Improved Vehicle Vibration Control through Optimization of Suspension Parameters Using the Response Surface Method and a Non-Linear Programming with a Quadratic Lagrangian Algorithm
Abstract
:1. Introduction
- –
- An efficient vehicle dynamics model was developed using a semi-recursive multi-body dynamics approach, enabling an accurate description of the longitudinal and vertical dynamic response of the vehicle. Building upon this model, an optimal control algorithm for reducing vibrations when driving over frequent speed bumps was devised.
- –
- A Latin hypercube experimental design was utilized to increase the efficacy of simulation data collection and reduce the number of required simulations. This method assures efficient sampling across the input parameter space, enabling a thorough investigation of suspension design possibilities. In addition, the Response Surface Methodology (RSM) was applied to simulation data to construct a surrogate model for the design optimization (vibration control) problem.
- –
- Leveraging the quadratic RSM model developed in the previous step, a non-linear programming using a quadratic Lagrangian algorithm was applied to determine an optimal solution for the suspension parameters. The identification of the most suitable suspension parameters that meet the intended performance criteria is allowed by taking into account both the goal of minimizing vibrations and the constraints imposed by the vehicle’s maneuverability in this algorithm.
2. Vehicle-Vibration Suppression Using an Optimal Control Algorithm
2.1. Multibody Model of the Vehicle
2.2. Optimal Control Algorithm
3. Metamodels Based on the Response Surface Method
3.1. Optimal Latin Hypercube for the Metamodels
3.2. RSM Model for the Vibration Control
4. Optimization of the Suspension
4.1. Non-Linear Programming Using the Quadratic Lagrangian (NLPQL) Algorithm
Algorithm 1 Design optimization. |
Require: Minimize vibration acceleration (, ) Ensure: 4400 Nm/rad ≤ ≤ 5300 Nm/rad 3400 N/(m/s) ≤ ≤ 5400 N/(m/s) 5800 N/(m/s) ≤ ≤ 9000 N/(m/s) ≤ + = 0.05 + 0.003 = 0.053 m (Note: represents the average peak of the vibration displacements, represents the threshold of the vibration displacements.) |
4.2. Vibration-Control Results
- –
- Intricate coupling effects are exhibited by the three suspension parameters when the vehicle traverses a series of speed bumps.
- –
- One peak value is insufficient to characterize the vibration performance. Instead, the average acceleration of the five shocks is a more appropriate metric for describing vibration control.
- –
- Consistent with real-world observations, opposing trends are displayed via the results for vehicle accelerations and displacements. To optimize the design, vehicle displacements are therefore converted into constraints.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kırbaş, U.; Karaşahin, M. Comparison of Speed Control Bumps and Humps according to Whole-Body Vibration Exposure. J. Transp. Eng. Part A Syst. 2018, 144, 04018054. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Yu, M.; Yu, Q.; Zhou, C. The position of speed bump in front of truck scale based on vehicle vibration performance. J. Intell. Fuzzy Syst. 2018, 34, 1083–1095. [Google Scholar] [CrossRef]
- Chen, K.Y. A new state observer-based vibration control for a suspension system with magnetorheological damper. Veh. Syst. Dyn. 2021, 60, 3127–3150. [Google Scholar] [CrossRef]
