Minimalist Design for Multi-Dimensional Pressure-Sensing and Feedback Glove with Variable Perception Communication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sensing Mechanism of the Sensing and Feedback Glove
2.2. Preparation of Flexible Sensors
- (1)
- Preparation of Microchannel Molds
- (2)
- Fabrication of Flexible Sensors
2.3. Assembly of the Sensing Feedback Glove
2.4. Control System of Sensing and Feedback
2.5. Characterization Methods of the Sensing Units
2.6. Characterization Methods of Vibration Feedback
3. Results
3.1. Characterization of the Pressure-Sensing and the Vibration Feedback Units
3.2. Characterization of the Bending-Sensing Unit
3.3. Application of Multi-Dimensional Sensing and Augmented Haptic Feedback
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kao, C.H.; Chen, C.C.; Jhu, W.Y.; Tsai, Y.T.; Chen, S.H.; Hsu, C.M.; Chen, C.Y. Novel Digital Glove Design for Virtual Reality Applications. Microsyst. Technol. 2018, 24, 4247–4266. [Google Scholar] [CrossRef]
- Colella, N.; Bianchi, M.; Grioli, G.; Bicchi, A.; Catalano, M.G. A Novel Skin-Stretch Haptic Device for Intuitive Control of Robotic Prostheses and Avatars. IEEE Robot. Autom. Lett. 2019, 4, 1572–1579. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Lee, C. Recent Advances in Artificial Intelligence Sensors. Adv. Sens. Res. 2023, 2, 2200072. [Google Scholar] [CrossRef]
- Chen, T.; Dai, Z.; Liu, M.; Zhao, Y.; Ling, H.; Sun, L.; He, H.; Lee, C.; Zhu, M. 3D Multimodal Sensing and Feedback Finger Case for Immersive Dual-Way Interaction. Adv. Mater. Technol. 2024, 9, 2301681. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Shan, X.; Lee, C. Augmented Tactile-Perception and Haptic-Feedback Rings as Human-Machine Interfaces Aiming for Immersive Interactions. Nat. Commun. 2022, 13, 5224. [Google Scholar] [CrossRef]
- Ma, L.; Xia, T.; Yu, R.; Lei, X.; Yuan, J.; Li, X.; Cheng, G.J.; Liu, F. A 3D-printed, Sensitive, Stable, and Flexible Piezoresistive Sensor for Health Monitoring. Adv. Eng. Mater. 2021, 23, 2100379. [Google Scholar] [CrossRef]
- Zheng, X.T.; Yang, Z.; Sutarlie, L.; Thangaveloo, M.; Yu, Y.; Salleh, N.A.B.M.; Chin, J.S.; Xiong, Z.; Becker, D.L.; Loh, X.J. Battery-Free and AI-Enabled Multiplexed Sensor Patches for Wound Monitoring. Sci. Adv. 2023, 9, eadg6670. [Google Scholar] [CrossRef]
- Au, C.-Y.; Leow, S.Y.; Yi, C.; Ang, D.; Yeo, J.C.; Koh, M.J.A.; Bhagat, A.A.S. A Sensorised Glove to Detect Scratching for Patients with Atopic Dermatitis. Sensors 2023, 23, 9782. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Wang, L.; Zhu, R. Skin-Inspired Quadruple Tactile Sensors Integrated on a Robot Hand Enable Object Recognition. Sci. Robot. 2020, 5, eabc8134. [Google Scholar] [CrossRef]
- Charalambides, A.; Bergbreiter, S. Tactile Sensors: Rapid Manufacturing of Mechanoreceptive Skins for Slip Detection in Robotic Grasping (Adv. Mater. Technol. 1/2017). Adv. Mater. Technol. 2017, 2. [Google Scholar] [CrossRef]
