PEMFC Gas-Feeding Control: Critical Insights and Review
Abstract
:1. Introduction
2. Filtering Rules for Reviewed Articles
3. PEMFC Structure and Principles of Operation
4. Modeling of PEMFC Supply System
4.1. PEMFC Stack Model
4.2. Anode Supply System Model
- (1)
- All gases are ideal.
- (2)
- Operating temperatures of key components (valve, ejector, pump, valve) are constant.
- (3)
- Components function normally, ignoring vibration effects.
- (4)
- Hydrogen gas is fully humidified (100% relative humidity).
- (5)
- Nitrogen permeation from cathode to anode is negligible, and accumulated nitrogen is purged periodically.
- (6)
- Gas flow kinetic energy is ignored; the system is thermally isolated, and flow rates are subsonic.
4.3. Cathode Supply System Model
- (1)
- All gases follow the ideal gas law.
- (2)
- PEMFC’s thermal subsystem maintains stack temp. at 65–80 °C.
- (3)
- The PEMFC model is a 1D lumped parameter.
- (4)
- Air’s N2:O2 ratio is 79:21.
- (5)
- Intake air relative humidity is constant and ideal.
5. Evaluation Criteria
- (a)
- Control scheme complexity: The complexity of the control scheme is evaluated based on the design and structure of the controller. This includes Classical control, Modern control, Optimized classical control and modern control, Combined controllers in series and parallel configurations. The complexity is categorized into five levels:
- (i)
- Classical PID control;
- (ii)
- Standard modern control or optimized classical control;
- (iii)
- Optimized modern control;
- (iv)
- Combined controllers or modern controller with an observer;
- (v)
- Optimized modern controller with an observer.
- (b)
- Controller performance: The performance of the controller is assessed through key parameters including maximum error, average error, rise time, peak time, response speed, overshoot, robustness, stability, and energy consumption. These parameters are distilled into five dimensions: Error, Response speed, Overshoot, Startup time, Energy consumption. Each dimension is rated on a scale from 1 to 5 (1 for Lowest performance, 2 for Low performance, 3 for middle performance, 4 for high performance, 5 for highest performance).
- (c)
- Application: The application criteria include providing specific application scenarios and experimental setups as references. Each dimension and criterion are evaluated to give a comprehensive view of the control approach’s effectiveness, efficiency, and suitability for various applications.
6. Cathode Control Menologies
6.1. PID Control
6.2. Sliding Mode Control
6.3. Optimal Control and Model Predict Control (MPC)
6.4. H Index Control
6.5. Intelligent Control
6.5.1. Complex Fuzzy Control
- (i)
- Fuzzification: Converts precise inputs into fuzzy inputs (Type-2 fuzzy sets).
- (ii)
- Rule Base: Contains a set of fuzzy rules that define the relationship between input fuzzy sets and output fuzzy sets.
- (iii)
- Inference Mechanism: Uses fuzzy logic inference to evaluate the rules and generate the fuzzy outputs.
- (iv)
- Defuzzification: Converts the fuzzy outputs into precise outputs, typically by computing the center of gravity or another representative value of the output fuzzy set.
6.5.2. Direct Neural Network Control
- (i)
- Network Structure Selection: Choose a suitable neural network structure based on the complexity of the control task and the characteristics of the data. Common structures include feed-forward neural networks, recurrent neural networks, and convolutional neural networks.
- (ii)
- Data Collection and Training: Collect input and output data of the system under different operating conditions. These data are used to train the neural network, enabling it to learn how to generate appropriate control signals based on the current system state and external inputs.
- (iii)
- Network Training: Utilize supervised learning methods to train the neural network with the collected data. The goal of training is to minimize the error between the predicted output and the actual output.
6.5.3. Deep Reinforcement Learning Direct Control
- (i)
- Replay Buffer: DDPG uses a replay buffer to store the state, action, reward, and next state at each step. This buffer enables random sampling during training, reducing data correlation and preventing overfitting.
- (ii)
- Target Networks: To stabilize the learning process, DDPG employs target networks for both the Actor and Critic. The parameters of these target networks slowly converge to those of the main networks, helping to stabilize the performance of the learning algorithm.
- (iii)
- Exploration: In continuous action spaces, DDPG enhances exploration by adding noise (e.g., the Ornstein–Uhlenbeck process) to the Actor’s output actions, facilitating effective exploration of the environment.
6.6. Observer-Based Control
6.7. Fault-Tolerance Mechanism
7. Anode Control
8. Coordinated Control of PEMFC
9. Conclusions and Discussion
- (i)
- Controller Recommendations: Given PEMFC system characteristics, modern controllers like SMC, NTSMC, and MPC, along with intelligent controllers such as DNC and SAC-based control, are recommended as shown in Figure 16, according to the evaluations in Figure 4, Figure 6, Figure 9 and Figure 13 and Table 5. Their implementation should be customized for the application, incorporating observers and optimization algorithms.
- (ii)
- PEMFC is a complex, coupled nonlinear systems that require decoupling and linearization. This process results in higher computational complexity compared to a nonlinear controller. Meanwhile, due to the limited performance improvement of the H index control and optimal control, their application in the PEMFC supply system is not recommended. TSMC may encounter singularity issues; however, the use of NTSMC addresses these problems and further enhances performance.
- (iii)
- MPC relies on accurate model predictions to manage complex multivariable control tasks through solving online optimization problems, making it particularly suitable for a high-power PEMFC supply system. In contrast, SMC is valued for its simple structure and strong robustness to model uncertainties and external perturbations, making it appropriate for scenarios requiring maximum performance.
- (iv)
- DNC and SAC-based controls are recommended for intelligent controllers and these are usually model-free controls. The SAC algorithm exhibits the strongest performance among smart controllers. Additionally, composite algorithmic models demonstrate the best overall performance.
- (v)
- When using multiple optimization algorithms to refine controllers, improvements are often limited. Meanwhile, incorporating observers can further enhance performance, underscoring the importance of selecting the appropriate type of observer for each specific situation.
10. Outlook
- (i)
- Optimizing hydrogen supply under varying operating conditions and addressing delays and fluctuations in hydrogen supply are critical research issues. Currently, there is limited research focused on anode control. Investigating the use of suitable systems and control structures to optimize hydrogen supply and enhance fuel utilization remains a valuable area of study.
- (ii)
- Coordinated multi-objective control is poised to become a focal point as the performance of PEMFC systems is further explored. Therefore, Selecting the appropriate pairing of multiple controllers and co-optimizing between them presents a significant challenge.
- (iii)
- Model-free control based on intelligent controllers still has prospects with algorithm development. In particular, the development of new and improved deep reinforcement learning algorithms, as well as combinations of these algorithms, remains a focus of ongoing research.
- (iv)
- Fault-tolerant control is an underexplored area, including fault-tolerance considerations for air compressors, supply manifolds, and valves. Developing fault-tolerant mechanisms and strategies, along with designing actuating controllers, is of practical significance for PEMFC research.
- (v)
- Selecting appropriate algorithms and control strategies to optimize the PEMFC supply system, based on energy storage and load optimization, is also a significant area of interest.
- (vi)
- We recommend that, in addition to simulation and hardware-in-the-loop (HIL) testing, more experiments should be conducted under various conditions and environments to thoroughly assess the performance and stability of the controllers.