- Pan, Y.; Nie, X.; Li, Z.; Gu, S. Data-driven vehicle modeling of longitudinal dynamics based on a multibody model and deep neural networks. Measurement 2021, 180, 109541. [Google Scholar] [CrossRef]
- Nie, X.; Min, C.; Pan, Y.; Li, K.; Li, Z. Deep-Neural-Network-Based Modelling of Longitudinal-Lateral Dynamics to Predict the Vehicle States for Autonomous Driving. Sensors 2022, 22, 2013. [Google Scholar] [CrossRef]
- Song, B.K.; An, J.H.; Choi, S.B. A New Fuzzy Sliding Mode Controller with a Disturbance Estimator for Robust Vibration Control of a Semi-Active Vehicle Suspension System. Appl. Sci. 2017, 7, 1053. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Xiang, C.; Qin, Y.; Ding, P.; Dong, M. Semi-Active Vibration Control for in-Wheel Switched Reluctance Motor Driven Electric Vehicle With Dynamic Vibration Absorbing Structures: Concept and Validation. IEEE ACCESS 2018, 6, 60274–60285. [Google Scholar] [CrossRef]
- Gonçalves, J.P.; Ambrósio, J.A. Optimization of vehicle suspension systems for improved comfort of road vehicles using flexible multibody dynamics. Nonlinear Dyn. 2003, 34, 113–131. [Google Scholar] [CrossRef]
- Fossati, G.G.; Miguel, L.F.F.; Casas, W.J.P. Multi-objective optimization of the suspension system parameters of a full vehicle model. Optim. Eng. 2019, 20, 151–177. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, Y.; Li, Z.; Gardoni, P. Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations. Reliab. Eng. Syst. Saf. 2023, 230, 108950. [Google Scholar] [CrossRef]
- He, Y.; McPhee, J. Application of optimisation algorithms and multibody dynamics to ground vehicle suspension design. Int. J. Heavy Veh. Syst. 2007, 14, 158–192. [Google Scholar] [CrossRef]
- Mousavi-Bideleh, S.M.; Berbyuk, V. Multiobjective optimisation of bogie suspension to boost speed on curves. Veh. Syst. Dyn. 2016, 54, 58–85. [Google Scholar] [CrossRef]
- Bideleh, S.M.M. Robustness analysis of bogie suspension components Pareto optimised values. Veh. Syst. Dyn. 2017, 55, 1189–1205. [Google Scholar] [CrossRef]
- Pan, Y.; Xiang, S.; He, Y.; Zhao, J.; Mikkola, A. The validation of a semi-recursive vehicle dynamics model for a real-time simulation. Mech. Mach. Theory 2020, 151, 103907. [Google Scholar] [CrossRef]
- Pan, Y.; Dai, W.; Huang, L.; Li, Z.; Mikkola, A. Iterative refinement algorithm for efficient velocities and accelerations solutions in closed-loop multibody dynamics. Mech. Syst. Signal Process. 2021, 152, 107463. [Google Scholar] [CrossRef]
- Callejo, A.; de Jalón, J.G. Vehicle suspension identification via algorithmic computation of state and design sensitivities. J. Mech. Des. 2015, 137, 021403. [Google Scholar] [CrossRef]
- Pan, Y.; García de Jalón, J. Iterative Refinement of Accelerations in Real-Time Vehicle Dynamics. J. Comput. Nonlinear Dyn. 2017, 13, 011009. [Google Scholar] [CrossRef]
- Min, C.; Pan, Y.; Dai, W.; Kawsar, I.; Li, Z.; Wang, G. Trajectory optimization of an electric vehicle with minimum energy consumption using inverse dynamics model and servo constraints. Mech. Mach. Theory 2023, 181, 105185. [Google Scholar] [CrossRef]
- Chen, S.; Shi, T.; Wang, D.; Chen, J. Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II. J. Mech. Sci. Technol. 2015, 29, 1007–1018. [Google Scholar] [CrossRef]
- Wu, J.; Luo, Z.; Zhang, Y.; Zhang, N. An interval uncertain optimization method for vehicle suspensions using Chebyshev metamodels. Appl. Math. Model. 2014, 38, 3706–3723. [Google Scholar] [CrossRef]
