Microbial Biofilms: Structural Plasticity and Emerging Properties
Abstract
:1. A Three-Dimensional Lifestyle
2. Advances in Biofilm 3D Characterization
Author Contributions
Funding
Conflicts of Interest
References
- Flemming, H.-C.; Baveye, P.; Neu, T.R.; Stoodley, P.; Szewzyk, U.; Wingender, J.; Wuertz, S. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. NPJ Biofilms Microbiomes 2021, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Guillonneau, R.; Baraquet, C.; Bazire, A.; Molmeret, M. Multispecies Biofilm Development of Marine Bacteria Implies Complex Relationships through Competition and Synergy and Modification of Matrix Components. Front. Microbiol. 2018, 9, 1960. [Google Scholar] [CrossRef] [Green Version]
- Wickramasinghe, N.N.; Hlaing, M.M.; Ravensdale, J.T.; Coorey, R.; Chandry, P.S.; Dykes, G.A. Characterization of the biofilm matrix composition of psychrotrophic, meat spoilage pseudomonads. Sci. Rep. 2020, 10, 16457. [Google Scholar] [CrossRef]
- Bridier, A.; Dubois-Brissonnet, F.; Boubetra, A.; Thomas, V.; Briandet, R. The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J. Microbiol. Methods 2010, 82, 64–70. [Google Scholar] [CrossRef]
- Kowalski, C.H.; Morelli, K.A.; Schultz, D.; Nadell, C.D.; Cramer, R.A. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc. Natl. Acad. Sci. USA 2020, 117, 22473–22483. [Google Scholar] [CrossRef]
- Beloin, C.; McDougald, D. Speciality Grand Challenge for “Biofilms”. Front. Cell. Infect. Microbiol. 2021, 11, 632429. [Google Scholar] [CrossRef]
- Røder, H.L.; Olsen, N.M.C.; Whiteley, M.; Burmølle, M. Unravelling interspecies interactions across heterogeneities in complex biofilm communities. Environ. Microbiol. 2020, 22, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Bridier, A.; Briandet, R.; Bouchez, T.; Jabot, F. A model-based approach to detect interspecific interactions during biofilm development. Biofouling 2014, 30, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Booth, S.C.; Rice, S.A. Influence of interspecies interactions on the spatial organization of dual species bacterial communities. Biofilm 2020, 2, 100035. [Google Scholar] [CrossRef]
- France, M.T.; Cornea, A.; Kehlet-Delgado, H.; Forney, L.J. Spatial structure facilitates the accumulation and persistence of antibiotic-resistant mutants in biofilms. Evol. Appl. 2020, 12, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Bridier, A.; Piard, J.C.; Briandet, R.; Bouchez, T. Emergence of a Synergistic Diversity as a Response to Competition in Pseudomonas putida Biofilms. Microb. Ecol. 2019, 80, 47–59. [Google Scholar] [CrossRef]
- Arjes, H.A.; Willis, L.; Gui, H.; Xiao, Y.; Peters, J.; Gross, C.; Huang, K.C. Three-dimensional biofilm colony growth supports a mutualism involving matrix and nutrient sharing. eLife 2021, 10, 64145. [Google Scholar] [CrossRef]
- Bridier, A.; Piard, J.-C.; Pandin, C.; Labarthe, S.; Dubois-Brissonnet, F.; Briandet, R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front. Microbiol. 2017, 8, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridier, A.; Briandet, R. Contribution of Confocal Laser Scanning Microscopy in Deciphering Biofilm Tridimensional Structure and Reactivity. Methods Mol. Biol. Clifton NJ 2014, 1147, 255–266. [Google Scholar] [CrossRef]
- Reichhardt, C.; Parsek, M.R. Confocal Laser Scanning Microscopy for Analysis of Pseudomonas aeruginosa Biofilm Architecture and Matrix Localization. Front. Microbiol. 2019, 10, 677. [Google Scholar] [CrossRef] [PubMed]
- Canette, A.; Deschamps, J.; Briandet, R. High Content Screening Confocal Laser Microscopy (HCS-CLM) to Characterize Biofilm 4D Structural Dynamic of Foodborne Pathogens. Methods Mol. Biol. Clifton NJ 2019, 1918, 171–182. [Google Scholar] [CrossRef]
- Parthasarathy, R. Monitoring microbial communities using light sheet fluorescence microscopy. Curr. Opin. Microbiol. 2018, 43, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Letham, S.C.; Bharat, T.A.M. Illuminating the dynamics of biofilms. Nat. Rev. Microbiol. 2020, 18, 544. [Google Scholar] [CrossRef]
