Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils
Abstract
:1. Introduction
2. Geometric Model and Numerical Methods
2.1. Dynamic Chimera Grid System
2.2. Governing Equations and Numerical Simulation Methods
2.3. Method Validation
3. Evolution Process of the Different Vortex Structures of Dynamic Stall and the Active Control Vortex Mechanism of Nonlinear Aerodynamics
3.1. Analysis of the Aerodynamic Characteristics of Dynamic Stall
3.2. Evolution Process of Different Vortex Structures during Dynamic Stall
4. Air-Blow Control of Dynamic Stall
4.1. Proposal of Air-Blow Control
4.2. Effect of the Blowing Coefficient
5. Effect of Motion Parameters
5.1. Mean Angle of Attack
5.2. Amplitude of the Angle of Attack
5.3. Reduced Frequency
6. Conclusions
- (1)
- The evolution and motion characteristics of the DSV and SLV during dynamic stall led to nonlinear hysteresis in the aerodynamics. In the upstroke process, separation first occurred at the trailing edge, forming the SLV. As the angle of attack gradually increased, vorticity accumulated at the leading edge of the airfoil, forming the LEV. With a further increase in the angle of attack, the LEV and the SLV rapidly merged, causing a vortex eruption. This vorticity convection was downstream, forming the DSV, resulting in a sudden spike in aerodynamic forces and pitch moment coefficients to their maximum values. In the downstroke process, the strength of the TEV increased, inducing low-energy fluid in the dissipation region of the DSV, forming the SDSV. This resulted in a secondary dynamic stall and the aerodynamic coefficients exhibited a secondary peak phenomenon, although with relatively smaller magnitudes.
- (2)
- To control the formation and merging of the SLV and DSV, the concept of distributed blowing control was introduced. The study investigated the control effectiveness of changes in the distributed blowing positions and blowing coefficients on the aerodynamics. The results indicated that distributed blowing control could suppress the formation of the DSV and reduce the intensity of the SLV, thereby lowering the aerodynamic peak values during dynamic stall. There existed an optimal blowing coefficient, and when the blowing coefficient Cμ exceeded 0.03, the effectiveness of blowing control no longer significantly improved.
- (3)
- The control effectiveness of distributed blowing control on dynamic stall was investigated under various operating conditions. The results indicated that under different motion parameters, distributed blowing control could suppress the formation of the DSV, transforming the primary controlling vortex structure in the flow field into the SLV. When distributed blowing control was applied at the positions x/c = 5%, 10%, and 30% with a blowing momentum coefficient Cμ of 0.0156, it reduced the peak values of the drag coefficient by 70% and the pitch moment coefficient by 72%, and decreased the hysteresis loop area of the lift coefficient by 46%. Moreover, near the maximum stall angle, distributed blowing control could mitigate stall characteristics, resulting in a smoother variation in unsteady loads.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leishman, G.J. Principles of Helicopter Aerodynamics with CD Extra; Cambridge University Press: Cambridge, UK, 2006; pp. 761–763. [Google Scholar]
- Mulleners, K.; Raffel, M. Dynamic stall development. Exp. Fluids 2013, 54, 1469. [Google Scholar] [CrossRef]
- Gardner, A.D.; Jones, A.R.; Mulleners, K.; Naughton, J.W.; Smith, M.J. Review of rotating wing dynamic stall: Experiments and flow control. Prog. Aerosp. Sci. 2023, 137, 100887. [Google Scholar] [CrossRef]
- Conlisk, A.T. Modern helicopter rotor aerodynamics. Prog. Aerosp. Sci. 2001, 37, 419–476. [Google Scholar] [CrossRef]
- Zi, K.A.N.; Daochun, L.I.; Tong, S.H.E.N.; Xiang, J.; Zhang, L. Aerodynamic characteristics of morphing wing with flexible leading-edge. Chin. J. Aeronaut. 2020, 33, 2610–2619. [Google Scholar]