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Control Method | Tracking Performance | Output Voltage Index | Controller Structure and Complexity | ||||
---|---|---|---|---|---|---|---|
Rising Time (s) | Overshoot | Error (%) | Rising Time (s) | Overshoot (%) | Error (%) | ||
IAFPID, [84] | 1.300 | 1.20 | 0.570 | 1.2 | 9.00 | 0.9000 | Low |
FuzzyPID, [80] | 1.500 | 1.50 | 0.430 | 2.8 | 9.00 | 0.6870 | Low |
NNPID, [81] | 1.480 | 1.30 | 0.520 | / | / | / | Mid |
Hybrid PID, [77] | 1.480 | 1.60 | 0.480 | / | / | / | Mid |
Hybrid PID, [83] | 1.840 | 1.30 | 0.420 | 2 | 0.00 | 0.6000 | Mid |
SMC, [90] | 0.860 | 0.98 | 0.410 | 2.6 | 20.00 | 0.2800 | Low |
SMC with observer, [97] | 0.380 | 0.89 | 0.063 | 1 | 9.00 | 0.3600 | Mid |
SMC with algorithm [100] | 0.330 | 0.63 | 0.060 | 0.6 | 0.00 | 0.3560 | Mid |
TSMC with observer, [180] | 0.17 | 0.09 | 0.046 | / | / | / | High |
NTSMC with algorithm, [94] | 0.09 | 0.06 | 0.008 | 0.452 | 2.30 | 0.0560 | High |
Optimal control with observer, [118] | 1.200 | 1.03 | 0.530 | 5 | 8.60 | 0.8000 | Mid |
NN-MPC, [114] | 0.134 | 0.11 | 0.016 | / | / | / | High |
MPC with observer, [116] | 0.162 | 0.02 | 0.020 | 0.5 | 3.68 | 0.3800 | Low |
MPC, [181] | 0.300 | 0.76 | 0.100 | 0.65 | 3.02 | 0.2600 | Low |
H index control, [119] | 4.000 | 1.63 | 0.890 | / | / | / | Low |
FC with observer, [129] | 0.720 | 0.30 | 0.612 | / | / | / | Mid |
FC, [130] | 1.300 | 0.23 | 0.583 | / | / | / | Low |
DNC, [182] | 0.800 | 0.75 | 0.080 | 4 | 4.60 | 0.3300 | Low |
DNC with observer, [140] | 0.590 | 0.89 | 0.040 | / | / | / | Mid |
DDPG, [146] | 0.150 | 0.40 | 0.070 | / | / | / | High |
FO-DDPG, [147] | 0.015 | 0.01 | 0.602 | / | / | / | High |
SAC, [145] | 0.070 | 0.51 | 0.067 | 0.9 | 2.60 | 0.2600 | High |
CIED-MD3, [143] | 0.082 | 0.40 | 0.064 | 0.63 | 3.50 | 0.1680 | High |
Control Method | Tracking Performance | Output Voltage Index | Controller Structure and Complexity | ||||
---|---|---|---|---|---|---|---|
Rising Time (s) | Overshoot (%) | Error (%) | Rising Time (s) | Overshoot (%) | Error (%) | ||
PI, [169] | 0.90 | 0.67 | 0.78 | / | / | / | Low |
ANN, [175] | 0.57 | 0.56 | 2.37 | / | / | / | Low |
MPC, [63] | 0.40 | 0.18 | 0.03 | / | / | / | Mid |
DDPG, [172] | 0.18 | 0.04 | 0.06 | 0.2 | 0.00 | 0.000068 | Mid |
SMC, [170] | 10.60 | 0.05 | 0.60 | 12.6 | 0.02 | 0.110000 | High |
References
- Omri, A.; Ben Jabeur, S. Climate Policies and Legislation for Renewable Energy Transition: The Roles of Financial Sector and Political Institutions. Technol. Forecast. Soc. Chang. 2024, 203, 123347. [Google Scholar] [CrossRef]
- Ma, W.; Wang, W. Evolution of Renewable Energy Laws and Policies in China. Heliyon 2024, 10, e29712. [Google Scholar] [CrossRef] [PubMed]
- Zha, D.; Jiang, P.; Zhang, C.; Xia, D.; Cao, Y. Positive Synergy or Negative Synergy: An Assessment of the Carbon Emission Reduction Effect of Renewable Energy Policy Mixes on China’s Power Sector. Energy Policy 2023, 183, 113782. [Google Scholar] [CrossRef]
- Hassan, M.; Kouzez, M.; Lee, J.-Y.; Msolli, B.; Rjiba, H. Does Increasing Environmental Policy Stringency Enhance Renewable Energy Consumption in OECD Countries? Energy Econ. 2024, 129, 107198. [Google Scholar] [CrossRef]
- Chen, L.; Ma, R. Clean Energy Synergy with Electric Vehicles: Insights into Carbon Footprint. Energy Strategy Rev. 2024, 53, 101394. [Google Scholar] [CrossRef]
- Xu, C.; Zhuang, Y.; Qian, Y.; Cho, H. Effect on the Performance and Emissions of Methanol/Diesel Dual-Fuel Engine with Different Methanol Injection Positions. Fuel 2022, 307, 121868. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Y.; Dong, D.; Wei, F.; Zhang, H.; Jiang, L.; Dong, P.; Li, B.; Xiao, G.; Long, W. Over-Expansion Cycle as Clean Combustion Strategy Applied to a Marine Low-Speed Dual Fuel Engine. J. Clean. Prod. 2024, 450, 141958. [Google Scholar] [CrossRef]
- Li, Y.; Ru, X.; Yang, M.; Zheng, Y.; Yin, S.; Hong, C.; Peng, F.; Qu, M.; Xue, C.; Lu, J.; et al. Flexible silicon solar cells with high power-to-weight ratios. Nature 2024, 626, 105–110. [Google Scholar] [CrossRef]
- Calautit, K.; Johnstone, C. State-of-the-Art Review of Micro to Small-Scale Wind Energy Harvesting Technologies for Building Integration. Energy Convers. Manag. X 2023, 20, 100457. [Google Scholar] [CrossRef]
- Kartal, M.T.; Kılıç Depren, S.; Ayhan, F.; Ulussever, T. Quantile-Based Heterogeneous Effects of Nuclear Energy and Political Stability on the Environment in Highly Nuclear Energy-Consuming and Politically Stable Countries. Appl. Energy 2024, 365, 123237. [Google Scholar] [CrossRef]
- Wang, X.; Xia, H.; Guo, Y.; Duan, Y.; Wang, M.; Liu, Y.; Si, H. Research on Field Testing and Assessment Technology of Ocean Energy Converters. Ocean Eng. 2023, 285, 115539. [Google Scholar] [CrossRef]
- Sadiq Okoh, A.; Chidi Onuoha, M. Immediate and Future Challenges of Using Electric Vehicles for Promoting Energy Efficiency in Africa’s Clean Energy Transition. Glob. Environ. Chang. 2024, 84, 102789. [Google Scholar] [CrossRef]
- Ağbulut, Ü.; Yıldız, G.; Bakır, H.; Polat, F.; Biçen, Y.; Ergün, A.; Gürel, A.E. Current Practices, Potentials, Challenges, Future Opportunities, Environmental and Economic Assumptions for Türkiye’s Clean and Sustainable Energy Policy: A Comprehensive Assessment. Sustain. Energy Technol. Assess. 2023, 56, 103019. [Google Scholar] [CrossRef]
- Islam, A.; Hossain, M.B.; Mondal, M.A.H.; Ahmed, M.T.; Hossain, M.A.; Monir, M.U.; Khan, M.F.H.; Islam, K.; Khandaker, S.; Choudhury, T.R.; et al. Energy Challenges for a Clean Environment: Bangladesh’s Experience. Energy Rep. 2021, 7, 3373–3389. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, K.; Cheng, Y. Deployment of Clean Energy Technologies towards Carbon Neutrality under Resource Constraints. Energy 2024, 295, 131012. [Google Scholar] [CrossRef]
- Shouwu, J.; Xu, T.; Shehzad, K.; Zaman, B.U.; Wuyue, L. The Role of Environmental Technologies and Clean Energy Transition in Shaping the N-Shaped Environmental Kuznets Curve: A North African Perspective. Environ. Technol. Innov. 2024, 33, 103463. [Google Scholar] [CrossRef]
- Ling, W.; Liu, Y.; Young, R.; Cladouhos, T.T.; Jafarpour, B. Efficient Data-Driven Models for Prediction and Optimization of Geothermal Power Plant Operations. Geothermics 2024, 119, 102924. [Google Scholar] [CrossRef]
- Ullah, A.; Altay Topcu, B.; Dogan, M.; Imran, M. Exploring the Nexus among Hydroelectric Power Generation, Financial Development, and Economic Growth: Evidence from the Largest 10 Hydroelectric Power-Generating Countries. Energy Strategy Rev. 2024, 52, 101339. [Google Scholar] [CrossRef]
- Nchege, J.; Okpalaoka, C. Hydroelectric Production and Energy Consumption in Nigeria: Problems and Solutions. Renew. Energy 2023, 219, 119548. [Google Scholar] [CrossRef]
- Irham, A.; Roslan, M.F.; Jern, K.P.; Hannan, M.A.; Mahlia, T.M.I. Hydrogen Energy Storage Integrated Grid: A Bibliometric Analysis for Sustainable Energy Production. Int. J. Hydrogen Energy 2024, 63, 1044–1087. [Google Scholar] [CrossRef]
