofuku. 2023. "Development of Hexagonal Pyramid-Shaped Flexible Actuator with Anisotropic Stiffness for Upper-Limb Rehabilitation Device" Actuators 12, no. 11: 424. https://doi.org/10.3390/act12110424
APA StyleShimooka, S., Himuro, H., & Gofuku, A. (2023). Development of Hexagonal Pyramid-Shaped Flexible Actuator with Anisotropic Stiffness for Upper-Limb Rehabilitation Device. Actuators, 12(11), 424. https://doi.org/10.3390/act12110424