Antimicrobial Effectiveness of an Usnic-Acid-Containing Self-Decontaminating Coating on Underground Metro Surfaces in Athens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Collection of Environmental Samples
2.3. Application of NPS 360°
2.4. Laboratory Detection of Microbial Load
2.5. Statistical Analysis
2.6. Ethics
3. Results
3.1. Sampling Phase 1
3.2. Sampling Phases 2 and 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dybwad, M.; Granum, P.E.; Bruheim, P.; Blatny, J.M. Characterization of airborne bacteria at an underground subway station. Appl. Environ. Microbiol. 2012, 78, 1917–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, M.H.; Wilkins, D.; Li, E.K.; Kong, F.K.; Lee, P.K. Indoor-air microbiome in an urban subway network: Diversity and dynamics. Appl. Environ. Microbiol. 2014, 80, 6760–6770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooley, P.; Brown, S.; Cajka, J.; Chasteen, B.; Ganapathi, L.; Grefenstette, J.; Hollingsworth, C.R.; Lee, B.Y.; Levine, B.; Wheaton, W.D.; et al. The role of subway travel in an influenza epidemic: A New York City simulation. J. Urban Health 2011, 88, 982–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, F.; Luo, H.; Zhou, L.; Yin, D.; Zheng, C.; Wang, D.; Gong, J.; Fang, G.; He, J.; McFarland, J.; et al. Transmission of pandemic influenza A (H1N1) virus in a train in China. J. Epidemiol. 2011, 21, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goscé, L.; Johansson, A. Analysing the link between public transport use and airborne transmission: Mobility and contagion in the London underground. Environ. Health 2018, 17, 84. [Google Scholar] [CrossRef] [Green Version]
- Hayward, A.C.; Beale, S.; Johnson, A.M.; Fragaszy, E.B.; Flu Watch Group. Public activities preceding the onset of acute respiratory infection syndromes in adults in England—Implications for the use of social distancing to control pandemic respiratory infections. Wellcome Open Res. 2020, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Querido, M.M.; Aguiar, L.; Neves, P.; Pereira, C.C.; Teixera, J.P. Self-disinfecting surfaces and infection control. Colloids Surf. B Biointerfaces 2019, 178, 8–21. [Google Scholar] [CrossRef]
- Gohli, J.; Bøifot, K.O.; Moen, L.V.; Pastuszek, P.; Skogan, G.; Udekwu, K.I.; Dybwad, M. The subway microbiome: Seasonal dynamics and direct comparison of air and surface bacterial communities. Microbiome 2019, 7, 160. [Google Scholar] [CrossRef]
- Hernández, A.M.; Vargas-Robles, D.; Alcaraz, L.D.; Peimbert, M. Station and train surface microbiomes of Mexico City’s metro (subway/underground). Sci. Rep. 2020, 10, 8798. [Google Scholar] [CrossRef]
- Klimenko, N.S.; Tyakht, A.V.; Toshchakov, S.V.; Shevchenko, M.A.; Korzhenkov, A.A.; Afshinnekoo, E.; Mason, C.E.; Alexeev, D.G. Co-occurrence patterns of bacteria within microbiome of Moscow subway. Comput. Struct. Biotechnol. J. 2020, 18, 314–322. [Google Scholar] [CrossRef]
- Peng, Y.; Ou, Q.; Lin, D.; Xu, P.; Li, Y.; Ye, X.; Zhou, J.; Yao, Z. Metro system in Guangzhou as a hazardous reservoir of methicillin-resistant Staphylococci: Findings from a point-prevalence molecular epidemiologic study. Sci. Rep. 2015, 5, 16087. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Robles, D.; Gonzalez-Cedillo, C.; Hernandez, A.M.; Alcaraz, L.D.; Peimbert, M. Passenger-surface microbiome interactions in the subway of Mexico City. PLoS ONE 2020, 15, e237272. [Google Scholar] [CrossRef]
- Kang, K.; Ni, Y.; Li, J.; Imamovic, L.; Sarkar, C.; Kobler, M.D.; Heshiki, Y.; Zheng, T.; Kumari, S.; Wong, J.C.Y.; et al. The environmental exposures and inner- and intercity traffic flows of the metro system may contribute to the skin microbiome and resistome. Cell Rep. 2018, 24, 1190–1202. [Google Scholar] [CrossRef] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Onakpoya, I.J.; Heneghan, C.J.; Spencer, E.A.; Brassey, J.; Plüddemann, A.; Evans, D.H.; Conly, J.M.; Jefferson, T. SARS-CoV-2 and the role of fomite transmission: A systematic review. F1000 Res. 2021, 10, 233. [Google Scholar] [CrossRef]