- Wang, L.L.; Xian, R.C.; Jiao, P.H.; Chen, J.J.; Chen, Y.; Liu, H.G. Multi-Timescale Optimization of Integrated Energy System with Diversified Utilization of Hydrogen Energy under the Coupling of Green Certificate and Carbon Trading. Renew. Energy 2024, 228, 120597. [Google Scholar] [CrossRef]
- Xue, D.; Shao, Z. Patent Text Mining Based Hydrogen Energy Technology Evolution Path Identification. Int. J. Hydrogen Energy 2024, 49, 699–710. [Google Scholar] [CrossRef]
- Guo, S.; Liu, J.; Zhao, C.; Wang, L.; Yang, Z. Research on Pre-Ignition in Hydrogen Internal Combustion Engines Based on Characteristic Parameters of Hot Spot. Int. J. Hydrogen Energy 2024, 65, 548–554. [Google Scholar] [CrossRef]
- Dai, J.; Uwaneza, D.; Levtsev, A.; Yu, Z.; Chen, D. Effect of the Geometric Parameters of the Rib-Channel and Porous Cathode on the Species Distribution in the Cathodes of Protonic Ceramic Fuel Cell Stack. Int. J. Electrochem. Sci. 2022, 17, 220116. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, Y.; Han, S.; Anatoly, L.; Andrey, M.; Lu, L. Investigate the Effect of a Parallel-Cylindrical Flow Field on the Solid Oxide Fuel Cell Stack Performance by 3D Multiphysics Simulating. J. Energy Storage 2023, 60, 106587. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Serbin, S.; Chen, D.; Zhou, H. Thermal Stress Analysis for a Typical Planar Anode-Supported Fuel Cell Stack. Sustain. Energy Technol. Assess. 2022, 54, 102891. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, G.; Li, S.; Shen, Q.; Jiang, Z.; Li, Z.; Wang, H.; Liao, J.; Zhang, H. Molecular Dynamics Study on the Impacts of Cations in Sea Salt Aerosol on Transport Performance of Nafion Membranes for PEMFCs in Marine Application. Int. J. Hydrogen Energy 2022, 47, 27139–27149. [Google Scholar] [CrossRef]
- Bagherabadi, K.M.; Skjong, S.; Bruinsma, J.; Pedersen, E. System-Level Modeling of Marine Power Plant with PEMFC System and Battery. Int. J. Nav. Arch. Ocean Eng. 2022, 14, 100487. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Zhang, B.; Zhang, H.; Wu, X.; Xu, X.; Deng, P.; Peng, Y. Remaining Useful Life Prediction of Vehicle-Oriented PEMFC Systems Based on IGWO-BP Neural Network under Real-World Traffic Conditions. Energy 2024, 291, 130334. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, B.; Wang, C.; Yan, Y. Design of a Novel Fully-Active PEMFC-Lithium Battery Hybrid Power System Based on Two Automatic ON/OFF Switches for Unmanned Aerial Vehicle Applications. Energy Convers. Manag. 2023, 292, 117417. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liang, Q.; Han, L.; Wan, N.; Guo, Z. Design and Performance Evaluation of an Air-Cooled PEMFC Stack with Metallic Bipolar Plates. Int. J. Hydrogen Energy 2024, 60, 324–332. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Zhang, T. Analysis of Cold Start Characteristics in a PEMFC Stack with Different Current Loading Modes. Int. J. Hydrogen Energy 2024, 51, 1456–1476. [Google Scholar] [CrossRef]
- Smith, G.; Sherin, B.; Goh, J.; Shinde, D.V. Fuel Cells—Proton-Exchange Membrane Fuel Cell|PEMFC: History, Introduction, Overview, Applications, Market. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-12-409547-2. [Google Scholar]
- Cheng, M.; Liu, M.; Feng, Y.; Guo, Y.; Xu, H.; Luo, L.; Yin, J.; Yan, X.; Shen, S.; Zhang, J. Technical Challenges and Enhancement Strategies for Transitioning PEMFCs from H-Air to H-O222. Energy Convers. Manag. 2024, 311, 118525. [Google Scholar] [CrossRef]
- Pukrushpan, J.T. Modeling and Control of PEM Fuel Cell Systems and Fuel Processors. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, USA, 2003. [Google Scholar]
- Yang, B.; Li, J.; Li, Y.; Guo, Z.; Zeng, K.; Shu, H.; Cao, P.; Ren, Y. A Critical Survey of Proton Exchange Membrane Fuel Cell System Control: Summaries, Advances, and Perspectives. Int. J. Hydrogen Energy 2022, 47, 9986–10020. [Google Scholar] [CrossRef]
- Wu, D.; Peng, C.; Yin, C.; Tang, H. Review of System Integration and Control of Proton Exchange Membrane Fuel Cells. Electrochem. Energ. Rev. 2020, 3, 466–505. [Google Scholar] [CrossRef]
- Daud, W.R.W.; Rosli, R.E.; Majlan, E.H.; Hamid, S.A.A.; Mohamed, R.; Husaini, T. PEM Fuel Cell System Control: A Review. Renew. Energy 2017, 113, 620–638. [Google Scholar] [CrossRef]
- Lü, X.; Qu, Y.; Wang, Y.; Qin, C.; Liu, G. A Comprehensive Review on Hybrid Power System for PEMFC-HEV: Issues and Strategies. Energy Convers. Manag. 2018, 171, 1273–1291. [Google Scholar] [CrossRef]
- George, S.; Sehgal, N.; Rana, K.P.S.; Kumar, V. A Comprehensive Review on Modelling and Maximum Power Point Tracking of PEMFC. Clean. Energy Syst. 2022, 3, 100031. [Google Scholar] [CrossRef]
- Khan, M.J.; Iqbal, M.T. Modelling and Analysis of Electro-chemical, Thermal, and Reactant Flow Dynamics for a PEM Fuel Cell System. Fuel Cells 2005, 5, 463–475. [Google Scholar] [CrossRef]
- Pan, M.; Li, C.; Liao, J.; Lei, H.; Pan, C.; Meng, X.; Huang, H. Design and Modeling of PEM Fuel Cell Based on Different Flow Fields. Energy 2020, 207, 118331. [Google Scholar] [CrossRef]
- Mann, R.F.; Amphlett, J.C.; Hooper, M.A.; Jensen, H.M.; Peppley, B.A.; Roberge, P.R. Development and Application of a Generalised Steady-State Electrochemical Model for a PEM Fuel Cell. J. Power Sources 2000, 86, 173–180. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Li, J.; Yang, Q.; Wang, J. Investigation of Optimal Operating Temperature for the PEMFC and Its Tracking Control for Energy Saving in Vehicle Applications. Energy Convers. Manag. 2021, 249, 114842. [Google Scholar] [CrossRef]
- H, S.K.; Abbas, Q.; Reichmann, K. Electrochemical Aspects of Interconnect Materials in PEMFCs. Int. J. Hydrogen Energy 2021, 46, 35420–35447. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, X.; Li, Y.; Fan, Z.; Chen, W.; Mao, J.; Deng, P.; Wik, T. Model Optimization of a High-Power Commercial PEMFC System via an Improved Grey Wolf Optimization Method. Fuel 2024, 357, 129589. [Google Scholar] [CrossRef]
- Qiu, D.; Zhou, X.; Chen, M.; Xu, Z.; Peng, L. Optimization of Control Strategy for Air-Cooled PEMFC Based on in-Situ Observation of Internal Reaction State. Appl. Energy 2023, 350, 121752. [Google Scholar] [CrossRef]
- Yang, Z.; Du, Q.; Jia, Z.; Yang, C.; Jiao, K. Effects of Operating Conditions on Water and Heat Management by a Transient Multi-Dimensional PEMFC System Model. Energy 2019, 183, 462–476. [Google Scholar] [CrossRef]
- Lopes, D.G.; da Silva, E.P.; Pinto, C.S.; Neves, N.P.; Camargo, J.C.; Ferreira, P.F.P.; Furlan, A.L.; Lopes, D.G. Technical and Economic Analysis of a Power Supply System Based on Ethanol Reforming and PEMFC. Renew. Energy 2012, 45, 205–212. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, L.; Zou, L.; Jiang, Z.; Liao, J.; Gao, P.; Li, S.; Shen, Q. Modeling and Simulation of a Residential-Based PEMFC-CHP System. Int. J. Electrochem. Sci. 2024, 19, 100638. [Google Scholar] [CrossRef]
