Impact of Fe2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms—A Bacillus subtilis Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofilm Cultivation
2.2. Chemical Characterization of Biofilm by Means of ATR-IR and ICP-OES
2.3. Optical Coherence Tomography and Image Processing
2.4. Analysis of Variance (ANOVA) and Scheirer–Ray–Hare
- H1: No differences in structure due to usage of different flow velocities
- H2: No differences in structure due to usage of different iron concentrations
- H3: No correlation between both parametersand
3. Results and Discussion
3.1. Structural Differences in OCT-Imaged Biofilms
3.2. ANOVA-Confirmed Effects of Iron(II) on Biofilm Structure
3.3. Influence of Fe2+ Inflow Concentration and Precipitated Fe Compounds on Biofilm Development
4. Conclusions
- Iron is—independently of its inflow concentration—incorporated and accumulated within the biofilm matrix as modifications of FeO(OH). In more detail, Bacillus subtilis biofilms cultivated in this study showed the accumulation of α- and β-FeO(OH). Where and how Fe2+ added to the cultivation medium was oxidized to Fe3+ in FeO(OH) accumulated within the biofilm matrix and was not identified;
- Results hinting at the following features: FeO(OH) provides (i) cross-linking abilities and (ii) promotes EPS production, which subsequently may enhance the adhesive as well as cohesive strength of investigated Bacillus subtilis model biofilms;
- A positive correlation between the Fe2+ inflow concentration and biofilm development/accumulation (acceptance of H2) partially compensates for the increased detachment of biofilm at elevated wall shear stress levels. This result has implications on the treatment of biofilms in settings with elevated iron availability;
- Within the range of tested experimental conditions, no effect of the wall shear stress (calculated for the empty channel) on the biofilm structure was statistically approved (rejection of H1 and H3).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
significance level | |
AFM | Atomic Force Microscopy |
ANOVA | ANalysis Of VAriance |
ATR-IR | Attenuated Total Reflectance Infrared Spectroscopy |
mass concentration (mg/L) | |
CLSM | Confocal Laser Scanning Microscopy |
E1–E4 | Experiments E1 to E4 |
EDX | Energy-Dispersive X-ray microanalysis |
EPS | Extracellular Polymeric Substances |
FC | Flow Cell |
Fe2+ | Iron(II) |
H1–H3 | Hypotheses 1 to 3 for the ANOVA |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectroscopy |
LB | Lysogeny Broth (LB-Miller, 10 g/L NaCl) |
MIP | Maximum Intensity Projection (height map) |
OCT | Optical Coherence Tomography |
exceedance probability (significance value) | |
PVC | Poly-Vinyl-Chloride |
ROS | Reactive Oxygen Species |
volumetric flow rate (mL/min) | |
SEM | Scanning Electron Microscopy |
wall shear stress in flow cells (Pa) | |
flow velocity (cm/s) | |
x-FeO(OH) | iron oxide-hydroxide polymorph |
References
- Flemming, H.C.; Wingender, J.; Szewzyk, U. Biofilm Highlights—Springer Series on Biofilms Series; Springer: Berlin/Heidelberg, Germany, 2007; p. 5. [Google Scholar] [CrossRef]
- Edel, M.; Horn, H.; Gescher, J. Biofilm systems as tools in biotechnological production. Appl. Microbiol. Biotechnol. 2019, 103, 5095–5103. [Google Scholar] [CrossRef] [PubMed]
- Rosche, B.; Li, X.Z.; Hauer, B.; Schmid, A.; Buehler, K. Microbial biofilms: A concept for industrial catalysis? Trends Biotechnol. 2009, 27, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Van Loosdrecht, M.C.M.; Heijnen, S.J. Biofilm bioreactors for waste-water treatment. Trends Biotechnol. 1993, 11, 117–121. [Google Scholar] [CrossRef]