- Reddy, M.S.; Vigneshwar, P.; Ram, M.S.; Sekhar, D.R.; Harish, Y.S. Comparative optimization study on vehicle suspension parameters for rider comfort based on RSM and GA. Mater. Today Proc. 2017, 4, 1794–1803. [Google Scholar] [CrossRef]
- Aydın, M.; Ünlüsoy, Y.S. Optimization of suspension parameters to improve impact harshness of road vehicles. Int. J. Adv. Manuf. Technol. 2012, 60, 743–754. [Google Scholar] [CrossRef]
- Thoresson, M.J.; Uys, P.E.; Els, P.S.; Snyman, J.A. Efficient optimisation of a vehicle suspension system, using a gradient-based approximation method, Part 1: Mathematical modelling. Math. Comput. Model. 2009, 50, 1421–1436. [Google Scholar] [CrossRef]
- Thoresson, M.J.; Uys, P.E.; Els, P.S.; Snyman, J.A. Efficient optimisation of a vehicle suspension system, using a gradient-based approximation method, Part 2: Optimisation results. Math. Comput. Model. 2009, 50, 1437–1447. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Hu, Y.; Zhu, W. Dynamic response of a front end accessory drive system and parameter optimization for vibration reduction via a genetic algorithm. J. Vib. Control 2018, 24, 2201–2220. [Google Scholar] [CrossRef]
- Zhu, H.; Rui, X.; Yang, F.; Zhu, W.; Wei, M. An efficient parameters identification method of normalized Bouc-Wen model for MR damper. J. Sound Vib. 2019, 448, 146–158. [Google Scholar] [CrossRef]
- Grotti, E.; Mizushima, D.M.; Backes, A.D.; de Freitas Awruch, M.D.; Gomes, H.M. A novel multi-objective quantum particle swarm algorithm for suspension optimization. Comput. Appl. Math. 2020, 39, 105. [Google Scholar] [CrossRef]
- Papaioannou, G.; Koulocheris, D. An approach for minimizing the number of objective functions in the optimization of vehicle suspension systems. J. Sound Vib. 2018, 435, 149–169. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Zhou, G.; Gao, Q.; Wang, C. Optimization of an auxetic jounce bumper based on Gaussian process metamodel and series hybrid GA-SQP algorithm. Struct. Multidiscip. Optim. 2018, 57, 2515–2525. [Google Scholar] [CrossRef]
- Palomares, E.; Morales, A.; Nieto, A.; Chicharro, J.; Pintado, P. Comfort improvement in railway vehicles via optimal control of adaptive pneumatic suspensions. Veh. Syst. Dyn. 2021, 60, 1702–1721. [Google Scholar] [CrossRef]
- Hult, R.; Zanon, M.; Frison, G.; Gros, S.; Falcone, P. Experimental validation of a semi-distributed sequential quadratic programming method for optimal coordination of automated vehicles at intersections. Optim. Control Appl. Methods 2020, 41, 1068–1096. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Cheng, G.D.; Wang, B.P. Topology optimization of damping layers in shell structures subject to impact loads for minimum residual vibration. J. Sound Vib. 2018, 431, 226–247. [Google Scholar] [CrossRef]
- Baumal, A.; McPhee, J.; Calamai, P. Application of genetic algorithms to the design optimization of an active vehicle suspension system. Comput. Methods Appl. Mech. Eng. 1998, 163, 87–94. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Cai, Y.; Lei, G.; Guo, Y.; Zhu, J. Driving-Cycle-Oriented Design Optimization of a Permanent Magnet Hub Motor Drive System for a Four-Wheel-Drive Electric Vehicle. IEEE Trans. Transp. Electrif. 2020, 6, 1115–1125. [Google Scholar] [CrossRef]
- Sun, X.; Xu, N.; Yao, M. Sequential Subspace Optimization Design of a Dual Three-Phase Permanent Magnet Synchronous Hub Motor Based on NSGA III. IEEE Trans. Transp. Electrif. 2023, 9, 622–630. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, X.; Cai, Y.; Yang, Z. Robust Design Optimization of a Five-Phase PM Hub Motor for Fault-Tolerant Operation Based on Taguchi Method. IEEE Trans. Energy Convers. 2020, 35, 2036–2044. [Google Scholar] [CrossRef]