- Silva, V.B.; Rouboa, A. Hydrogen-Fed PEMFC: Overvoltage Analysis during an Activation Procedure. J. Electroanal. Chem. 2012, 671, 58–66. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Meng, W.; Ming, P.; Kong, F. Corrosion Behavior of Ti-Nb-Ni Foil as Bipolar Plates Substrate in Simulated PEMFC Solution: Effects of Fluoride Concentration and Temperature. Fuel 2024, 362, 130823 . [Google Scholar] [CrossRef]
- Yang, Y.; Bai, M.; Zhou, Z.; Wu, W.-T.; Hu, C.; Gao, L.; Li, Y.; Li, Y.; Song, Y. Numerical Simulation for Non-Uniform PtCo Catalyst Degradation under Constant Voltage Condition and Its Impact on PEMFC Performance. Int. J. Heat Mass Transf. 2024, 218, 124793. [Google Scholar] [CrossRef]
- Chen, X.; Fang, Y.; Liu, Q.; He, L.; Zhao, Y.; Huang, T.; Wan, Z.; Wang, X. Temperature and Voltage Dynamic Control of PEMFC Stack Using MPC Method. Energy Rep. 2022, 8, 798–808. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Q.; Tu, C.; Che, L.; Hou, Y.; Xiao, F. A Two-Layer Control Strategy for Hydrogen-Battery Hybrid System Considering the Efficiency Characteristics of MS-PEMFC. Electr. Power Syst. Res. 2023, 225, 109818. [Google Scholar] [CrossRef]
- Huang, W.; Jian, Q.; Feng, S.; Huang, Z. A Hybrid Optimization Strategy of Electrical Efficiency about Cooling PEMFC Combined with Ultra-Thin Vapor Chambers. Energy Convers. Manag. 2022, 254, 115301. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; Yang, G.; Gong, D.; Xu, S. Experimental Study on the Influence of Operating Conditions on Performance Decline with Periodic Anode Purges in a Vehicular PEMFC Stack. Int. J. Hydrogen Energy 2024, 69, 1276–1286. [Google Scholar] [CrossRef]
- Yang, G.; Meng, K.; Deng, Q.; Chen, W.; Chen, B. Numerical Investigation and Experimental Verification of Liquid Water Dynamic Transfer Characteristics in the Flow Field of PEMFC with Dead-Ended Anode during Gas Purging. Chem. Eng. J. 2024, 491, 152082. [Google Scholar] [CrossRef]
- Zeng, L.; Li, Z. Fuel Cells—Proton-Exchange Membrane Fuel Cell|PEMFC: Anodes (Catalysts). In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2024; ISBN 978-0-12-409547-2. [Google Scholar]
- Yin, R.-J.; Zeng, W.-C.; Bai, F.; Chen, L.; Tao, W.-Q. Study on the Effects of Manifold Structure on the Gas Flow Distribution Uniformity of Anode of PEMFC Stack with 140-Cell. Renew. Energy 2024, 221, 119693. [Google Scholar] [CrossRef]
- Liu, S.; Chen, T.; Zhang, C.; Xie, Y. Study on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) with Dead-Ended Anode in Gravity Environment. Appl. Energy 2020, 261, 114454. [Google Scholar] [CrossRef]
- Lin, H.; Jian, Q.; Bai, X.; Huang, W.; Feng, S. Mitigating Performance Deterioration Analysis of VC-PEMFC with Dead-Ended Anode by Pulsation Fuel Supplying Mode. Int. J. Hydrogen Energy 2023, 48, 10144–10159. [Google Scholar] [CrossRef]
- Zhu, Y.; Zou, J.; Li, S.; Peng, C.; Xie, Y. Nonlinear Model Predictive Control of PEMFC Anode Hydrogen Circulation System Based on Dynamic Coupling Analysis. Int. J. Hydrogen Energy 2023, 48, 2385–2400. [Google Scholar] [CrossRef]
- Abdollahzadeh, M.; Ribeirinha, P.; Boaventura, M.; Mendes, A. Three-Dimensional Modeling of PEMFC with Contaminated Anode Fuel. Energy 2018, 152, 939–959. [Google Scholar] [CrossRef]
- Wang, F.-C.; Guo, Y.-F. Robustness Analyses of PEMFC Systems on the Production Line. Int. J. Hydrogen Energy 2015, 40, 1959–1966. [Google Scholar] [CrossRef]
- Hong, L.; Chen, J.; Liu, Z.; Huang, L.; Wu, Z. A Nonlinear Control Strategy for Fuel Delivery in PEM Fuel Cells Considering Nitrogen Permeation. Int. J. Hydrogen Energy 2017, 42, 1565–1576. [Google Scholar] [CrossRef]
- He, J.; Ahn, J.; Choe, S.-Y. Analysis and Control of a Fuel Delivery System Considering a Two-Phase Anode Model of the Polymer Electrolyte Membrane Fuel Cell Stack. J. Power Sources 2011, 196, 4655–4670. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Wang, Y. Modeling and Control for PEMFC Hydrogen Management Subsystem Based on Neural Network Compensation and Prescribed Tracking Accuracy. Fuel 2023, 352, 129019. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Y.; Luo, X.; Tu, Z.; Chan, S.H. A Novel Gas Supply Configuration for Hydrogen Utilization Improvement in a Multi-Stack Air-Cooling PEMFC System with Dead-Ended Anode. Energy 2023, 282, 129004. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, M. Research on the Performance Characteristics of Hydrogen Circulation Pumps for PEMFC Vehicles. Int. J. Hydrogen Energy 2024, 50, 1255–1272. [Google Scholar] [CrossRef]
- Jin, J.; He, Z.; Zhao, X. Effect of Al Content on the Corrosion Resistance and Conductivity of Metal Nitride Coating in the Cathode Environment of PEMFCs. Mater. Chem. Phys. 2020, 245, 122739. [Google Scholar] [CrossRef]
- Al-Dabbagh, A.W.; Lu, L.; Mazza, A. Modelling, Simulation and Control of a Proton Exchange Membrane Fuel Cell (PEMFC) Power System. Int. J. Hydrogen Energy 2010, 35, 5061–5069. [Google Scholar] [CrossRef]
- Baroud, Z.; Benmiloud, M.; Benalia, A.; Ocampo-Martinez, C. Novel Hybrid Fuzzy-PID Control Scheme for Air Supply in PEM Fuel-Cell-Based Systems. Int. J. Hydrogen Energy 2017, 42, 10435–10447. [Google Scholar] [CrossRef]
- Yu, J.; Yin, C.; Gong, X.; Yang, H.; Cao, J.; Tang, H. Research on Dynamic Internal Performance of PEMFC under Oxygen Starvation Using High-Resolution Segmented Cell Measurement. Int. J. Hydrogen Energy 2024, 72, 189–200. [Google Scholar] [CrossRef]
- Borase, R.P.; Maghade, D.K.; Sondkar, S.Y.; Pawar, S.N. A review of PID control, tuning methods and applications. Int. J. Dyn. Control 2021, 9, 818–827. [Google Scholar] [CrossRef]
- Swain, P.; Jena, D. PID Control Design for the Pressure Regulation of PEM Fuel Cell. In Proceedings of the 2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), Noida, India, 12–13 March 2015; pp. 286–291. [Google Scholar]
- Wei, L.; Zhu, X.; Wang, X.; Hu, Z.; Wang, M. Research on the Coordinated Control of Oxygen Excess Ratio and Air Pressure for PEMFC’s Air Supply System. Int. J. Hydrogen Energy 2024, 69, 122–133. [Google Scholar] [CrossRef]
- Divi, S.; Sonawane, S.H.; Das, S. Uncertainty analysis of transfer function of proton exchange membrane fuel cell and design of PI/PID controller for supply manifold pressure control. Indian Chem. Eng. 2018, 61, 138–152. [Google Scholar] [CrossRef]
- Silaa, M.Y.; Barambones, O.; Bencherif, A. A Novel Adaptive PID Controller Design for a PEM Fuel Cell Using Stochastic Gradient Descent with Momentum Enhanced by Whale Optimizer. Electronics 2022, 11, 2610. [Google Scholar] [CrossRef]
- Ou, K.; Wang, Y.-X.; Li, Z.-Z.; Shen, Y.-D.; Xuan, D.-J. Feedforward Fuzzy-PID Control for Air Flow Regulation of PEM Fuel Cell System. Int. J. Hydrogen Energy 2015, 40, 11686–11695. [Google Scholar] [CrossRef]