- Boutry, C.M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A Hierarchically Patterned, Bioinspired e-Skin Able to Detect the Direction of Applied Pressure for Robotics. Sci. Robot. 2018, 3, eaau6914. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, L.; Su, Y.; Gao, G.; Liu, Y.; Na, Z.; Xu, Q.; Ding, T.; Xiao, L.; Li, L. A Space Crawling Robotic Bio-Paw (SCRBP) Enabled by Triboelectric Sensors for Surface Identification. Nano Energy 2023, 105, 108013. [Google Scholar] [CrossRef]
- Shih, B.; Shah, D.; Li, J.; Thuruthel, T.G.; Park, Y.-L.; Iida, F.; Bao, Z.; Kramer-Bottiglio, R.; Tolley, M.T. Electronic Skins and Machine Learning for Intelligent Soft Robots. Sci. Robot. 2020, 5, eaaz9239. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Zhou, J.; Huang, Q.; Wu, M.; Yiu, C.K.; Li, J.; Huang, X.; Li, D.; Su, J.; Hou, S.; et al. Encoding of Tactile Information in Hand via Skin-Integrated Wireless Haptic Interface. Nat. Mach. Intell. 2022, 4, 893–903. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Ke, P.; Guo, X.; Yiu, C.K.; Yao, K.; Cai, S.; Li, D.; Zhou, Y.; Li, J. A Skin-Integrated Multimodal Haptic Interface for Immersive Tactile Feedback. Nat. Electron. 2023, 6, 1020–1031. [Google Scholar] [CrossRef]
- Guo, H.; Pu, X.; Chen, J.; Meng, Y.; Yeh, M.-H.; Liu, G.; Tang, Q.; Chen, B.; Liu, D.; Qi, S. A Highly Sensitive, Self-Powered Triboelectric Auditory Sensor for Social Robotics and Hearing Aids. Sci. Robot. 2018, 3, eaat2516. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lei, H.; Gao, Z.; Liu, J.; Zhang, F.; Wen, Z.; Sun, X. Energy Autonomous Electronic Skin with Direct Temperature-Pressure Perception. Nano Energy 2022, 98, 107273. [Google Scholar] [CrossRef]
- Gul, O.; Kim, K.; Gu, J.; Choi, J.; Del Orbe Henriquez, D.; Ahn, J.; Park, I. Sensitivity-Controllable Liquid-Metal-Based Pressure Sensor for Wearable Applications. ACS Appl. Electron. Mater. 2021, 3, 4027–4036. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z.; Lee, C. A Skin-like Multimodal Haptic Interface. Nat. Electron. 2023, 6, 941–942. [Google Scholar] [CrossRef]
- Oh, J.; Kim, S.; Lee, S.; Jeong, S.; Ko, S.H.; Bae, J. A Liquid Metal Based Multimodal Sensor and Haptic Feedback Device for Thermal and Tactile Sensation Generation in Virtual Reality. Adv. Funct. Mater. 2021, 31, 2007772. [Google Scholar] [CrossRef]
- Yu, R.; Xia, T.; Wu, B.; Yuan, J.; Ma, L.; Cheng, G.J.; Liu, F. Highly Sensitive Flexible Piezoresistive Sensor with 3D Conductive Network. ACS Appl. Mater. Interfaces 2020, 12, 35291–35299. [Google Scholar] [CrossRef] [PubMed]
- Mengüç, Y.; Park, Y.-L.; Pei, H.; Vogt, D.; Aubin, P.M.; Winchell, E.; Fluke, L.; Stirling, L.; Wood, R.J.; Walsh, C.J. Wearable Soft Sensing Suit for Human Gait Measurement. Int. J. Rob. Res. 2014, 33, 1748–1764. [Google Scholar] [CrossRef]
- Tehrani, F.; Teymourian, H.; Wuerstle, B.; Kavner, J.; Patel, R.; Furmidge, A.; Aghavali, R.; Hosseini-Toudeshki, H.; Brown, C.; Zhang, F. An Integrated Wearable Microneedle Array for the Continuous Monitoring of Multiple Biomarkers in Interstitial Fluid. Nat. Biomed. Eng. 2022, 6, 1214–1224. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, X.; Zhu, M.; Sun, Z.; Zhang, Z.; He, T.; Lee, C. Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Adv. Energy Mater. 2023, 13, 2203040. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Wang, T.; Tian, Y.; Li, L.; Peng, Y.; Lee, C. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-based Smart Healthcare Applications. Adv. Sci. 2022, 9, 2103694. [Google Scholar] [CrossRef]