- Cuny, L.; Pfaff, D.; Luther, J.; Ranzinger, F.; Ödman, P.; Gescher, J.; Guthausen, G.; Horn, H.; Hille-Reichel, A. Evaluation of productive biofilms for continuous lactic acid production. Biotechnol. Bioeng. 2019, 116, 2687–2697. [Google Scholar] [CrossRef] [PubMed]
- Yeung, T.; Kwan, M.; Adler, L.; Mills, T.J.; Neilan, B.A.; Conibeer, G.; Patterson, R. Increased methane production in cyanobacteria and methanogenic microbe co-cultures. Bioresour. Technol. 2017, 243, 686–692. [Google Scholar] [CrossRef]
- Hackbarth, M.; Jung, T.; Reiner, J.E.; Gescher, J.; Horn, H.; Hille-Reichel, A.; Wagner, M. Monitoring and quantification of bioelectrochemical Kyrpidia spormannii biofilm development in a novel flow cell setup. Chem. Eng. J. 2020, 390, 124604. [Google Scholar] [CrossRef]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2016, 5, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.; Bolster, D.; Derlon, N.; Morgenroth, E.; Nerenberg, R. Effect of fouling layer spatial distribution on permeate flux: A theoretical and experimental study. J. Membr. Sci. 2014, 471, 130–137. [Google Scholar] [CrossRef]
- Klahre, J.; Flemming, H.C. Monitoring of biofouling in papermill process waters. Water Res. 2000, 34, 3657–3665. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [Green Version]
- Maquelin, K.; Kirschner, C.; Choo-Smith, L.P.; van den Braak, N.; Endtz, H.P.; Naumann, D.; Puppels, G.J. Identification of Medically Relevant Microorganisms by Vibrational Spectroscopy. J. Microbiol. Methods 2002, 51, 255–271. [Google Scholar] [CrossRef]
- Allen, A.; Habimana, O.; Casey, E. The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: A combined study of nutrient concentrations and shear conditions. Colloids Surf. B Biointerfaces 2018, 165, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Bridier, A.; Meylheuc, T.; Briandet, R. Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM). Micron 2013, 48, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Dutta Sinha, S.; Das, S.; Tarafdar, S.; Dutta, T. Monitoring of Wild Pseudomonas Biofilm Strain Conditions Using Statistical Characterization of Scanning Electron Microscopy Images. Ind. Eng. Chem. Res. 2017, 56, 9496–9512. [Google Scholar] [CrossRef] [Green Version]
- Blauert, F.; Horn, H.; Wagner, M. Time-resolved biofilm deformation measurements using optical coherence tomography. Biotechnol. Bioeng. 2015, 112, 1893–1905. [Google Scholar] [CrossRef]
- Dreszer, C.; Wexler, A.D.; Drusová, S.; Overdijk, T.; Zwijnenburg, A.; Flemming, H.C.; Kruithof, J.C.; Vrouwenvelder, J.S. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: Formation, structure, detachment and impact of flux change. Water Res. 2015, 67, 243–254. [Google Scholar] [CrossRef]
- Haisch, C.; Niessner, R. Visualisation of transient processes in biofilms by optical coherence tomography. Water Res. 2007, 41, 2467–2472. [Google Scholar] [CrossRef]
- Schaefer, S.; Walther, J.; Strieth, D.; Ulber, R.; Bröckel, U. Insights into the Development of Phototrophic Biofilms in a Bioreactor by a Combination of X-ray Microtomography and Optical Coherence Tomography. Microorganisms 2021, 9, 1743. [Google Scholar] [CrossRef]
- Wagner, M.; Horn, H. Optical coherence tomography in biofilm research: A comprehensive review. Biotechnol. Bioeng. 2017, 114, 1386–1402. [Google Scholar] [CrossRef]
- Weiss, N.; El Obied, K.E.T.; Kalkman, J.; Lammertink, R.G.; van Leeuwen, T.G. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography. Biomed. Opt. Express 2016, 7, 3508–3518. [Google Scholar] [CrossRef] [Green Version]