- Damour, C.; Benne, M.; Lebreton, C.; Deseure, J.; Grondin-Perez, B. Real-Time Implementation of a Neural Model-Based Self-Tuning PID Strategy for Oxygen Stoichiometry Control in PEM Fuel Cell. Int. J. Hydrogen Energy 2014, 39, 12819–12825. [Google Scholar] [CrossRef]
- AbouOmar, M.S.; Zhang, H.-J.; Su, Y.-X. Fractional Order Fuzzy PID Control of Automotive PEM Fuel Cell Air Feed System Using Neural Network Optimization Algorithm. Energies 2019, 12, 1435. [Google Scholar] [CrossRef]
- Yue, H.; He, H.; Han, M.; Gong, S. An Unknown Input Nonlinear Observer Based Fractional Order PID Control of Fuel Cell Air Supply System. Fuel 2024, 356, 129619. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, S.; Long, M.; Xu, J.; Liu, Y.; Kong, X.; Wan, Z. Optimization on the Peroxide Ratio Control Strategy of PEMFC System Based on Immune Algorithm. Int. J. Hydrogen Energy 2024, 71, 110–120. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, R.; Zhang, T.; Fan, Z. Coordinated Control of the Fuel Cell Air Supply System Based on Fuzzy Neural Network Decoupling. ACS Omega 2021, 6, 34438–34446. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, P.; Sojoudi, T. PEMFC Voltage Control Using PSO-Tunned-PID Controller. In Proceedings of the 2014 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference, St. Petersburg, Russia, 3–5 February 2014; pp. 32–35. [Google Scholar]
- Ahmadi, S.; Abdi, S.; Kakavand, M. Maximum Power Point Tracking of a Proton Exchange Membrane Fuel Cell System Using PSO-PID Controller. Int. J. Hydrogen Energy 2017, 42, 20430–20443. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Feng, H.; Han, K.; He, S.; Gao, M. Simulation Study on the PEMFC Oxygen Starvation Based on the Coupling Algorithm of Model Predictive Control and PID. Energy Convers. Manag. 2021, 249, 114851. [Google Scholar] [CrossRef]
- Baroud, Z.; Benmiloud, M.; Benalia, A. Sliding Mode Controller for Breathing Subsystem on a PEM Fuel Cell System. In Proceedings of the 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT), Tlemcen, Algeria, 25–27 May 2015; pp. 1–6. [Google Scholar]
- Ali, M.; Abudhahir, A.; ManivannaBoopathi, A. Sliding Mode Controller for Pressure Regulation in PEM Fuel Cell. J. Commun. Technol. Electron. Comput. Sci. 2017, 15, 5–15. [Google Scholar]
- Li, C.; Jing, H.; Hu, J.; Hu, G.; Deng, Y. Sliding Mode Control for Power Tracking of Proton-Exchange Membrane Fuel-Cell System. J. Energy Eng. 2023, 149, 04023011. [Google Scholar] [CrossRef]
- M., O.A.A.; Wang, H.; Tian, Y. Adaptive Integral Type-terminal Sliding Mode Control for PEMFC Air Supply System Using Time Delay Estimation Algorithm. Asian J. Control 2022, 24, 217–226. [Google Scholar] [CrossRef]
- Napole, C.; Derbeli, M.; Barambones, O. A Global Integral Terminal Sliding Mode Control Based on a Novel Reaching Law for a Proton Exchange Membrane Fuel Cell System. Appl. Energy 2021, 301, 117473. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, R.; Maltsev, S.; Chen, D.; Fan, X.; Levtsev, A. A Novel Adaptive Fast Sliding Mode Control Method Based on Fuzzy Algorithm for the Air Management System of Fuel Cell Stack. Process Saf. Environ. Prot. 2024, 187, 506–517. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, X.; Man, Z. Non-Singular Terminal Sliding Mode Control of Rigid Manipulators. Automatica 2002, 38, 2159–2167. [Google Scholar] [CrossRef]
- Derbeli, M.; Barambones, O.; Farhat, M.; Ramos-Hernanz, J.A.; Sbita, L. Robust High Order Sliding Mode Control for Performance Improvement of PEM Fuel Cell Power Systems. Int. J. Hydrogen Energy 2020, 45, 29222–29234. [Google Scholar] [CrossRef]
- Aykut Korkmaz, S.; Ayten Çetinkaya, S.; Yuksel, O.; Konur, O.; Emrah Erginer, K.; Ozgur Colpan, C. Fixed Time Adaptive Fault Tolerant Sliding Mode Control of PEMFC Air Supply System. Int. J. Hydrogen Energy 2024, 51, 1402–1420. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, X.; Dong, Z.; Cao, S. Finite-time Sliding Mode Fault-tolerant Control of PEM Fuel Cell Air Supply System. Asian J. Control 2024, 26, 3014–3026. [Google Scholar] [CrossRef]
- Jiang, F.; Wei, Z.; Zhang, C.; He, H.; Song, R.; Gao, F. Cathodic Supply Optimization of PEMFC System Under Variable Altitude. IEEE Trans. Ind. Electron. 2024, 71, 14298–14307. [Google Scholar] [CrossRef]
- Souissi, A. Adaptive sliding mode control of a PEM fuel cell system based on the super twisting algorithm. Energy Rep. 2021, 7, 3390–3399. [Google Scholar] [CrossRef]
- Baroud, Z.; Benalia, A.; Ocampo-Martinez, C. Robust Fuzzy Sliding Mode Control for Air Supply on PEM Fuel Cell System. Int. J. Model. Identif. Control 2018, 29, 341–351. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, J.; Liu, Z.; Yang, H. Parameter estimation and control of a fuel cell air supply system based on an improved extended state observer. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 46, 362–378. [Google Scholar] [CrossRef]
- Yang, D.; Fu, H.; Li, J.; Wang, S. A Multivariable Sliding Mode Predictive Control Method for the Air Management System of Automotive Fuel Cells. Meas. Control 2024, 57, 139–151. [Google Scholar] [CrossRef]
- Jing, H.; Huang, T.; Li, C.; Liu, X.; Hu, G.; Pang, C. Multi-Objective Sliding Mode Control of Proton Exchange Membrane Fuel Cell System Based on Adaptive Algebraic Observer. Proc. Inst. Mech. Eng. Part A J. Power Energy 2024, 238, 292–304. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Y.; Su, X.; Wack, M.; Wu, L. Disturbance-Observer-Based Control for Air Management of PEM Fuel Cell Systems via Sliding Mode Technique. IEEE Trans. Control Syst. Technol. 2019, 27, 1129–1138. [Google Scholar] [CrossRef]
- Li, J.; Geng, J.; Yu, T. Multi-Objective Optimal Control for Proton Exchange Membrane Fuel Cell via Large-Scale Deep Reinforcement Learning. Energy Rep. 2021, 7, 6422–6437. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, S.; Shi, L. Research on PEMFC Cathode Circulation under Low-Load Conditions and Its Optimal Control in FCV Power System for Long-Term Durability. Int. J. Hydrogen Energy 2024, 61, 1015–1027. [Google Scholar] [CrossRef]
- Barzegari, M.M.; Alizadeh, E.; Pahnabi, A.H. Grey-Box Modeling and Model Predictive Control for Cascade-Type PEMFC. Energy 2017, 127, 611–622. [Google Scholar] [CrossRef]
- Afsharinejad, A.; Asemani, M.H.; Dehghani, M. Optimal Linear Parameter Varying Controller Design for Proton Exchange Membrane Fuel Cell Using LMI Techniques. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Fang, C.; Xu, L.; Li, J.; Ouyang, M. Feedback Linearization Based Air Pressure and Mass Flow Rate Regulation for PEMFCs. In Proceedings of the 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hangzhou, China, 28–30 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1321–1325. [Google Scholar]
- Zhu, Y.; Xie, Y.; Zou, J.; Li, S. Near-Optimal Control of Net Output Power for PEMFC System. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 2801–2806. [Google Scholar]