- Shin, S.; Yoon, H.U.; Yoo, B. Hand Gesture Recognition Using EGaIn-Silicone Soft Sensors. Sensors 2021, 21, 3204. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Z.; Lee, C. Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials’ Multifunctionalities. ACS Nano 2022, 16, 14097–14110. [Google Scholar] [CrossRef]
- Shen, Z.; Yi, J.; Li, X.; Lo, M.H.P.; Chen, M.Z.Q.; Hu, Y.; Wang, Z. A Soft Stretchable Bending Sensor and Data Glove Applications. Robot. Biomim. 2016, 3, 22. [Google Scholar] [CrossRef]
- Kim, K.-H.; Hong, S.K.; Jang, N.-S.; Ha, S.-H.; Lee, H.W.; Kim, J.-M. Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology. ACS Appl. Mater. Interfaces 2017, 9, 17499–17507. [Google Scholar] [CrossRef]
- González, C.; Solanes, J.E.; Munoz, A.; Gracia, L.; Girbés-Juan, V.; Tornero, J. Advanced Teleoperation and Control System for Industrial Robots Based on Augmented Virtuality and Haptic Feedback. J. Manuf. Syst. 2021, 59, 283–298. [Google Scholar] [CrossRef]
- Lee, E.-H.; Kim, S.-H.; Yun, K.-S. Three-Axis Pneumatic Haptic Display for the Mechanical and Thermal Stimulation of a Human Finger Pad. Actuators 2021, 10, 60. [Google Scholar] [CrossRef]
- Li, B.; Shi, Y.; Hu, H.; Fontecchio, A.; Visell, Y. Assemblies of Microfluidic Channels and Micropillars Facilitate Sensitive and Compliant Tactile Sensing. IEEE Sens. J. 2016, 16, 8908–8915. [Google Scholar] [CrossRef]
- Park, Y.-L.; Chen, B.-R.; Wood, R.J. Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors. IEEE Sens. J. 2012, 12, 2711–2718. [Google Scholar] [CrossRef]
- Hammond, F.L.; Mengüç, Y.; Wood, R.J. Toward a Modular Soft Sensor-Embedded Glove for Human Hand Motion and Tactile Pressure Measurement. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4000–4007. [Google Scholar]
- Kim, S.; Oh, J.; Jeong, D.; Bae, J. Direct Wiring of Eutectic Gallium–Indium to a Metal Electrode for Soft Sensor Systems. ACS Appl. Mater. Interfaces 2019, 11, 20557–20565. [Google Scholar] [CrossRef]
- Lee, W.W.; Tan, Y.J.; Yao, H.; Li, S.; See, H.H.; Hon, M.; Ng, K.A.; Xiong, B.; Ho, J.S.; Tee, B.C.K. A Neuro-Inspired Artificial Peripheral Nervous System for Scalable Electronic Skins. Sci. Robot. 2019, 4, eaax2198. [Google Scholar] [CrossRef]
- Singh, R.; Mozaffari, S.; Akhshik, M.; Ahamed, M.J.; Rondeau-Gagné, S.; Alirezaee, S. Human–Robot Interaction Using Learning from Demonstrations and a Wearable Glove with Multiple Sensors. Sensors 2023, 23, 9780. [Google Scholar] [CrossRef]
- Boley, J.W.; White, E.L.; Chiu, G.T.; Kramer, R.K. Direct Writing of Gallium-indium Alloy for Stretchable Electronics. Adv. Funct. Mater. 2014, 24, 3501–3507. [Google Scholar] [CrossRef]
- Kim, S.; Oh, J.; Jeong, D.; Park, W.; Bae, J. Consistent and Reproducible Direct Ink Writing of Eutectic Gallium–Indium for High-Quality Soft Sensors. Soft Robot. 2018, 5, 601–612. [Google Scholar] [CrossRef]
- Gao, Y.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H.M.; Leng, Y.; Zheng, A.; Xiong, F.; et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv. Mater. 2017, 29, 1701985. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, J.; Han, S.; Park, Y.-L.; Jo, S. Deep Full-Body Motion Network for a Soft Wearable Motion Sensing Suit. IEEE/ASME Trans. Mechatron. 2018, 24, 56–66. [Google Scholar] [CrossRef]
