Hysteresis Compensation and Butterworth Pattern-Based Positive Acceleration Velocity Position Feedback Damping Control of a Tip-Tilt-Piston Piezoelectric Stage
Abstract
:1. Introduction
2. Experimental Environment
2.1. Experimental System
2.2. Hysteresis and Resonance Characteristics of Stage
3. Hysteresis Modeling and Compensation
3.1. Rate-Dependent PI Hysteresis Model
3.2. Hysteresis Model Identification
3.3. Inverse Hysteresis Model Feedforward Compensation
4. PAVPF Damping Control
4.1. System Dynamics Model Identification
4.2. PAVPF Parameter Design
4.3. Step Signal Tracking Experiment
5. Experiment
5.1. Composite Control Method
5.2. Triangle Wave Signal Trajectory Tracking Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohith, S.; Upadhya, A.R.; Navin, K.P.; Kulkarni, S.; Rao, M. Recent trends in piezoelectric actuators for precision motion and their applications: A review. Smart Mater. Struct. 2020, 30, 013002. [Google Scholar] [CrossRef]
- Sabarianand, D.; Karthikeyan, P.; Muthuramalingam, T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mech. Syst. Signal Process. 2020, 140, 106634. [Google Scholar] [CrossRef]
- Habibullah, H. 30 years of atomic force microscopy: Creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners. Measurement 2020, 159, 107776. [Google Scholar] [CrossRef]
- Li, L.; Li, C.X.; Gu, G.; Zhu, L.M. Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages. Mechatronics 2017, 47, 97–104. [Google Scholar] [CrossRef]
- Ling, J.; Feng, Z.; Ming, M.; Xiao, X. Damping controller design for nanopositioners: A hybrid reference model matching and virtual reference feedback tuning approach. Int. J. Precis. Eng. Manuf. 2018, 19, 13–22. [Google Scholar] [CrossRef]
- Dai, Y.; Li, D.; Wang, D. Review on the nonlinear modeling of hysteresis in piezoelectric ceramic actuators. Actuators 2023, 12, 442. [Google Scholar] [CrossRef]
- Gan, J.; Mei, Z.; Chen, X.; Zhou, Y.; Ge, M.F. A modified Duhem model for rate-dependent hysteresis behaviors. Micromachines 2019, 10, 680. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yi, Q.; Ben, T.; Zhang, Z.; Wang, Y. Parameter identification of Preisach model based on velocity-controlled particle swarm optimization method. AIP Adv. 2021, 11, 015022. [Google Scholar] [CrossRef]
- Su, X.; Liu, Z.; Zhang, Y.; Chen, C.P. Event-triggered adaptive fuzzy tracking control for uncertain nonlinear systems preceded by unknown Prandtl–Ishlinskii hysteresis. IEEE Trans. Cybern. 2019, 51, 2979–2992. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Dong, W.; Nagamune, R. A survey of Bouc-Wen hysteretic models applied to piezo-actuated mechanical systems: Modeling, identification, and control. J. Intell. Mater. Syst. Struct. 2023, 34, 1843–1863. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, X.; Xiu, Q.; Zhuang, J.; Yang, X. Dynamic modeling and controlling of piezoelectric actuator using a modified Preisach operator based Hammerstein model. Int. J. Precis. Eng. Manuf. 2023, 24, 537–546. [Google Scholar] [CrossRef]
- Yang, L.; Zhong, R.; Li, D.; Li, Z. A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators. Meas. Control 2022, 55, 974–982. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y. System identification of micro piezoelectric actuators via rate-dependent Prandtl-Ishlinskii hysteresis model based on a modified PSO algorithm. IEEE Trans. Nanotechnol. 2020, 20, 205–214. [Google Scholar] [CrossRef]
- Aphale, S.S.; Fleming, A.J.; Moheimani, S.R. Integral resonant control of collocated smart structures. Smart Mater. Struct. 2007, 16, 439. [Google Scholar] [CrossRef]