- Maltezou, H.C.; Tseroni, M.; Daflos, C.; Anastassopoulou, C.; Vasilogiannakopoulos, A.; Daligarou, O.; Panagiotou, M.; Botsa, E.; Spanakis, N.; Lourida, A.; et al. Environmental testing for SARS-CoV-2 in three tertiary-care hospitals during the peak of the third COVID-19 wave. Am. J. Infect. Control 2021, 49, 1435–1437. [Google Scholar] [CrossRef]
- Moreno, T.; Pintó, R.M.; Bosch, A.; Moreno, N.; Alastuey, A.; Minguillón, M.C.; Anfruns-Estrada, E.; Guix, S.; Fuentes, C.; Buonanno, G.; et al. Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environ. Int. 2021, 147, 106326. [Google Scholar] [CrossRef]
- Miller, D.; King, M.F.; Nally, J.; Drodge, J.R.; Reeves, G.I.; Bate, A.M.; Cooper, H.; Dalrymple, U.; Hall, I.; López-García, M.; et al. Modeling the factors that influence exposure to SARS-CoV-2 on a subway train carriage. Indoor Air 2022, 32, e12976. [Google Scholar] [CrossRef]
- Francolini, L.; Taresco, V.; Crisante, F.; Martinelli, A.; D’Ilario, L.; Piozzi, A. Water soluble usnic acid-polyacrylamide complexes with enhanced antimicrobial activity against Staphylococcus epidermidis. Int. J. Mol. Sci. 2013, 14, 7356–7369. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Verma, S.; Gupta, S.; Singh, A.; Pal, A.; Srivastava, S.K.; Singh, S.C.; Darokar, M.P. Membrane-damaging potential of natural L-(-)-usnic acid in Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3375–3383. [Google Scholar] [CrossRef]
- Elo, H.; Matikainen, J.; Pelttari, E. Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Naturwissenschaften 2007, 94, 465–468. [Google Scholar] [CrossRef]
- Kartsev, V.; Lichitsky, B.; Geronikaki, A.; Petrou, A.; Smiljkovic, M.; Kostic, M.; Radanovic, O.; Soković, M. Design, synthesis and antimicrobial activity of usnic acid derivatives. Med. Chem. Commun. 2018, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Pompilio, A.; Riviello, A.; Crocetta, V.; Di Giuseppe, F.; Pomponio, S.; Sulpizio, M.; Di Ilio, C.; Angelucci, S.; Barone, L.; Di Giulio, A.; et al. Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus. Future Microbiol. 2016, 11, 1315–1338. [Google Scholar] [CrossRef] [PubMed]
- Tozatti, M.G.; Ferreira, D.S.; Flauzino, L.G.B.; Moraes, T.D.S.; Martins, C.H.G.; Groppo, M.; E Silva, M.L.A.; Januário, A.H.; Pauletti, P.M.; Cunhaa, W.R. Activity of the lichen Usneasteineri and its major metabolites against Gram-positive, multidrug-resistant bacteria. Nat. Prod. Commun. 2016, 11, 493–496. [Google Scholar]
- Pires, R.H.; Lucarini, R.; Mendes-Giannini, M.J. Effect of usnic acid on Candida orthopsilosis and C. parapsilosis. Antimicrob. Agents Chemother. 2012, 56, 595–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nithyanand, P.; Shafreen, R.M.B.; Muthamil, S.; Pandian, S.K. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol. Res. 2015, 179, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Shtro, A.A.; Zarubaev, V.V.; Luzina, O.A.; Sokolov, D.N.; Salakhutdinov, N.F. Derivatives of usnic acid inhibit broad range of influenza viruses and protect mice from lethal influenza infection. Antivir. Chem. Chemother. 2015, 24, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, D.N.; Zarubaev, V.V.; Shtro, A.A.; Polovinka, M.P.; Luzina, O.A.; Komarova, N.I.; Salakhutdinov, N.F.; Kiselev, O.I. Anti-viral activity of (-)- and (+)-usnic acids and their derivatives against influenza virus A(H1N1)2009. Bioorg. Med. Chem. Lett. 2012, 22, 7060–7064. [Google Scholar] [CrossRef]
- Vestatis. Risultati e Certificazioni. Available online: https://www.vestatis.com/it/efficacia-certificata.html (accessed on 10 October 2022). (In Italian).