- von Schwerin, R. Multibody System Simulation, Numerical Methods, Algorithms and Software; Springer: New York, NY, USA, 1999. [Google Scholar]
- García de Jalón, J.; Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge; Springer: New York, NY, USA, 1994. [Google Scholar]
- García de Jalón, J.; Álvarez, E.; de Ribera, F.; Rodríguez, I.; Funes, F. A Fast and Simple Semi-Recursive Formulation for Multi-Rigid-Body Systems. In Advances in Computational Multibody Systems; Ambrósio, J., Ed.; Computational Methods in Applied Sciences; Springer: Dordrecht, The Netherlands, 2005; Volume 2, Chapter 1; pp. 1–23. [Google Scholar]
- Pan, Y.; Callejo, A.; Bueno, J.L.; Wehage, R.A.; de Jalón, J.G. Efficient and accurate modeling of rigid rods. Multibody Syst. Dyn. 2017, 40, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; He, Y.; Mikkola, A. Accurate real-time truck simulation via semirecursive formulation and Adams–Bashforth–Moulton algorithm. Acta Mech. Sin. 2019, 35, 641–652. [Google Scholar] [CrossRef]
- Callejo, A.; Pan, Y.; Ricón, J.L.; Kövecses, J.; García de Jalón, J. Comparison of Semirecursive and Subsystem Synthesis Algorithms for the Efficient Simulation of Multibody Systems. J. Comput. Nonlinear Dyn. 2016, 12, 011020. [Google Scholar] [CrossRef]
- Antić, B.; Pešić, D.; Vujanić, M.; Lipovac, K. The influence of speed bumps heights to the decrease of the vehicle speed–Belgrade experience. Saf. Sci. 2013, 57, 303–312. [Google Scholar] [CrossRef]
- He, L.; Pan, Y.; He, Y.; Li, Z.; Królczyk, G.; Du, H. Control strategy for vibration suppression of a vehicle multibody system on a bumpy road. Mech. Mach. Theory 2022, 174, 104891. [Google Scholar] [CrossRef]
- Park, J.S. Optimal Latin-hypercube designs for computer experiments. J. Stat. Plan. Inference 1994, 39, 95–111. [Google Scholar] [CrossRef]
- Khuri, A.I.; Mukhopadhyay, S. Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 128–149. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. Nonlinear Programming: Theory and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Bueno, L.F.; Haeser, G.; Santos, L.R. Towards an efficient augmented Lagrangian method for convex quadratic programming. Comput. Optim. Appl. 2019, 76, 767–800. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Degrees of freedom | 16 |
Vehicle mass | 2519 kg |
Front suspension mass | 38.78 kg |
Rear suspension mass | 188.53 kg |
Tire rolling radius | 0.3495 m |
Distance from center of gravity (C.G.) to front axle | 1767 mm |
C.G. height | 1200 mm |
Distance from C. G. to rear axle | 2333 mm |
Wheelbase | 4100 mm |
Stiffness of front absorber | (4400, 5300) Nm/rad |
Damping of front absorber | (3400, 5400) N/(m/s) |
Damping of rear absorber | (5800, 9000) N/(m/s) |
Factor | Number of Levels | Levels (mm) | Original Level (mm) |
---|---|---|---|
(Nm/rad) | 40 | 4400, 4422.5, 4445, …, 5255, 5277.5, 5300 | 4900 |
(N/(m/s)) | 40 | 3400, 3450, 3500, …, 5300, 5350, 5400 | 4400 |
(N/(m/s)) | 40 | 5800, 5880, 5960, …, 8840, 8920, 9000 | 7400 |
Run | Variables | Responses (Vibration) | |||
---|---|---|---|---|---|
(Nm/rad) | (N/(m/s)) | (N/(m/s)) | Acceleration (m/s2) | Displacement (m) | |
1 | 5046.154 | 3502.564 | 6866.667 | 20.967 | 0.043 |
2 | 4492.308 | 4374.359 | 7523.077 | 20.788 | 0.05 |