- Drexler, W.; Fujimoto, J.G. Optical Coherence Tomography: Technology and Applications, 1st ed.; Drexler, W., Fujimoto, J.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Derlon, N.; Peter-Varbanets, M.; Scheidegger, A.; Pronk, W.; Morgenroth, E. Predation influences the structure of biofilm developed on ultrafiltration membranes. Water Res. 2012, 46, 3323–3333. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wagner, M.; Lackner, S.; Horn, H. Assessing the Influence of Biofilm Surface Roughness on Mass Transfer by Combining Optical Coherence Tomography and Two-Dimensional Modeling. Biotechnol. Bioeng. 2016, 113, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Gierl, L.; Stoy, K.; Faína, A.; Horn, H.; Wagner, M. An open-source robotic platform that enables automated monitoring of replicate biofilm cultivations using optical coherence tomography. npj Biofilms Microbiomes 2020, 18, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guvensen, N.C.; Demir, S.; Ozdemir, G. Effects of Magnesium and Calcium Cations on Biofilm Formation by Sphingomonas paucimobilis from an Industrial Environment. Fresenius Environ. Bull. 2013, 21, 3685–3692. [Google Scholar] [CrossRef]
- Park, A.; Jeong, H.-H.; Lee, J.; Kim, K.P.; Lee, C.-S. Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. BioChip J. 2011, 5, 236–241. [Google Scholar] [CrossRef]
- Paul, E.; Ochoa, J.C.; Pechaud, Y.; Liu, Y.; Liné, A. Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Res. 2012, 46, 5499–5508. [Google Scholar] [CrossRef]
- Sehar, S.; Naz, I.; Das, T.; Ahmed, S. Evidence of microscopic correlation between biofilm kinetics and divalent cations for enhanced wastewater treatment efficiency. RSC Adv. 2016, 6, 15112–15120. [Google Scholar] [CrossRef]
- Song, B.; Leff, L.G. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol. Res. 2006, 161, 355–361. [Google Scholar] [CrossRef]
- Stoodley, P.; Dodds, I.; Boyle, J.D.; Lappin-Scott, H.M. Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. Symp. Suppl. 1999, 85, 19–28. [Google Scholar] [CrossRef]
- Stoodley, P.; Cargo, R.; Rupp, C.J.; Wilson, S.; Klapper, I. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 2002, 29, 361–367. [Google Scholar] [CrossRef]
- Stoodley, P.; Lewandowski, Z.; Boyle, J.D.; Lappin-Scott, H.M. Structural Deformation of Bacterial Biofilms Caused by Short-Term Fluctuations in Fluid Shear: An In Situ Investigation of Biofilm Rheology. Biotechnol. Bioeng. 1999, 65, 83–92. [Google Scholar] [CrossRef]
- Riemer, J.; Hoepken, H.; Czerwinska, H.; Robinson, S.R.; Dringen, R. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal. Biochem. 2004, 331, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Neilands, J. Micorbial Iron Metabolism, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Banin, E.; Vasil, M.L.; Greenberg, E.P. From The Cover: Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 2005, 102, 11076–11081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlutti, F.; Morea, C.; Battistonp, A.; Sarli, S.; Cipriani, P.; Supertp, F.; Valentp, P. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int. J. Immunopathol. Pharmacol. 2005, 18, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Kirienko, N.V. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J. Microbiol. 2018, 56, 449–457. [Google Scholar] [CrossRef]
- Musk, D.J.; Banko, D.A.; Hergenrother, P.J. Iron Salts Perturb Biofilm Formation and Disrupt Existing Biofilms of Pseudomonas aeruginosa. Chem. Biol. 2005, 12, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Ranmadugala, D.; Ebrahiminezhad, A.; Manley-harris, M.; Ghasemi, Y. The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochem. 2017, 62, 231–240. [Google Scholar] [CrossRef]