- Liu, M.; Dai, Z.; Zhao, Y.; Ling, H.; Sun, L.; Lee, C.; Zhu, M.; Chen, T. Tactile Sensing and Rendering Patch with Dynamic and Static Sensing and Haptic Feedback for Immersive Communication. ACS Appl. Mater. Interfaces 2024, 16, 53207–53219. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Chen, G.; Chen, Y.; Di Carlo, A.; Mayer, M.A.; Shen, S.; Chen, C.; Li, W.; Subramaniam, S.; Huang, H. Biodegradable Cotton Fiber-Based Piezoresistive Textiles for Wearable Biomonitoring. Biosens. Bioelectron. 2023, 222, 114999. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, N.; Li, L.; Hu, X.; Zou, Z.; Wang, J.; Luo, S.; Gao, Y. A Highly Flexible and Sensitive Piezoresistive Sensor Based on MXene with Greatly Changed Interlayer Distances. Nat. Commun. 2017, 8, 1207. [Google Scholar] [CrossRef]
- JK O’Neill, S.; Gong, H.; Matsuhisa, N.; Chen, S.; Moon, H.; Wu, H.; Chen, X.; Chen, X.; Bao, Z. A Carbon Flower Based Flexible Pressure Sensor Made from Large-area Coating. Adv. Mater. Interfaces 2020, 7, 2000875. [Google Scholar] [CrossRef]
- Tao, L.-Q.; Zhang, K.-N.; Tian, H.; Liu, Y.; Wang, D.-Y.; Chen, Y.-Q.; Yang, Y.; Ren, T.-L. Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano 2017, 11, 8790–8795. [Google Scholar] [CrossRef]
- Araromi, O.A.; Graule, M.A.; Dorsey, K.L.; Castellanos, S.; Foster, J.R.; Hsu, W.-H.; Passy, A.E.; Vlassak, J.J.; Weaver, J.C.; Walsh, C.J. Ultra-Sensitive and Resilient Compliant Strain Gauges for Soft Machines. Nature 2020, 587, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wang, H.; Wang, J.; Shi, Q.; Yen, S.-C.; Thakor, N.V.; Lee, C. Battery-Free Neuromodulator for Peripheral Nerve Direct Stimulation. Nano Energy 2018, 50, 148–158. [Google Scholar] [CrossRef]
- Jiang, C.; Li, X.; Yao, Y.; Lan, L.; Shao, Y.; Zhao, F.; Ying, Y.; Ping, J. A Multifunctional and Highly Flexible Triboelectric Nanogenerator Based on MXene-Enabled Porous Film Integrated with Laser-Induced Graphene Electrode. Nano Energy 2019, 66, 104121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, H.; Li, J.; Guo, C.; Wang, Y.; Chen, T.; Zhu, M. Minimalist Design for Multi-Dimensional Pressure-Sensing and Feedback Glove with Variable Perception Communication. Actuators 2024, 13, 454. https://doi.org/10.3390/act13110454
Ling H, Li J, Guo C, Wang Y, Chen T, Zhu M. Minimalist Design for Multi-Dimensional Pressure-Sensing and Feedback Glove with Variable Perception Communication. Actuators. 2024; 13(11):454. https://doi.org/10.3390/act13110454
Chicago/Turabian StyleLing, Hao, Jie Li, Chuanxin Guo, Yuntian Wang, Tao Chen, and Minglu Zhu. 2024. "Minimalist Design for Multi-Dimensional Pressure-Sensing and Feedback Glove with Variable Perception Communication" Actuators 13, no. 11: 454. https://doi.org/10.3390/act13110454
APA StyleLing, H., Li, J., Guo, C., Wang, Y., Chen, T., & Zhu, M. (2024). Minimalist Design for Multi-Dimensional Pressure-Sensing and Feedback Glove with Variable Perception Communication. Actuators, 13(11), 454. https://doi.org/10.3390/act13110454