3 | 4746.154 | 4938.462 | 8917.949 | 21.124 | 0.044 |
4 | 5207.692 | 4476.923 | 6292.308 | 20.921 | 0.042 |
5 | 4815.385 | 3451.282 | 7605.128 | 20.93 | 0.045 |
6 | 4700 | 4015.385 | 6948.718 | 20.771 | 0.048 |
7 | 4907.692 | 4425.641 | 5882.051 | 20.68 | 0.047 |
8 | 4792.308 | 4066.667 | 7933.333 | 20.981 | 0.045 |
9 | 5184.615 | 5143.59 | 6374.359 | 20.891 | 0.043 |
10 | 4446.154 | 4835.897 | 8425.641 | 20.944 | 0.049 |
… | … | … | … | … | … |
40 | 4538.462 | 4169.231 | 7523.077 | 20.988 | 0.047 |
Linear | Quadratic | |||
---|---|---|---|---|
First peak | 0.999 | 0.999 | 0.999 | 0.998 |
Second peak | 0.994 | 0.994 | 0.999 | 0.998 |
Third peak | 0.973 | 0.970 | 0.999 | 0.998 |
Fourth peak | 0.537 | 0.484 | 0.960 | 0.942 |
Fifth peak | 0.890 | 0.878 | 0.995 | 0.992 |
Average peak | 0.981 | 0.979 | 0.999 | 0.998 |
Average displacement | 0.999 | 0.999 | 0.999 | 0.999 |
Method | Stiffness of Front Absorber (Nm/rad) | Damping of Front Absorber (N/(m/s)) | Damping of Rear Absorber (N/(m/s)) |
---|---|---|---|
Initial parameters | 4901 | 4400 | 7400 |
NLPQL method | 4607 | 4270 | 5800 |
Full-factor method | 4550 | 4200 | 5800 |
25 km/h | Control Method | |||
---|---|---|---|---|
A | B | C | D | |
First peak | 14.60 | 13.92 (↓ 4.61%) | 13.56 (↓ 7.09%) | 13.39 (↓ 8.29%) |
Second peak | 15.72 | 13.44 (↓ 14.49%) | 14.10 (↓ 10.31%) | 13.36 (↓ 14.99%) |
Third peak | 15.68 | 9.73 (↓ 37.93%) | 11.75 (↓ 25.04%) | 10.44 (↓ 33.43%) |
Fourth peak | 15.65 | 9.73 (↓ 37.78%) | 8.52 (↓ 45.42%) | 8.54 (↓ 45.42%) |
Fifth peak | 15.24 | 7.53 (↓ 50.55%) | 8.92 (↓ 41.45%) | 7.46 (↓ 51.03%) |
Mean value | 15.38 | 10.87 (↓ 29.28%) | 11.33 (↓ 26.33%) | 10.64 (↓ 30.82%) |
45 km/h | Control Method | |||
---|---|---|---|---|
A | B | C | D | |
First peak | 17.93 | 18.46 (↑ 2.92%) | 17.20 (↓ 4.11%) | 17.51 (↓ 2.35%) |
Second peak | 21.48 | 19.63 (↓ 8.62%) | 19.54 (↓ 9.00%) | 18.59 (↓13.44%) |
Third peak | 24.49 | 23.85 (↓ 2.63%) | 26.44 (↓ 7.95%) | 24.58 (↑ 0.37%) |
Fourth peak | 22.00 | 22.34 (↑ 1.53%) | 20.72 (↓ 5.80%) | 21.55 (↓ 2.03%) |
Fifth peak | 22.58 | 20.38 (↓ 9.75%) | 21.94 (↓ 2.84%) | 20.10 (↓ 11.00%) |
Mean value | 21.70 | 20.93 (↓ 3.54%) | 21.17 (↓ 2.43%) | 20.47 (↓ 5.67%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, W.; He, L.; Pan, Y.; Zhang, S.-P.; Hou, L. Improved Vehicle Vibration Control through Optimization of Suspension Parameters Using the Response Surface Method and a Non-Linear Programming with a Quadratic Lagrangian Algorithm. Actuators 2023, 12, 297. https://doi.org/10.3390/act12070297
Dai W, He L, Pan Y, Zhang S-P, Hou L. Improved Vehicle Vibration Control through Optimization of Suspension Parameters Using the Response Surface Method and a Non-Linear Programming with a Quadratic Lagrangian Algorithm. Actuators. 2023; 12(7):297. https://doi.org/10.3390/act12070297
Chicago/Turabian StyleDai, Wei, Liuqing He, Yongjun Pan, Sheng-Peng Zhang, and Liang Hou. 2023. "Improved Vehicle Vibration Control through Optimization of Suspension Parameters Using the Response Surface Method and a Non-Linear Programming with a Quadratic Lagrangian Algorithm" Actuators 12, no. 7: 297. https://doi.org/10.3390/act12070297
APA StyleDai, W., He, L., Pan, Y., Zhang, S. -P., & Hou, L. (2023). Improved Vehicle Vibration Control through Optimization of Suspension Parameters Using the Response Surface Method and a Non-Linear Programming with a Quadratic Lagrangian Algorithm. Actuators, 12(7), 297. https://doi.org/10.3390/act12070297