- Yang, X.; Beyenal, H.; Harkin, G.; Lewandowski, Z. Quantifying biofilm structure using image analysis. J. Microbiol. Methods 2000, 39, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Möhle, R.B.; Langemann, T.; Haesner, M.; Augustin, W.; Scholl, S.; Neu, T.R.; Hempel, D.C.; Horn, H. Structure and Shear Strength of Microbial Biofilms as Determined With Confocal Laser Scanning Microscopy and Fluid Dynamic Gauging Using a Novel Rotating Disc Biofilm Reactor. Biotechnol. Bioeng. 2007, 98, 747–755. [Google Scholar] [CrossRef]
- Singh, P.K. Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. BioMetals 2004, 17, 267–270. [Google Scholar] [CrossRef]
- Weinberg, E.D. Suppression of bacterial biofilm formation by iron limitation. Med. Hypotheses 2004, 63, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.H.; Shu, J.C.; Huang, H.Y.; Cheng, Y.C. Involvement of iron in biofilm formation by staphylococcus aureus. PLoS ONE 2012, 7, e34388. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Parsek, M.R.; Greenberg, E.P.; Welsh, M.J. A component of innate immunity prevents bacterial biofilm development. Lett. Nat. 2002, 417, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Monroy, G.L.; Derlon, N.; Janjaroen, D.; Huang, C.; Morgenroth, E.; Boppart, S.A.; Ashbolt, N.J.; Liu, W.T.; Nguyen, T.H. Role of biofilm roughness and hydrodynamic conditions in legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. Environ. Sci. Technol. 2015, 49, 4274–4282. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, G.; Hao, M. Modeling of the bacillus subtilis bacterial biofilm growing on an agar substrate. Comput. Math. Methods Med. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Faina, A.; Nejatimoharrami, F.; Stoy, K.; Theodosiou, P.; Taylor, B.; Ieropoulos, I. EvoBot: An Open-Source, Modular Liquid Handling Robot for Nurturing Microbial Fuel Cells. In Proceedings of the Artificial Life Conference, Cancun, Mexico, 4–6 July 2016. [Google Scholar] [CrossRef] [Green Version]
- Depetris, A.; Wiedmer, A.; Wagner, M.; Schäfer, S.; Battin, T.J.; Peter, H. Automated 3D Optical Coherence Tomography to Elucidate Biofilm Morphogenesis Over Large Spatial Scales. J. Vis. Exp. 2019, 150, e59356. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M. Anwendung und Vergleich Bildgebender Verfahren zur Qualitativen und Quantitativen Charakterisierung der Struktur von Biofilmen in der Mikro- und Mesoskala; Berichte aus der Siedlungswasserwirtschaft Technische Universität München 2011; Technische Universität München: München, Germany, 2011. [Google Scholar]
- Möller, B.; Glaß, M.; Misiak, D.; Posch, S. MiToBo—A Toolbox for Image Processing and Analysis. J. Open Res. Softw. 2016, 4, 6–11. [Google Scholar] [CrossRef]
- Beyenal, H.; Donovan, C.; Lewandowski, Z.; Harkin, G. Three-dimensional biofilm structure quantification. J. Microbiol. Methods 2004, 59, 395–413. [Google Scholar] [CrossRef]
- Entcheva-Dimitrov, P.; Spormann, A.M. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus. J. Bacteriol. 2004, 186, 8254–8266. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, A.; Dehghany, J.; Schwebs, T.; Müsken, M.; Häussler, S.; Meyer-Hermann, M. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms. Sci. Rep. 2016, 6, 32097. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.K.; Badawy, H.T.; Clemons, C.; Kreider, K.L.; Wilber, P.; Milsted, A.; Young, G. Development of the Pseudomonas aeruginosa mushroom morphology and cavity formation by iron-starvation: A mathematical modeling study. J. Theor. Biol. 2012, 308, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, E.; Andrews, K.J.; Jeon, B. Enhanced biofilm formation by ferrous and ferric iron through oxidative stress in Campylobacter jejuni. Front. Microbiol. 2018, 9, 1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Körstgens, V.; Flemming, H.-C.; Wingender, J.; Borchard, W. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci. Technol. 2001, 43, 49–57. [Google Scholar] [CrossRef]