- Corke, T.C.; Thomas, F.O. Dynamic Stall in Pitching Airfoil: Aerodynamic Damping and Compressibility Effects. Annu. Rev. Fluid. Mech. 2015, 47, 479–505. [Google Scholar] [CrossRef]
- Himmel, S.H. Profile Investigations on a Rotating Production Airscrew; Ministry of Aircraft: Gottingen, Germany, 1947; p. 832. [Google Scholar]
- Harri, F.D.; Pruyn, R.R. Blade Stall-Half Fact, Half Fiction. J. Am. Helicopter Soc. 1968, 13, 27–48. [Google Scholar] [CrossRef]
- McCroskey, W.J.; Carr, L.W.; McAlister, K.W. Dynamic Stall Experiments on Oscillating Airfoils. AIAA J. 1976, 14, 57–63. [Google Scholar] [CrossRef]
- Carr, L.W. Progress in analysis and prediction of dynamic stall. J. Aircr. 1988, 25, 6–17. [Google Scholar] [CrossRef]
- McAlister, K.W.; Carr, L.W.; McCroskey, W.J. Dynamic Stall Experiments on the NACA 0012 Airfoil; Technical Report No. NASA-TP-1100; NASA: Washington, DC, USA, 1978. [Google Scholar]
- Geissler, W.; Raffel, M.; Dietz, G.; Mai, H. Helicopter aerodynamics with emphasis placed on dynamic stall. In Wind Energy: Proceedings of the Euromech Colloquium; Springer: Berlin/Heidelberg, Germany, 2007; pp. 199–204. [Google Scholar]
- Wang, Q.; Zhao, Q.J. Experiments on unsteady vortex flow field of typical rotor airfoils under dynamic stall conditions. Chin. J. Aeronaut. 2016, 29, 358–374. [Google Scholar] [CrossRef]
- Ekaterinaris, J.A.; Platzer, M.F. Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 1997, 33, 759. [Google Scholar] [CrossRef]
- Naughton, J.; Strike, J.; Hind, M.; Magstadt, A.; Babbitt, A. Measurements of Dynamic Stall on the DU Wind Turbine Airfoil Series. In Proceedings of the 69th Annual Forum of the American Helicopter Society, Phoenix, AZ, USA, 21–23 May 2013. [Google Scholar]
- Ullah, A.H.; Fabijanic, C.; Refling, W.; Estevadeordal, J. A Lifetime-PSP Study of Dynamic Stall on Pitching Swept Finite-Aspect-Ratio Wings. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA & Virtual, 3–7 January 2022. AIAA Paper No. 2022-1959. [Google Scholar]
- Gardner, A.D.; Klein, C.; Sachs, W.; Henne, U.; Mai, H.; Richter, K. Investigation of three-dimensional dynamic stall on an airfoil using fast-response pressure-sensitive paint. Exp. Fluids 2014, 55, 1807. [Google Scholar] [CrossRef]
- Disotell, K.J.; Nikoueeyan, P.; Naughton, J.W.; Gregory, J.W. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number. Exp. Fluids 2016, 57, 82. [Google Scholar] [CrossRef]
- Larsson, J.; Kawai, S.; Bodart, J.; Bermejo-Moreno, I. Large eddy simulation with modeled wall-stress: Recent progress and future directions. Mech. Eng. Rev. 2016, 3, 15–00418. [Google Scholar] [CrossRef]
- Khalifa, N.M.; Rezaei, A.S.; Taha, H.E. Comparing the performance of different turbulence models in predicting dynamic stall. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021. AIAA Paper No. 2021-1651. [Google Scholar]
- Xu, Z.; Wu, B.; Gao, C.; Wang, N. Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy. Phys. Plasmas 2022, 29, 103503. [Google Scholar] [CrossRef]
- Wang, S.; Ingham, D.B.; Ma, L.; Pourkashanian, M.; Tao, Z. Turbulence modeling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 2012, 33, 191–209. [Google Scholar] [CrossRef]
- Kaufmann, K.; Costes, M.; Richez, F.; Gardner, A.D.; Pape, A.L. Numerical investigation of three-dimensional static and dynamic stall on a finite wing. J. Am. Helicopter Soc. 2015, 60, 1–12. [Google Scholar] [CrossRef]
- Jain, R.; Le Pape, A.; Grubb, A.; Costes, M.; Richez, F.; Smith, M. High-Resolution Computational Fluid Dynamics Predictions for the Static and Dynamic Stall of a Finite-Span OA209 Wing. J. Fluids Struct. 2018, 78, 126–145. [Google Scholar] [CrossRef]
- Costes, M.; Richez, F.; Le Pape, A.; Gaveriaux, R. Numerical Investigation of Three-Dimensional Effects During Dynamic Stall. In Proceedings of the 37th European Rotorcraft Forum, Gallarate, Italy, 13–15 September 2011. [Google Scholar]