- Ziogou, C.; Voutetakis, S.; Georgiadis, M.C.; Papadopoulou, S. Model Predictive Control (MPC) Strategies for PEM Fuel Cell Systems–A Comparative Experimental Demonstration. Chem. Eng. Res. Des. 2018, 131, 656–670. [Google Scholar] [CrossRef]
- Chatrattanawet, N.; Hakhen, T.; Kheawhom, S.; Arpornwichanop, A. Control Structure Design and Robust Model Predictive Control for Controlling a Proton Exchange Membrane Fuel Cell. J. Clean. Prod. 2017, 148, 934–947. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, M.; Wang, H.; Chen, Q. Performance-Oriented Model Learning and Model Predictive Control for PEMFC Air Supply System. Int. J. Hydrogen Energy 2024, 64, 339–348. [Google Scholar] [CrossRef]
- Yang, D.; Pan, R.; Wang, Y.; Chen, Z. Modeling and Control of PEMFC Air Supply System Based on TS Fuzzy Theory and Predictive Control. Energy 2019, 188, 116078. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, Z.; Li, C.; Cheng, Z.; Zheng, Z. Observer-Based Model Predictive Control Design for Air Supply System of Automotive PEM Fuel Cells. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 5413–5418. [Google Scholar]
- Ouyang, Q.; Chen, J.; Wang, F.; Su, H. Nonlinear MPC Controller Design for AIR Supply of PEM Fuel Cell Based Power Systems. Asian J. Control 2017, 19, 929–940. [Google Scholar] [CrossRef]
- Zhu, Y.; Zou, J.; Li, S.; Peng, C. An Adaptive Sliding Mode Observer Based Near-Optimal OER Tracking Control Approach for PEMFC under Dynamic Operation Condition. Int. J. Hydrogen Energy 2022, 47, 1157–1171. [Google Scholar] [CrossRef]
- Wang, F.-C.; Lin, L.-H.; Chou, M.-C. Multivariable Robust Control for a 500W Self-Humidified PEMFC System. Eur. J. Control 2011, 17, 429–441. [Google Scholar] [CrossRef]
- Wang, F.-C.; Chen, H.-T. Design and Implementation of Fixed-Order Robust Controllers for a Proton Exchange Membrane Fuel Cell System. Int. J. Hydrogen Energy 2009, 34, 2705–2717. [Google Scholar] [CrossRef]
- Wang, F.-C.; Chen, H.-T.; Yang, Y.-P.; Yen, J.-Y. Multivariable Robust Control of a Proton Exchange Membrane Fuel Cell System. J. Power Sources 2008, 177, 393–403. [Google Scholar] [CrossRef]
- Wang, F.-C.; Yang, Y.-P.; Chang, H.-P.; Ma, Y.-W.; Huang, C.-W.; Weng, B.-J. Proton Exchange Membrane Fuel Cell System Identification and Control: Part II—H-Infinity Based Robust Control. In Proceedings of the International Conference on Fuel Cell Science, Engineering and Technology, Irvine, CA, USA, 19–21 June 2006; Volume 42479, pp. 1105–1110. [Google Scholar]
- Liu, Y.; Qie, T.; Yu, Y.; Wang, Y.; Chau, T.K.; Zhang, X.; Manandhar, U.; Iu, H.H.; Fernando, T. A Novel Integral Reinforcement Learning-Based H∞ Control Strategy for Proton Exchange Membrane Fuel Cell in DC Microgrids. IEEE Trans. Smart Grid 2022, 14, 1668–1681. [Google Scholar] [CrossRef]
- Gheisarnejad, M.; Boudjadar, J.; Khooban, M.H. A new adaptive type-II fuzzy-based deep reinforcement learning control: Fuel cell air-feed sensors control. IEEE Sens. J. 2019, 19, 9081–9089. [Google Scholar] [CrossRef]
- Zhou, J.; Liao, Y.; Liu, J.; Xue, Y.; Xue, S. Deep Reinforcement Learning Guided Cascade Control for Air Supply of Polymer Exchange Membrane Fuel Cell. Energy Technol. 2021, 9, 2100149. [Google Scholar] [CrossRef]
- Li, J.; Yu, T.; Yang, B. Adaptive Controller of PEMFC Output Voltage Based on Ambient Intelligence Large-Scale Deep Reinforcement Learning. IEEE Access 2021, 9, 6063–6075. [Google Scholar] [CrossRef]
- Li, J.; Yu, T. A New Adaptive Controller Based on Distributed Deep Reinforcement Learning for PEMFC Air Supply System. Energy Rep. 2021, 7, 1267–1279. [Google Scholar] [CrossRef]
- Zhang, H.K.; Wang, Y.F.; Wang, D.H.; Wang, Y.L. Adaptive Robust Control of Oxygen Excess Ratio for PEMFC System Based on Type-2 Fuzzy Logic System. Inf. Sci. 2020, 511, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, D.; Chai, T. Observer-based composite adaptive type-2 fuzzy control for PEMFC air supply systems. IEEE Trans. Fuzzy Syst. 2020, 30, 515–529. [Google Scholar] [CrossRef]
- Luo, G.; Ma, B.; Wang, Z.; Yin, L.; Wang, Y. Model-free adaptive control for the PEMFC air supply system based on interval type-2 fuzzy logic systems. J. Renew. Sustain. Energy 2020, 12, 064301. [Google Scholar] [CrossRef]
- Derbeli, M.; Napole, C.; Barambones, O. Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System. Mathematics 2021, 9, 2068. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, C.; Wu, W.; Wan, Y.; Chen, J. PEMFC System Modeling and Control of Oxygen Excess Ratio in Air Supply Systems. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 2762–2767. [Google Scholar]
- Sanchez, V.M.; Barbosa, R.; Arriaga, L.G.; Ramirez, J.M. Real Time Control of Air Feed System in a PEM Fuel Cell by Means of an Adaptive Neural-Network. Int. J. Hydrogen Energy 2014, 39, 16750–16762. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y. Pressure and Oxygen Excess Ratio Control of PEMFC Air Management System Based on Neural Network and Prescribed Performance. Eng. Appl. Artif. Intell. 2023, 121, 105850. [Google Scholar] [CrossRef]
- Rezazadeh, A.; Askarzadeh, A.; Sedighizadeh, M. Adaptive Inverse Control of Proton Exchange Membrane Fuel Cell Using RBF Neural Network. Int. J. Electrochem. Sci. 2011, 6, 3105–3117. [Google Scholar] [CrossRef]
- da Costa Lopes, F.; Watanabe, E.H.; Rolim, L.G.B. A Control-Oriented Model of a PEM Fuel Cell Stack Based on NARX and NOE Neural Networks. IEEE Trans. Ind. Electron. 2015, 62, 5155–5163. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Wang, Y.-F.; Zhang, H.-K. Robust Adaptive Control of PEMFC Air Supply System Based on Radical Basis Function Neural Network. J. Dyn. Syst. Meas. Control 2019, 141, 064503. [Google Scholar] [CrossRef]
- Abbaspour, A.; Khalilnejad, A.; Chen, Z. Robust Adaptive Neural Network Control for PEM Fuel Cell. Int. J. Hydrogen Energy 2016, 41, 20385–20395. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Cai, T.; Zhang, B. Adaptive Control of Air Delivery System for PEM Fuel Cell Using Backstepping. In Proceedings of the 2011 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, 15–18 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1282–1287. [Google Scholar]
- Wang, Y.; Wang, Y.; Xu, J.; Chai, T. Observer-Based Discrete Adaptive Neural Network Control for Automotive PEMFC Air-Feed Subsystem. IEEE Trans. Veh. Technol. 2021, 70, 3149–3163. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Chen, G. Robust Composite Adaptive Neural Network Control for Air Management System of PEM Fuel Cell Based on High-Gain Observer. Neural Comput. Appl. 2020, 32, 10229–10243. [Google Scholar] [CrossRef]
- Li, J.; Yu, T.; Yang, B. Coordinated Control of Gas Supply System in PEMFC Based on Multi-Agent Deep Reinforcement Learning. Int. J. Hydrogen Energy 2021, 46, 33899–33914. [Google Scholar] [CrossRef]
- Li, J.; Yu, T. Intelligent Controller Based on Distributed Deep Reinforcement Learning for PEMFC Air Supply System. IEEE Access 2021, 9, 7496–7507. [Google Scholar] [CrossRef]