- Ling, J.; Feng, Z.; Kang, X.; Xiao, X. Bandwidth enhancement in damping control for piezoelectric nanopositioning stages with load uncertainty: Design and implementation. J. Vib. Control 2021, 27, 1382–1394. [Google Scholar] [CrossRef]
- San-Millan, A.; Russell, D.; Feliu, V.; Aphale, S.S. A modified positive velocity and position feedback scheme with delay compensation for improved nanopositioning performance. Smart Mater. Struct. 2015, 24, 075021. [Google Scholar] [CrossRef]
- Babarinde, A.K.; Zhu, L.M.; Aphale, S.S. Simultaneous design of positive acceleration velocity and position feedback based combined damping and tracking control scheme for nanopositioners. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 608–613. [Google Scholar]
- Eielsen, A.A.; Vagia, M.; Gravdahl, J.T.; Pettersen, K.Y. Damping and tracking control schemes for nanopositioning. IEEE/ASME Trans. Mechatron. 2013, 19, 432–444. [Google Scholar] [CrossRef]
- Russell, D.; San-Millan, A.; Feliu, V.; Aphale, S.S. Butterworth pattern-based simultaneous damping and tracking controller designs for nanopositioning systems. Front. Mech. Eng. 2016, 2, 2. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Gu, G.; Zhu, L. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator. Front. Mech. Eng. 2015, 10, 37–42. [Google Scholar] [CrossRef]
0.0020 | 0.0021 | 0.0018 | |
1.2910 | 1.2162 | 1.2381 | |
−0.1365 | 0 | 0 | |
−0.1501 | −0.2819 | −0.2889 | |
−0.1298 | −0.0447 | −0.0359 | |
−0.0586 | −0.0847 | −0.1055 | |
−0.0097 | −0.0283 | −0.0234 | |
−0.0239 | 0 | 0 | |
−0.0209 | −0.0002 | 0 | |
0 | −0.0001 | 0 | |
−0.0053 | −0.0001 | 0 | |
−0.2098 | −0.3307 | −0.3814 | |
0.0068 | 0.0042 | 0.0019 | |
0.0073 | 0.0109 | 0.0091 |
1.785 × 109 | 1.495 × 109 | 1.622 × 109 | |
1371 | 1398 | 1364 | |
1.722 × 106 | 1.581 × 106 | 1.537 × 106 | |
2.225 × 109 | 1.953 × 109 | 1.988 × 109 |
PEA1 | PEA2 | PEA3 | |
---|---|---|---|
−0.3407 | −0.4274 | −0.4758 | |
874.5 | 590.8 | 560.8 | |
1.569 × 106 | 1.35 × 106 | 1.414 × 106 | |
2956 | 2775 | 2847 | |
3.587 × 106 | 3.246 × 106 | 3.447 × 106 | |
308 | 327 | 300 |
1.34 × 106 | 1.13 × 106 | 1.219 × 106 | |
39.01 | 77.35 | 32.73 | |
1.67 × 106 | 1.478 × 106 | 1.493 × 106 |
PEA1 | PEA2 | PEA3 | |
---|---|---|---|
−2528 | −2169 | −2381 | |
3.48 × 106 | 3.036 × 106 | 3.077 × 106 | |
4104 | 3780 | 3889 | |
6.915 × 106 | 5.97 × 106 | 6.199 × 106 | |
389 | 393 | 361 |
RMSE | PEA1 | PEA2 | PEA3 |
---|---|---|---|
IMFC | 0.8815 | 0.7493 | 0.7813 |
PAVPF | 0.5711 | 0.5447 | 0.5872 |
IMFC + PAVPF | 0.1620 | 0.1669 | 0.1798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Sima, J.; Li, P.; Lai, L.; Zhou, Z. Hysteresis Compensation and Butterworth Pattern-Based Positive Acceleration Velocity Position Feedback Damping Control of a Tip-Tilt-Piston Piezoelectric Stage. Actuators 2024, 13, 468. https://doi.org/10.3390/act13120468
Zhu H, Sima J, Li P, Lai L, Zhou Z. Hysteresis Compensation and Butterworth Pattern-Based Positive Acceleration Velocity Position Feedback Damping Control of a Tip-Tilt-Piston Piezoelectric Stage. Actuators. 2024; 13(12):468. https://doi.org/10.3390/act13120468
Chicago/Turabian StyleZhu, Helei, Jinfu Sima, Peixing Li, Leijie Lai, and Zhenfeng Zhou. 2024. "Hysteresis Compensation and Butterworth Pattern-Based Positive Acceleration Velocity Position Feedback Damping Control of a Tip-Tilt-Piston Piezoelectric Stage" Actuators 13, no. 12: 468. https://doi.org/10.3390/act13120468
APA StyleZhu, H., Sima, J., Li, P., Lai, L., & Zhou, Z. (2024). Hysteresis Compensation and Butterworth Pattern-Based Positive Acceleration Velocity Position Feedback Damping Control of a Tip-Tilt-Piston Piezoelectric Stage. Actuators, 13(12), 468. https://doi.org/10.3390/act13120468