Multi-Objective Parameter Optimization of Rotary Screen Coating Process for Structural Plates in Spacecraft
Abstract
:1. Introduction
2. Design and Evaluation of Experiments
2.1. Experimental Design
2.2. Experimental Evaluation
3. Forecasting Models
3.1. The BPNN Forecasting Model
3.2. The LS-SVM Forecasting Model
3.3. The RF Forecasting Model
3.4. Comparison of the Different Models
4. Multi-Objective Optimization Algorithm
4.1. Multi-Objective Optimization
4.2. The GOA
4.3. The CLMOGOA
4.4. Analysis of the MOGOA and the CLMOGOA on Test Functions
4.5. The Result of Process Parameter Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Curtis, S.A.; Rilee, M.L.; Clark, P.E.; Marr, G.C. Use of swarm intelligence in spacecraft constellations for the resource exploration of the asteroid belt. In Proceedings of the Third International Workshop on Satellite Constellations and Formation Flying, Pisa, Italy, 24–26 February 2003. [Google Scholar]
- Galbraith, J. United States creates the US space command and the US space force to strengthen military capabilities in space. Am. J. Int. Law 2020, 114, 323–326. [Google Scholar]
- Jianfa, H.U.; Chunli, X. Comment on the building blocks for the development of international framework on space resource activities (draft). J. Beijing Univ. Aeronaut. Astronaut. Soc. Sci. Ed. 2019, 32, 136–141. [Google Scholar]
- Hoces, I.; Azkona, N.; Freire, I.; Pérez, L.; Lago, R.; Recart, F.; Jimeno, J.C.; Kerp, H.; Albertsen, K.; Shaikh, A. An Industrial Process for Bifacial Solar Cells Based on Screen-Printing Techniques, Contract No. TREN/04/FP6EN/S07.34325/503105; ResearchGate: 2022.
- Pavlović, R.; Dastgheib-Shirazi, A.; Book, F.; Raabe, B.; Hahn, G. Large area solar cells with screen printed front side metallization and dielectric rear side passivation. In Proceedings of the 4th European Photovoltaic Solar Energy Conference, Munich, Germany, 21–25 September 2009. [Google Scholar]
- Drabczyk, K.; Panek, P. Influence of screen printing parameters on the front metallic electrodes geometry of solar cells. Circuit World 2014, 40, 23–26. [Google Scholar] [CrossRef]
- Kuo, H.-P.; Yang, C.-F.; Huang, A.-N.; Wu, C.-T.; Pan, W.-C. Preparation of the working electrode of dye-sensitized solar cells: Effects of screen printing parameters. J. Taiwan Inst. Chem. Eng. 2014, 45, 2340–2345. [Google Scholar] [CrossRef]
- Ichinose, K. Rotary Screen Textile Printing Machine. EP0863000A1, 9 September 1998. [Google Scholar]
- Hawkyard, C.J.; Miah, A.S. The parameters of rotary screen printing. J. Soc. Dye. Colour 1987, 103, 27–31. [Google Scholar] [CrossRef]
- Rodriguez, G.; Baldwin, D.F. Analysis of solder paste release in fine pitch stencil printing processes. J. Electron. Packag. 1999, 121, 169–178. [Google Scholar] [CrossRef]
- Dowds, B.F. Variables in Textile Screen Printing. J. Soc. Dye. Colour 1970, 86, 512–519. [Google Scholar] [CrossRef]
- Piao, J.; Sun, K.; Zhang, N.; Xu, S. A study of process parameters of LSM and LSM–YSZ composite cathode films prepared by screen-printing. J. Power Sources 2008, 175, 288–295. [Google Scholar] [CrossRef]
- Haslehurst, L.; Ekere, N.N. Parameter Interactions in Stencil Printing of Solder Paste. J. Electron Manuf. 2012, 6, 307–316. [Google Scholar] [CrossRef]
- Scanzio, S.; Wisniewski, L.; Gaj, P. Heterogeneous and dependable network in industry—A survey. Comput. Ind. 2021, 125, 103388. [Google Scholar] [CrossRef]