- Qin, B.; Fei, C.; Bridges, A.A.; Mashruwala, A.A.; Stone, H.A.; Wingreen, N.S.; Bassler, B.L. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 2020, 369, 71–77. [Google Scholar] [CrossRef]
- Bridier, A.; Meylheuc, T.; Briandet, R. Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM). Micron 2013, 48, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Relucenti, M.; Familiari, G.; Donfrancesco, O.; Taurino, M.; Li, X.; Chen, R.; Artini, M.; Papa, R.; Selan, L. Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons. Biology 2021, 10, 51. [Google Scholar] [CrossRef]
- Jeckel, H.; Drescher, K. Advances and opportunities in image analysis of bacterial cells and communities. FEMS Microbiol. Rev. 2021, 45, fuaa062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, J.; Wang, Y.; Wang, J.; Achimovich, A.M.; Acton, S.T.; Gahlmann, A. Non-invasive single-cell morphometry in living bacterial biofilms. Nat. Commun. 2020, 11, 6151. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, R.; Jeckel, H.; Jelli, E.; Singh, P.K.; Vaidya, S.; Bayer, M.; Rode, D.K.H.; Vidakovic, L.; Díaz-Pascual, F.; Fong, J.C.N.; et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat. Microbiol. 2021, 6, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Coenye, T.; Kjellerup, B.; Stoodley, P.; Bjarnsholt, T. The future of biofilm research—Report on the ‘2019 Biofilm Bash’. Biofilm 2020, 2, 100012. [Google Scholar] [CrossRef]
- An, A.Y.; Choi, K.-Y.G.; Baghela, A.S.; Hancock, R.E.W. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Front. Microbiol. 2021, 12, 640787. [Google Scholar] [CrossRef]
- Shi, H.; Shi, Q.; Grodner, B.; Lenz, J.S.; Zipfel, W.; Brito, I.L.; De Vlaminck, I. Highly multiplexed spatial mapping of microbial communities. Nature 2020, 588, 676–681. [Google Scholar] [CrossRef]
- Dar, D.; Dar, N.; Cai, L.; Newman, D.K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 2021, 373, eabi4882. [Google Scholar] [CrossRef]
- Sanchez-Vizuete, P.; Dergham, Y.; Bridier, A.; Deschamps, J.; Dervyn, E.; Hamze, K.; Aymerich, S.; Le Coq, D.; Briandet, R. The coordinated population redistribution between Bacillus subtilis submerged biofilm and liquid-air pellicle. Biofilm 2022, 4, 100065. [Google Scholar] [CrossRef]
- Hollmann, B.; Perkins, M.; Chauhan, V.M.; Aylott, J.W.; Hardie, K.R. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation. NPJ Biofilms Microbiomes 2021, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, R.; Singh, P.K.; Pearce, P.; Mok, R.; Song, B.; Díaz-Pascual, F.; Dunkel, J.; Drescher, K. Emergence of three-dimensional order and structure in growing biofilms. Nat. Phys. 2019, 15, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Li, J.; Nijjer, J.; Lu, H.; Kothari, M.; Alert, R.; Cohen, T.; Yan, J. Morphogenesis and cell ordering in confined bacterial biofilms. Proc. Natl. Acad. Sci. USA 2021, 118, e2107107118. [Google Scholar] [CrossRef] [PubMed]
- Jeckel, H.; Jelli, E.; Hartmann, R.; Singh, P.K.; Mok, R.; Totz, J.F.; Vidakovic, L.; Eckhardt, B.; Dunkel, J.; Drescher, K. Learning the space-time phase diagram of bacterial swarm expansion. Proc. Natl. Acad. Sci. USA 2019, 116, 1489–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bridier, A.; Briandet, R. Microbial Biofilms: Structural Plasticity and Emerging Properties. Microorganisms 2022, 10, 138. https://doi.org/10.3390/microorganisms10010138
Bridier A, Briandet R. Microbial Biofilms: Structural Plasticity and Emerging Properties. Microorganisms. 2022; 10(1):138. https://doi.org/10.3390/microorganisms10010138
Chicago/Turabian StyleBridier, Arnaud, and Romain Briandet. 2022. "Microbial Biofilms: Structural Plasticity and Emerging Properties" Microorganisms 10, no. 1: 138. https://doi.org/10.3390/microorganisms10010138
APA StyleBridier, A., & Briandet, R. (2022). Microbial Biofilms: Structural Plasticity and Emerging Properties. Microorganisms, 10(1), 138. https://doi.org/10.3390/microorganisms10010138