- Li, J.; Yu, T. Sensors Integrated Control of PEMFC Gas Supply System Based on Large-Scale Deep Reinforcement Learning. Sensors 2021, 21, 349. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zhou, J.; Yi, F.; Hu, D.; Lu, D.; Wu, G.; Zhang, C.; Deng, B.; Cao, D. An Intelligent Control Method for PEMFC Air Supply Subsystem to Optimize Dynamic Response Performance. Fuel 2024, 361, 130697. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, T.; Gao, Y. Real-Time Control of Gas Supply System for a PEMFC Cold-Start Based on the MADDPG Algorithm. Energies 2023, 16, 4655. [Google Scholar] [CrossRef]
- Yuan, H.; Sun, Z.; Wang, Y.; Chen, Z. Deep Reinforcement Learning Algorithm Based on Fusion Optimization for Fuel Cell Gas Supply System Control. World Electr. Veh. J. 2023, 14, 50. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Wang, L.; Jia, L.; Shao, M.; Yu, Y. Multi-Agent Reinforcement Learning Based Coordinated Control of PEMFC Gas Supply System. In Proceedings of the 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 16–19 December 2022; pp. 132–137. [Google Scholar]
- Li, J.; Yu, T. Large-Scale Multi-Agent Deep Reinforcement Learning-Based Coordination Strategy for Energy Optimization and Control of Proton Exchange Membrane Fuel Cell. Sustain. Energy Technol. Assess. 2021, 48, 101568. [Google Scholar] [CrossRef]
- Yildirim, B.; Gheisarnejad, M.; Özdemir, M.T.; Khooban, M.H. Multi-Agent Fuzzy Q-Learning-Based PEM Fuel Cell Air-Feed System Control. Int. J. Hydrogen Energy 2024, 75, 354–362. [Google Scholar] [CrossRef]
- Cecilia, A.; Serra, M.; Costa-Castelló, R. PEMFC State and Parameter Estimation through a High-Gain Based Adaptive Observer. IFAC-Pap. 2020, 53, 5895–5900. [Google Scholar] [CrossRef]
- Yuan, H.; Dai, H.; Wei, X.; Ming, P. A Novel Model-Based Internal State Observer of a Fuel Cell System for Electric Vehicles Using Improved Kalman Filter Approach. Appl. Energy 2020, 268, 115009. [Google Scholar] [CrossRef]
- Hernández-gómez, Á.; Langarica-Cordoba, D.; Martinez-Rodriguez, P.R.; González-Aguilar, H.; Guilbert, D.; Saldivar, B. Design and Implementation of the Luenberger Observer for Estimating the Voltage Response of a PEM Electrolyzer During Supply Current Variations. IEEE Access 2024, 12, 68266–68277. [Google Scholar] [CrossRef]
- Zakaria, B.; Noureddine, G.; Atallah, B.; Carlos, O. Algebraic Observer-based Output-feedback Controller Design for a PEM Fuel Cell Air-supply Subsystem. IET Renew. Power Gener. 2018, 12, 1714–1721. [Google Scholar] [CrossRef]
- Puig, V.; Feroldi, D.; Serra, M.; Quevedo, J.; Riera, J. Fault-Tolerant MPC Control of PEM Fuel Cells. IFAC Proc. Vol. 2008, 41, 11112–11117. [Google Scholar] [CrossRef]
- Ingimundarson, A.; Peña, R.S.S. Using the Unfalsified Control Concept to Achieve Fault Tolerance. IFAC Proc. Vol. 2008, 41, 1236–1242. [Google Scholar] [CrossRef]
- Liu, J.; Luo, W.; Yang, X.; Wu, L. Robust model-based fault diagnosis for PEM fuel cell air-feed system. IEEE Trans. Ind. Electron. 2016, 63, 3261–3270. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Gao, J.; Chu, H.; Chen, H. Fault-Tolerant Control through Dynamic Surface Triple-Step Approach for Proton Exchange Membrane Fuel Cell Air Supply Systems. Int. J. Hydrogen Energy 2022, 47, 1804–1819. [Google Scholar] [CrossRef]
- Guo, X.; Fan, N.; Dong, Z.; Wang, C. Adaptive prescribed performance control for PEM fuel cell air supply systems with unknown air compressor faults. IEEE Trans. Ind. Electron. 2023, 71, 7664–7672. [Google Scholar] [CrossRef]
- Bianchi, F.D.; Ocampo-Martinez, C.; Kunusch, C.; Sánchez-Peña, R.S. Fault-Tolerant Unfalsified Control for PEM Fuel Cell Systems. IEEE Trans. Energy Convers. 2015, 30, 307–315. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Chen, Z. Robust Fault Diagnosis and Fault Tolerant Control for PEMFC System Based on an Augmented LPV Observer. Int. J. Hydrogen Energy 2020, 45, 13508–13522. [Google Scholar] [CrossRef]
- Bao, C.; Ouyang, M.; Yi, B. Modeling and Control of Air Stream and Hydrogen Flow with Recirculation in a PEM Fuel Cell System—II. Linear and Adaptive Nonlinear Control. Int. J. Hydrogen Energy 2006, 31, 1897–1913. [Google Scholar] [CrossRef]
- Wu, B.; Matian, M.; Offer, G.J. Hydrogen PEMFC System for Automotive Applications. Int. J. Low-Carbon Technol. 2012, 7, 28–37. [Google Scholar] [CrossRef]
- Zambri, N.A.; Salim, N.B.; Noh, F.H.M.; Yi, S.S. Performance Comparison of PEMFC Hydrogen Reformer with Different Controllers. TELKOMNIKA (Telecommun. Comput. Electron. Control.) 2019, 17, 2617–2624. [Google Scholar] [CrossRef]
- Rosli, R.E.; Majlan, E.H.; Wan Daud, W.R.; Hamid, S.A.A. Hydrogen Rate Manipulation of Proton Exchange Membrane Fuel Cell (PEMFC) Stack Using Feedback Control System. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 553–557. [Google Scholar]
- Qin, B.; Wang, X.; Wang, L.; Zhao, H.; Yin, X.; Jia, L. Hydrogen Excess Ratio Control of Ejector-Based Hydrogen Recirculation PEM Fuel Cell System. In Proceedings of the 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Jinzhou, China, 6–8 June 2019; pp. 648–653. [Google Scholar]
- Xue, H.; Zhang, H.; Sun, W.; Yao, A.; Jia, L. An Optimized Fuzzy PI Control Method Utilizing an Improved QPSO for the Hydrogen Supply of PEMFC. In Proceedings of the 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), Ningbo, China, 18–22 August 2023; pp. 603–608. [Google Scholar]
- Yuan, H.; Dai, H.; Wu, W.; Xie, J.; Shen, J.; Wei, X. A Fuzzy Logic PI Control with Feedforward Compensation for Hydrogen Pressure in Vehicular Fuel Cell System. Int. J. Hydrogen Energy 2021, 46, 5714–5728. [Google Scholar] [CrossRef]
- Fang, C.; Li, J.; Xu, L.; Ouyang, M.; Hu, J.; Cheng, S. Model-Based Fuel Pressure Regulation Algorithm for a Hydrogen-Injected PEM Fuel Cell Engine. Int. J. Hydrogen Energy 2015, 40, 14942–14951. [Google Scholar] [CrossRef]
- Deng, H.; Chen, W.; Cao, D.; Chen, J.; Hu, W. Uncertainty Analysis and Robust Control of Fuel Delivery Systems Considering Nitrogen Crossover Phenomenon. Int. J. Hydrogen Energy 2020, 45, 32367–32387. [Google Scholar] [CrossRef]
- Quan, S.; Wang, Y.-X.; Xiao, X.; He, H.; Sun, F. Feedback Linearization-Based MIMO Model Predictive Control with Defined Pseudo-Reference for Hydrogen Regulation of Automotive Fuel Cells. Appl. Energy 2021, 293, 116919. [Google Scholar] [CrossRef]
- Li, J.; Yu, T. Distributed Deep Reinforcement Learning for Optimal Voltage Control of PEMFC. IET Renew. Power Gener. 2021, 15, 2778–2798. [Google Scholar] [CrossRef]
- Chen, L.; Xu, K.; Yang, Z.; Yan, Z.; Dong, Z. Optimal Design and Operation of Dual-Ejector PEMFC Hydrogen Supply and Circulation System. Energies 2022, 15, 5427. [Google Scholar] [CrossRef]
- Benchouia, N.E.; Derghal, A.; Mahmah, B.; Madi, B.; Khochemane, L.; Hadjadj Aoul, E. An Adaptive Fuzzy Logic Controller (AFLC) for PEMFC Fuel Cell. Int. J. Hydrogen Energy 2015, 40, 13806–13819. [Google Scholar] [CrossRef]