- Visbal, M.R.; Garmann, D.J. Dynamic stall of a finite aspect-ratio wing. AIAA J. 2019, 57, 962–977. [Google Scholar] [CrossRef]
- Visbal, M.R.; Garmann, D.J. Effect of sweep on dynamic stall of a pitching finite-aspect-ratio wing. AIAA J. 2019, 57, 3274–3289. [Google Scholar] [CrossRef]
- Visbal, M.R.; Garmann, D.J. Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations. AIAA J. 2018, 56, 46–63. [Google Scholar] [CrossRef]
- Visbal, M.R.; Benton, S.I. Exploration of high-frequency control of dynamic stall using large-eddy simulations. AIAA J. 2018, 56, 2974–2991. [Google Scholar] [CrossRef]
- Zhong, J.; Li, J.; Guo, P. Effects of leading-edge rod on dynamic stall performance of a wind turbine airfoil. Proc. Inst. Mech. Eng. Part A 2017, 231, 753–769. [Google Scholar] [CrossRef]
- Niu, J.; Lei, J.; Lu, T. Numerical research on the effect of variable droop leading-edge on oscillating NACA 0012 airfoil dynamic stall. Aerosp. Sci. Technol. 2018, 72, 476–485. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhao, Q.J. Dynamic stall control optimization of rotor airfoil via variable droop leading-edge. Aerosp. Sci. Technol. 2015, 43, 406–414. [Google Scholar] [CrossRef]
- Martin, P.; Mcalister, K.; Chandrasekhara, M.; Geissler, W. Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge. In Proceedings of the American Helicopter 59th Annual Forum, Phoenix, AZ, USA, 6–8 May 2003. [Google Scholar]
- Lorber, P.F.; Carta, F.O.; Covino, A.F., Jr. An Oscillating Three-Dimensional Wing Experiment: Compressibility, Sweep, Rate, Waveform and Geometry Effects on Unsteady Separation and Dynamic Stall. Report R92-958325-6; United Technologies Research Center: Farmington, NM, USA, 1992. [Google Scholar]
- Raiola, M.; Discetti, S.; Ianiro, A.; Samara, F.; Avallone, F.; Ragni, D. Smart rotors: Dynamic-stall load control by means of an actuated flap. AIAA J. 2018, 56, 1388–1401. [Google Scholar] [CrossRef]
- Zanotti, A.; Grassi, D.; Gibertini, G. Experimental investigation of a trailing edge L-shaped tab on a pitching airfoil in deep dynamic stall conditions. Proc. Inst. Mech. Eng. Part. G J. Aerosp. Eng. 2014, 228, 2371–2382. [Google Scholar] [CrossRef]
- Samara, F.; Johnson, D.A. Dynamic stall on pitching cambered airfoil with phase offset trailing edge flap. AIAA J. 2020, 58, 2844–2856. [Google Scholar] [CrossRef]
- Joo, W.; Lee, B.; Yee, K.; Lee, D.-H. Combining passive control method for dynamic stall control. J. Aircr. 2006, 43, 1120–1128. [Google Scholar] [CrossRef]
- Lee, B.; Yee, K.; Joo, W.; Lee, D.-H. Dynamic Stall Control with Droop Leading Edge and Gurney Flap. J. Korean Soc. Aeronaut. Space Sci. 2004, 32, 10–17. [Google Scholar]
- Chandrasekhara, M.S. Optimum gurney flap height determination for lost-lift recovery in compressible dynamic stall control. Aerosp. Sci. Technol. 2010, 14, 551–556. [Google Scholar] [CrossRef]
- De Tavernier, D.; Ferreira, C.; Vire, A.; LeBlanc, B.; Bernardy, S. Controlling dynamic stall using vortex generators on a wind turbine airfoil. Renew. Energy 2021, 172, 1194–1211. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Wu, J.; Wang, T. Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators. Energy 2019, 189, 116272. [Google Scholar] [CrossRef]
- Green, R.B.; Prince, S.A.; Wang, Y.; Khodagolian, V.; Coton, F.N. Delay of dynamic stall using pulsed air-jet vortex generators. AIAA J. 2018, 56, 2070–2074. [Google Scholar] [CrossRef]
- Liu, J.; Chen, R.; You, Y.; Shi, Z. Numerical investigation of dynamic stall suppression of rotor airfoil via improved co-flow jet. Chin. J. Aeronaut. 2022, 35, 169–184. [Google Scholar] [CrossRef]
- Gardner, A.D.; Richter, K.; Mai, H.; Neuhaus, D. Experimental investigation of air jets to control shock-induced dynamic stall. J. Am. Helicopter Soc. 2014, 59, 1–11. [Google Scholar] [CrossRef]