- Renslow, R.; Lewandowski, Z.; Beyenal, H. Biofilm Image Reconstruction for Assessing Structural Parameters. Biotechnol. Bioeng. 2011, 108, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Barken, K.B.; Skindersoe, M.E.; Christensen, A.B.; Givskov, M.; Tolker-nielsen, T.; Tolker-nielsen, T. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 2007, 153, 1318–1328. [Google Scholar] [CrossRef] [Green Version]
- Kolodkin-Gal, I.; Elsholz AK, W.; Muth, C.; Girguis, P.R.; Kolter, R.; Losick, R. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev. 2013, 27, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Pelchovich, G.; Omer-Bendori, S.; Gophna, U. Menaquinone and iron are essential for complex colony development in Bacillus subtilis. PLoS ONE 2013, 8, e79488. [Google Scholar] [CrossRef]
- Rizzi, A.; Roy, S.; Bellenger, J.P.; Beauregard, P.B. Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation. Appl. Environ. Microbiol. 2019, 85, e02439-18. [Google Scholar] [CrossRef] [Green Version]
- Manz, B.; Volke, F.; Goll, D.; Horn, H. Measuring Local Flow Velocities and Biofilm Structure in Biofilm Systems With Magnetic Resonance Imaging (MRI). Biotechnol. Bioeng. 2003, 84, 424–432. [Google Scholar] [CrossRef]
- Purevdorj, B.; Costerton, J.W.; Stoodley, P. Influence of Hydrodynamics and Cell Signaling on the Structure and Behavior of Pseudomonas aeruginosa Biofilms Influence of Hydrodynamics and Cell Signaling on the Structure and Behavior of Pseudomonas aeruginosa Biofilms. Appl. Environ. Microbiol. 2002, 68, 4457–4464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teodósio, J.S.; Simões, M.; Melo, L.F.; Mergulhão, F.J. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling 2011, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.W.; He, Y.; Ren, Y.; Zerdoum, A.; Libera, M.R.; Sharma, P.K.; Van Winkelhoff, A.J.; Neut, D.; Stoodley, P.; Van Der Mei, H.C.; et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol. Rev. 2015, 39, 234–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupp, C.J.; Fux, C.A.; Stoodley, P. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl. Environ. Microbiol. 2005, 71, 2175–2178. [Google Scholar] [CrossRef] [Green Version]
- Safari, A.; Tukovic, Z.; Walter, M.; Casey, E.; Ivankovic, A. Mechanical properties of a mature biofilm from a wastewater system: From microscale to macroscale level. Biofouling 2015, 31, 651–664. [Google Scholar] [CrossRef]
- Towler, B.W.; Rupp, C.J.; Cunningham, A.L.B.; Stoodley, P. Viscoelastic Properties of a Mixed Culture Biofilm from Rheometer Creep Analysis. Biofouling 2003, 19, 279–285. [Google Scholar] [CrossRef]
- Dytham, C. Choosing and Using Statistics a Biologist’s Guide, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chan, C.S.; De Stasio, G.; Welch, S.A.; Girasole, M.; Frazer, B.H.; Nesterova, M.V.; Fakra, S.; Banfield, J.F. Microbial Polysaccharides Template Assembly of Nanocrystal Fibers. Science 2004, 303, 1656–1658. [Google Scholar] [CrossRef] [Green Version]
- Florea, L.J.; Noe-Stinson, C.L.; Brewer, J.; Fowler, R.; Kearns, J.B.; Greco, A.M. Iron oxide and calcite associated with Leptothrix sp. biofilms within an estavelle in the upper Floridan aquifer. Int. J. Speleol. 2011, 40, 205–219. [Google Scholar] [CrossRef]
- Neu, T.R.; Manz, B.; Volke, F.; Dynes, J.J.; Hitchcock, A.P.; Lawrence, J.R. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol. Ecol. 2010, 72, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Omoike, A.; Chorover, J.; Kwon, K.D.; Kubicki, J.D. Adhesion of bacterial exopolymers to α-FeOOH: Inner-sphere complexation of phosphodiester groups. Langmuir 2004, 20, 11108–11114. [Google Scholar] [CrossRef]