- Attiko Metro, S.A. Basic Project. Available online: https://www.ametro.gr/?page_id=4172&lang=en (accessed on 10 October 2022).
- Brauge, T.; Barre, L.; Leleu, G.; André, S.; Denis, C.; Hanin, A.; Frémaux, B.; Guilbaud, M.; Herry, J.-M.; Oulahal, N.; et al. European survey and evaluation of sampling methods recommended by the standard EN ISO 18593 for the detection of Listeria monocytogenes and Pseudomonas fluorescens on industrial surfaces. FEMS Microbiol. Lett. 2020, 367, fnaa057. [Google Scholar] [CrossRef] [Green Version]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- Tahimi, A.H.; Carlino, S.; Gerba, C.P. Long-term efficacy of a self-disinfecting coating in an intensive care unit. Am. J. Infect. Control 2014, 42, 1178–1181. [Google Scholar] [CrossRef]
- Francolini, I.; Norris, P.; Piozzi, A.; Donelli, G.; Stoodley, P. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob. Agents Chemother. 2004, 48, 4360–4365. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, A.; Bakry, A.; D’Ilario, L.; Francolini, I.; Piozzi, A.; Taresco, V. Release behavior and antibiofilm activity of usnicacid-loaded carboxylated poly(L-lactide) microparticles. Eur. J. Pharm. Biopharm. 2014, 88, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.; Rahimi, S.; Derouiche, A.; Boulaoued, A.; Mijakovic, I. Sustained release of usnicacid from graphenecoatings ensures long term antibiofilm protection. Sci. Rep. 2021, 11, 9956. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Liu, Y.; Li, Y.; Wang, Y.; Shen, Z.; Shao, B.; Walsh, T.R.; Shen, J.; Wang, S. A public health concern: Emergence of carbapenem-resistant Klebsiellapneumoniae in a public transportation environment. J. Antimicrob. Chemother. 2020, 75, 2769–2772. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Feng, S.; Chen, H.; Dai, M.; Paterson, D.L.; Zheng, X.; Wu, X.; Zhong, L.L.; Liu, Y.; Xia, Y.; et al. Transmission of mcr-1-producing multidrug-resistant Enterobacteriaceae in public transportation in Guangzhou, China. Clin. Infect. Dis 2018, 67 (Suppl. 2), S217–S224. [Google Scholar] [CrossRef]
Sampling Sites | Sampling 1 * | Sampling 2 * | Sampling 3 * |
---|---|---|---|
Underground Station | |||
stairs handrails † | 5/6 | 0/6 | 1/6 |
elevators’ buttons | 2/4 | 0/4 | 0/4 |
tickets counter | 2/2 | 0/2 | 0/2 |
seats | 10/10 | 1/10 | 1/10 |
Wagon | |||
doors (inner surface) | 5/5 | 0/5 | 0/5 |
poles | 8/8 | 0/8 | 0/8 |
handles | 13/15 | 0/15 | 2/15 |
seats | 9/10 | 1/10 | 0/10 |
Sampling Sites | Sampling 1 * | Sampling 2 * | Sampling 3 * |
---|---|---|---|
Underground Station | |||
stairs handrails † | 0/6 | 0/6 | 0/6 |
elevators’ buttons | 0/4 | 0/4 | 0/4 |
tickets counter | 0/2 | 0/2 | 0/2 |
seats | 2/10 | 0/10 | 0/10 |
Wagon | |||
doors (inner surface) | 3/5 | 0/5 | 0/5 |
poles | 0/8 | 0/8 | 0/8 |
handles | 4/15 | 0/15 | 0/15 |
seats | 2/10 | 0/10 | 0/10 |
Sampling Sites | Sampling 1 * | Sampling 2 * | Sampling 3 * |
---|---|---|---|
Underground Station | |||
stairs’ handrails † | 1/6 | 0/6 | 0/6 |
elevators’ buttons | 0/4 | 0/4 | 0/4 |
tickets’ counter | 0/2 | 0/2 | 0/2 |
seats | 3/10 | 0/10 | 0/10 |
Wagon | |||
doors (inner surface) | 0/5 | 0/5 | 0/5 |
poles | 1/8 | 0/8 | 0/8 |
handles | 0/15 | 0/15 | 0/15 |