- Ponalagusamy, R.; Kannan, E.; Michael, A. A Huffman Decoding Algorithm in Mobile Robot Platform. Inf. Technol. J. 2007, 6, 310–316. [Google Scholar]
- Tian, H.; Tian, C.; Yuan, C.; Li, K. Dynamic operation optimization based on improved dynamic multi-objective dragonfly algorithm in continuous annealing process. J. Ind. Manag. Optim. 2023, 19, 6159–6181. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Sun, Y. A hybrid intelligence technique based on the Taguchi method for multi-objective process parameter optimization of the 3D additive screen printing of athletic shoes. Sage J. 2019, 90, 1067–1083. [Google Scholar] [CrossRef]
- Omprakasam, S.; Marimuthu, K.; Raghu, R.; Velmurugan, T. Statistical Modelling and Optimization of TIG Welding Process Parameters Using Taguchi’s Method. J. Mech. Eng. 2022, 68, 200–209. [Google Scholar]
- Uray, E.; Carbas, S.; Geem, Z.W.; Kim, S. Parameters Optimization of Taguchi Method Integrated Hybrid Harmony Search Algorithm for Engineering Design Problems. Mathematics 2022, 10, 327. [Google Scholar] [CrossRef]
- Raveendran, P.; Alagarsamy, S.V.; Ravichandran, M.; Meignanamoorthy, M. Effect of machining parameters on surface roughness for aluminium matrix composite by using Taguchi method with decision tree algorithm. Surf. Rev. Lett. 2021, 28, 2150021. [Google Scholar] [CrossRef]
- He, S.; Xie, M.; Tontiwachwuthikul, P.; Chan, C.; Li, J. Self-adapting anti-surge intelligence control and numerical simulation of centrifugal compressors based on RBF neural network. Energy Rep. 2022, 8, 2434–2447. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Tze Ann, F.; Ma, G. Intelligent mixture design of steel fibre reinforced concrete using a support vector regression and firefly algorithm based multi-objective optimization model. Constr. Build. Mater. 2020, 260, 120457. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, D.; Wu, J.; Meng, X.; Li, X.; Wu, G.; Miao, Z.; Chu, R.; Yu, S. Prediction of temperature and CO concentration fields based on BPNN in low-temperature coal oxidation. Thermochim. Acta 2021, 695, 178820. [Google Scholar] [CrossRef]
- Liang, J.-X.; Zhao, J.-F.; Sun, N.; Shi, B.-J. Random Forest Feature Selection and Back Propagation Neural Network to Detect Fire Using Video. J. Sens. 2022, 2022, 5160050. [Google Scholar] [CrossRef]
- Gong, M.; Cai, Q.; Chen, X.; Ma, L. Complex Network Clustering by Multi-objective Discrete Particle Swarm Optimization Based on Decomposition. IEEE Trans. Evol. Comput. 2014, 18, 82–97. [Google Scholar] [CrossRef]
- Marjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Soft. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Josef, T. Differential Evolution: Competitive Setting of Control Parameters. In Proceedings of the International Multiconference on Computer Science and Information Technology, Washington, DC, USA, 1–3 August 2006; pp. 207–213. [Google Scholar]
- Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2017, 46, 79–95. [Google Scholar] [CrossRef]
- Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 2018, 48, 805–820. [Google Scholar] [CrossRef]
- Ngatchou, P.; Zarei, A.; Elsharkawi, M.A. Pareto Multi Objective Optimization. In Proceedings of the International Conference on Intelligent Systems Application to Power Systems, Arlington, VA, USA, 6–10 November 2005; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Ghahraloud, H.; Farsi, M. Modeling, operability analysis and optimization of isooctane production over solid catalyst. Pet. Sci. Technol. 2019, 37, 997–1007. [Google Scholar] [CrossRef]