- Ivleva, N.P.; Wagner, M.; Horn, H.; Niessner, R.; Haisch, C. Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms. J. Biophotonics 2010, 3, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Liao, L.; Wang, Z.; Xu, C. Interactions between phosphoric/tannic acid and different forms of FeOOH. Adv. Mater. Sci. Eng. 2015, 2015, 250836. [Google Scholar] [CrossRef]
Experiment | 2+ (mg/L) | (cm/s) | (Pa) | |
---|---|---|---|---|
E1 | 2.5 | 1.0 | 0.75 | 0.05 |
E2 | 0.25 | 1.0 | 0.75 | 0.05 |
E3 | 2.5 | 5.0 | 3.75 | 0.27 |
E4 | 0.25 | 5.0 | 3.75 | 0.27 |
Parameter | Abbr. | Unit | Interpretation |
---|---|---|---|
Mean biofilm thickness | µm | Biofilm height in z-direction; calculated from the bulk–biofilm interface to the substratum with neglection of pores | |
Substratum coverage | % | Coverage of the flow cell bottom with biofilm; 100 % minus this parameter would result in global porosity | |
Textural entropy | - | Is a measure of the randomness of the pixel intensity distribution and thus of the biofilm heterogeneity (increasing values explain more heterogeneous biofilms) | |
Fractal dimension | - | Describes the irregularity of the aggregates‘ surfaces; higher values equal a higher surface roughness | |
Skewness | - | Determines the occurrence of low (valleys; < 0) and high biofilm colonies (hills; > 0) in the biofilm structure | |
Kurtosis | - | Defines the distribution of these occurred valleys and hills on the biofilms’ surface | |
Average second moment | - | Direction-orientated indicator of the cell clusters (higher values describe dimensional uniformity; lower values define a change in growth direction (x, y) of the biofilm aggregates) | |
Inverse difference moment | - | Similar to ASM but distance-orientated (lower values indicate that distances between biofilm aggregates decrease) | |
Average vertical run length | µm | Mean colony width in y-direction; calculated from separated biofilm aggregates in the flow channel | |
Average horizontal run length | µm | Mean colony length in x-direction; calculated from separated biofilm aggregates in the flow channel |
Two-Factorial Variance Analysis (α = 0.01) | |||
---|---|---|---|
ANOVA | |||
Structural Parameter | H1 | H2 | H3 |
0.45 | 0.90·10−4 | 0.24 | |
0.84 | 0.10·10−4 | 0.57 | |
0.35 | 0.30·10−5 | 0.24 | |
0.07 | 0.18·10−2 | 0.61 | |
0.11 | 0.12·10−4 | 0.43 | |
0.63 | 0.27·10−5 | 0.32 | |
0.79 | 0.97·10−5 | 0.55 | |
Scheirer-Ray-Hare | |||
Structural parameter | H1 | H2 | H3 |
0.16 | 0.56·10−5 | 0.21 | |
0.17 | 0.12·10−6 | 0.04 | |
0.78 | 0.17·10−4 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gierl, L.; Horn, H.; Wagner, M. Impact of Fe2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms—A Bacillus subtilis Case Study. Microorganisms 2022, 10, 2234. https://doi.org/10.3390/microorganisms10112234
Gierl L, Horn H, Wagner M. Impact of Fe2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms—A Bacillus subtilis Case Study. Microorganisms. 2022; 10(11):2234. https://doi.org/10.3390/microorganisms10112234
Chicago/Turabian StyleGierl, Luisa, Harald Horn, and Michael Wagner. 2022. "Impact of Fe2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms—A Bacillus subtilis Case Study" Microorganisms 10, no. 11: 2234. https://doi.org/10.3390/microorganisms10112234
APA StyleGierl, L., Horn, H., & Wagner, M. (2022). Impact of Fe2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms—A Bacillus subtilis Case Study. Microorganisms, 10(11), 2234. https://doi.org/10.3390/microorganisms10112234