- Morán-Durán, A.; Martínez-Sibaja, A.; Rodríguez-Jarquin, J.P.; Posada-Gómez, R.; González, O.S. PEM Fuel Cell Voltage Neural Control Based on Hydrogen Pressure Regulation. Processes 2019, 7, 434. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Zhang, Z.; Gao, S.; Li, H. Coordinated Management of Oxygen Excess Ratio and Cathode Pressure for PEMFC Based on Synthesis Variable-Gain Robust Predictive Control. Appl. Energy 2024, 367, 123415. [Google Scholar] [CrossRef]
- Song, D.; Wu, Q.; Zeng, X.; Zhang, X.; Qian, Q.; Yang, D. Feedback-Linearization Decoupling Based Coordinated Control of Air Supply and Thermal Management for Vehicular Fuel Cell System. Energy 2024, 305, 132347. [Google Scholar] [CrossRef]
- Li, J.; Cui, H.; Jiang, W.; Yu, H. A Large-Scale Multi-Agent Deep Reinforcement Learning Method for Cooperative Output Voltage Control of PEMFCs. IEEE Trans. Transp. Electrif. 2024, 10, 78–94. [Google Scholar] [CrossRef]
- Ahn, J.-W.; He, J.; Choe, S.-Y. Design of Air, Water, Temperature and Hydrogen Controls for a PEM Fuel Cell System. In Proceedings of the ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 7–10 August 2011. [Google Scholar]
- Duan, F.; Kang, Z. Oxygen Excess Ratio Feedforward Control Based on ESO for PEMFC in DC Off-Grid Hydrogen Production Systems. Int. J. Hydrogen Energy 2024, 77, 347–358. [Google Scholar] [CrossRef]
- Gruber, J.K.; Doll, M.; Bordons, C. Design and Experimental Validation of a Constrained MPC for the Air Feed of a Fuel Cell. Control Eng. Pract. 2009, 17, 874–885. [Google Scholar] [CrossRef]
- Sánchez, V.; Ramírez, J.M.; Arriaga, G. On-Line Air Supply Control of PEM Fuel Cell by an Adaptive Neural Network. In Proceedings of the North American Power Symposium, Arlington, TX, USA, 26–28 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. [Google Scholar]
Sliding Variable | Sliding Variable Structure |
---|---|
Classic nonlinear sliding mode variable | |
Terminal sliding mode variable | |
Non-singular terminal sliding mode variable |
Optimal Control Type | Common Cost Function |
---|---|
LQR | |
Near-time optimal control | |
MPC |
Difference | Control | Control |
---|---|---|
Performance indicator | Emphasis on worst-case system performance [120] | Focus on average system performance |
Application | Extreme conditions | Disturbances are more routine |
Complexity | More sophisticated | Sophisticated |
Algorithm | Action Space | Core Strengths | Main Challenges |
---|---|---|---|
QL | Discrete | Easy to implement, low computational needs | Struggles with high-dimensional or continuous action spaces |
DDPG | Continuous | Handles continuous action spaces, integrates deep learning | Requires substantial computational resources, potential for unstable learning |
SAC | Continuous | Maximizes entropy to enhance exploration, stable and efficient learning | Complex implementation, high computational demands |
Citation | Algorithmic Strategy | Performance Indexes (The Number of ‘★’ Represents the Level of Evaluation) |
---|---|---|
[142], 2021 | EILMMA-DDPG | Complexity: ★★★ Consumption: ★★★★ Performance: ★★★★ |
[143], 2020 | CIED-MD3 | Complexity: ★★★ Consumption: ★★★ Performance: ★★★ |
[144], 2021 | ECMTD-DDPG | Complexity: ★★★ Consumption: ★★★★ Performance: ★★★ |
[145], 2024 | SAC | Complexity: ★★ Consumption: ★★★★ Performance: ★★★ |
[146], 2023 | MADDPG | Complexity: ★★★ Consumption: ★★★★★ Performance: ★★★ |
`[147], 2023 | FO-DDPG | Complexity: ★★★ Consumption: ★★★★ Performance: ★★★★ |
[148], 2022 | SAC | Complexity: ★★ Consumption: ★★★★ Performance: ★★★ |
[149], 2021 | ECILS-MADDPG | Complexity: ★★★★ Consumption: ★★★★★ Performance: ★★★★ |
[150], 2024 | MASFQL | Complexity: ★★★ Consumption: ★★★★ Performance: ★★★ |
Observer Type | Advantages | Disadvantages |
---|---|---|
Sliding Mode Observer, [118] | High robustness, quick response to state changes. | May produce chattering, affecting performance and life. |
Neural Network Observer, [140] | Adapts to nonlinear and complex systems, handles complex pattern recognition. | Requires extensive training data, sensitive to initial conditions, time-consuming training. |
High-Gain Observer, [151] | Simple implementation, tolerant to model inaccuracies. | Sensitive to noise, high gain may amplify measurement noise. |
Kalman Filter, [152] | Optimal state estimation in noisy environments, especially suitable for linear systems and Gaussian noise. | Requires linearization for nonlinear systems, high computational complexity. |
Luenberger Observer, [153] | Simple structure, suitable for linear systems, easy to implement. | Depends on accurate system models, low robustness to model errors and external disturbances. |
Algebraic Observer, [154] | Real-time state reconstruction without needing initial states, resistant to certain disturbances. | Complex design and implementation for high-order or dynamically complex systems. |
Coordination Control Combination Type | Reasons and Benefits |
---|---|
Anode and Cathode Coordination Control, [176] | The primary goal is to balance the pressure difference between the two poles of the cell. Simultaneously, it optimizes gas utilization, reduces reaction losses, ensures stable battery output, and extends cell life. |
Oxygen and Temperature Coordination Control, [177] | Temperature affects the diffusion speed of oxygen within the fuel cell and the kinetics of reactions. Proper temperature management can optimize oxygen utilization and reaction rates. |
Hydrogen and Temperature Coordination Control, [54] | Temperature affects hydrogen’s flow and reactivity. Maintaining an optimal temperature ensures efficient hydrogen utilization at the cathode, preventing accumulation or rapid consumption. |
Hydrogen and Power Coordination Control, [178] | Power demand directly influences hydrogen consumption rates. Significant variations in battery load require adjustments in hydrogen supply to prevent shortages or excess. |
Anode, Cathode, Temperature, and Water Coordination Control, [179] | Effective water production and removal are essential for maintaining ionic conductivity and temperature balance. Coordinated control prevents issues like cathode channel clogging and rapid water evaporation, ensuring optimal performance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Feng, J.; Fan, X.; Chen, D.; Tan, C. PEMFC Gas-Feeding Control: Critical Insights and Review. Actuators 2024, 13, 455. https://doi.org/10.3390/act13110455
Fang S, Feng J, Fan X, Chen D, Tan C. PEMFC Gas-Feeding Control: Critical Insights and Review. Actuators. 2024; 13(11):455. https://doi.org/10.3390/act13110455
Chicago/Turabian StyleFang, Shiyi, Jianan Feng, Xinyu Fan, Daifen Chen, and Cao Tan. 2024. "PEMFC Gas-Feeding Control: Critical Insights and Review" Actuators 13, no. 11: 455. https://doi.org/10.3390/act13110455
APA StyleFang, S., Feng, J., Fan, X., Chen, D., & Tan, C. (2024). PEMFC Gas-Feeding Control: Critical Insights and Review. Actuators, 13(11), 455. https://doi.org/10.3390/act13110455