- Pan, J.; Tonkay, G.L.; Quintero, A. Screen printing process design of experiments for fine line printing of thick film ceramic substrates. In Proceedings of the International Symposium on Microelectronics, San Diego, CA, USA, 1 November 1998; Volume 9, pp. 203–213. [Google Scholar]
- Bintara, R.D.; Pradana, Y.R.A.; Aminnudin, A.; Suryanto, H. The orientation and high-quality effect of deposit layer to surface roughness on fdm 3d printed part. Key Eng. Mater. 2023, 940, 95–99. [Google Scholar] [CrossRef]
- Abd Alsamieh, M. Ultrathin film formation under combined effect of surface roughness and surface force for elastohydrodynamic lubrication of point contact problems. Ind. Lubr. Tribol. 2022, 74, 597–608. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef]
Printing Factors | Descriptions | Ranges |
---|---|---|
Screen thickness (μm) | The thickness of the rotary screen | 60–120 |
Squeegee hardness (A) | The hardness of the squeegee | 65–85 |
Squeegee pressure (N) | The pressure on the adhesive by the squeegee | 10–50 |
Space (mm) | The distance between the rotary screen and substrate | 0.3–1.6 |
Coating speed (mm/s) | The moving speed of the rotary screen | 10–30 |
Forecasting Model | BPN | LSSVM | RF | |||
---|---|---|---|---|---|---|
Thickness | Roughness | Thickness | Roughness | Thickness | Roughness | |
RMSE | 1.28 | 0.2217 | 1.7851 | 0.312 | 0.9151 | 0.1865 |
0.8878 | 0.8585 | 0.8543 | 0.8295 | 0.9043 | 0.8878 |
Algorithm | MOGOA | CLMOGOA | |
---|---|---|---|
ZDT1 | Average | 0.2030 | 0.0288 |
Median | 0.0408 | 0.0254 | |
Standard deviation | 0.2392 | 0.0199 | |
ZDT2 | Average | 0.1718 | 0.0233 |
Median | 0.0334 | 0.0186 | |
Standard deviation | 0.2510 | 0.0176 | |
ZDT3 | Average | 0.2687 | 0.1810 |
Median | 0.1810 | 0.0894 | |
Standard deviation | 0.2462 | 0.2257 |
Control Factors | Forecasting Values | ||||||
---|---|---|---|---|---|---|---|
Screen Thickness (µm) | Squeegee Hardness (A) | Squeegee Pressure (N) | Space (mm) | Coating Speed (mm/s) | Thickness (µm) | Roughness (µm) | |
Solution of the archive | 118.82 | 76.61 | 22.64 | 0.97 | 23.95 | 116.86 | 6.45 |
101.76 | 74.23 | 39.45 | 1.26 | 16.15 | 109.99 | 5.5 | |
120 | 75.94 | 24.05 | 0.98 | 25.66 | 116.6 | 6.87 | |
104 | 74.57 | 39.89 | 1.25 | 15.98 | 109.76 | 8.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Chen, Y.; Li, P.; Chi, X.; Sun, Y. Multi-Objective Parameter Optimization of Rotary Screen Coating Process for Structural Plates in Spacecraft. Actuators 2024, 13, 469. https://doi.org/10.3390/act13120469
Guo Y, Chen Y, Li P, Chi X, Sun Y. Multi-Objective Parameter Optimization of Rotary Screen Coating Process for Structural Plates in Spacecraft. Actuators. 2024; 13(12):469. https://doi.org/10.3390/act13120469
Chicago/Turabian StyleGuo, Yanhui, Yanpeng Chen, Peibo Li, Xinfu Chi, and Yize Sun. 2024. "Multi-Objective Parameter Optimization of Rotary Screen Coating Process for Structural Plates in Spacecraft" Actuators 13, no. 12: 469. https://doi.org/10.3390/act13120469
APA StyleGuo, Y., Chen, Y., Li, P., Chi, X., & Sun, Y. (2024). Multi-Objective Parameter Optimization of Rotary Screen Coating Process for Structural Plates in Spacecraft. Actuators, 13(12), 469. https://doi.org/10.3390/act13120469