- Dano, B.; Zha, G.C.; Castillo, M. Experimental Study of Co-Flow Jet Airfoil Performance Enhancement Using Discreet Jets; Report No.: AIAA-2011-0941; AIAA: Reston, VA, USA, 2011. [Google Scholar]
- Lefebvre, A.; Dano, B.; Bartow, W.B.; Difronzo, M.; Zha, G.C. Performance and energy expenditure of coflow jet airfoil with variation of Mach number. J. Aircr. 2016, 53, 1757–1767. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, Q. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil. Chin. J. Aeronaut. 2014, 27, 1051–1061. [Google Scholar] [CrossRef]
- Kissing, J.; Stumpf, B.; Kriegseis, J.; Hussong, J.; Tropea, J. Delaying leading edge vortex detachment by plasma flow control at topologically critical locations. Phys. Rev. Fluids 2021, 6, 023101. [Google Scholar] [CrossRef]
- Mukherjee, S.; Roy, S. Enhancement of lift and drag characteristics of an oscillating airfoil in deep dynamic stall using plasma actuation. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. AIAA Paper No. 2012-702. [Google Scholar]
- Li, G.; Yi, S. Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator. Energy 2020, 212, 118753. [Google Scholar]
- Yu, H.; Zheng, J. Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators. Phys. Fluids 2020, 32, 035103. [Google Scholar] [CrossRef]
- Yang, H.S.; Zhao, G.Y.; Liang, H.; Wei, B. Dynamic stall control over an airfoil by NS-DBD actuation. Chin. Phys. B 2020, 29, 105203. [Google Scholar] [CrossRef]
- Ramesh, K.; Gopalarathnam, A.; Granlund, K.; Ol, M.V.; Edwards, J.R. Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid. Mech. 2014, 751, 500. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Zhao, Q.J.; Zhao, G.Q. New combinational active control strategy for improving aerodynamic characteristics of airfoil and rotor. Proc. Inst. Mech. Eng. Part. G J. Aerosp. Eng. 2020, 234, 977–996. [Google Scholar] [CrossRef]
- Visbal, M.R.; Garmann, D.J. Investigation of spanwise end effects on dynamic stall of a pitching wing section. J. Aircr. 2019, 56, 2118–2130. [Google Scholar] [CrossRef]
- Gardner, A.D.; Richter, K.; Rosemann, H. Numerical investigation of air jets for dynamic stall control on the OA209 airfoil. CEAS Aeronaut. J. 2011, 1, 69–82. [Google Scholar] [CrossRef]
- Lind, A.H. An Experimental Study of Static and Oscillating Rotor Blade Sections in Reverse Flow. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2015; pp. 5–10. [Google Scholar]
- Khalifa, N.M.; Rezaei, A.; Taha, H.E. On computational simulations of dynamic stall and its three-dimensional nature. Phys. Fluids 2023, 35, 105143. [Google Scholar] [CrossRef]
- Carta, M.; Putzu, R.; Ghisu, T. A comparison of plunging- and pitching-induced deep dynamic stall on an SD7003 airfoil using URANS and LES simulations. Aerosp. Sci. Technol. 2022, 121, 107307. [Google Scholar] [CrossRef]
- Bertagnolio, F.; Johansen, J.; Uglsang, P. Wind Turbine Airfoil Catalogue; Risø National Laboratory: Roskilde, Danmark, 2001; pp. 13–16. [Google Scholar]
- Jing, S.; Zhao, G.; Zhao, Q. Numerical research on secondary peak of aerodynamic forces of airfoil under dynamic stall. J. Nanjing Univ. Aeronaut. Astronaut. 2022, 54, 191–202. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Yi, S.; Li, B.; Zhang, X. Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils. Actuators 2024, 13, 30. https://doi.org/10.3390/act13010030
Li G, Yi S, Li B, Zhang X. Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils. Actuators. 2024; 13(1):30. https://doi.org/10.3390/act13010030
Chicago/Turabian StyleLi, Guoqiang, Shihe Yi, Binbin Li, and Xin Zhang. 2024. "Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils" Actuators 13, no. 1: 30. https://doi.org/10.3390/act13010030
APA StyleLi, G., Yi, S., Li, B., & Zhang, X. (2024). Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils. Actuators, 13(1), 30. https://doi.org/10.3390/act13010030