seats | 0/10 | 0/10 | 0/10 |
No | Sampling Site | Sampling 1 * (CFU/102 cm2) | Sampling 2 * (CFU/102 cm2) | Sampling 3 * (CFU/102 cm2) |
---|---|---|---|---|
1 | stair handrail | Bacillus spp (80) | no growth | CNS (1) |
2 | stair handrail | no growth | no growth | no growth |
3 | stair handrail | Gram(+) bacterium (40), Escherichia coli (6) | no growth | no growth |
4 | stair handrail | CNS (6), Staphylococcus aureus (1) | no growth | no growth |
5 | stair handrail | Acinetobacter lwoffii group (55) | no growth | no growth |
6 | stair handrail | Acinetobacter lwoffii group (34) | no growth | no growth |
7 | elevator button | no growth | no growth | no growth |
8 | elevator button | CNS (1) | no growth | no growth |
9 | elevator button | no growth | no growth | no growth |
10 | elevator button | Corynebacterium spp (40) | no growth | no growth |
11 | seat | Corynebacterium spp. (10), CNS (3), Staphylococcus aureus (1) | no growth | no growth |
12 | seat | CNS (3) | CNS (1) | no growth |
13 | seat | CNS (6) | no growth | no growth |
14 | seat | Acinetobacter baumanii (80) | no growth | no growth |
15 | seat | CNS (25), Micrococcus spp. (2), Staphylococcus aureus (1) saprophytic hyphae (1) | no growth | no growth |
16 | seat | CNS (90), Aspergillus fumigatus (1) | no growth | no growth |
17 | seat | Micrococcus spp. (12), CNS (3) | no growth | no growth |
18 | seat | Micrococcus spp. (5), CNS (2) | no growth | no growth |
19 | seat | Micrococcus spp. (2), Staphylococcus aureus (6), Escherichia coli (8) | no growth | CNS (1), Micrococcus sp. (1) |
20 | seat | CNS (2) | no growth | no growth |
21 | tickets’ counter | Acinetobacter lwoffii group (120), Staphylococcus aureus (2) | no growth | no growth |
22 | tickets’ counter | CNS (24) | no growth | no growth |
23 | pole | Acinetobacter lwoffii group (160) | no growth | no growth |
24 | pole | Acinetobacter lwoffii group (24), CNS (1) | no growth | no growth |
25 | pole | CNS (6), Klebsiella spp. (8), Bacillus spp. (10) | no growth | no growth |
26 | pole | Bacillus spp. (4), CNS (2) | no growth | no growth |
27 | pole | CNS (2), Micrococcus spp. (2), Corynebacterium spp. (2) | no growth | no growth |
28 | pole | Acinetobacter lwoffii group (170) | no growth | no growth |
29 | pole | Staphylococcus aureus (2) | no growth | no growth |
30 | pole | Staphylococcus aureus (9), CNS (2) | no growth | no growth |
31 | door | CNS (6) | no growth | no growth |
32 | door | CNS (7), Aspergillus niger (1) | no growth | no growth |
33 | door | CNS (2), Corynebacterium spp. (1) | no growth | no growth |
34 | door | CNS (6), Aspergillus niger (2), Aspergillus flavus (1) | no growth | no growth |
35 | door | CNS (94), Escherichia coli (3), Staphylococcus aureus (36), Aspergillus niger (1) | no growth | no growth |
36 | handle | Pantoea agglomerans (7), CNS (1) | no growth | no growth |
37 | handle | CNS (6), Corynebacterium spp. (5) | no growth | no growth |
38 | handle | CNS (2), Micrococcus spp. (3) | no growth | no growth |
39 | handle | Aspergillus fumigatus (1) | no growth | no growth |
40 | handle | Acinetobacter lwoffii group (6), Bacillus spp. (6) | no growth | no growth |
41 | handle | Escherichia coli (2), Bacillus spp. (1) | no growth | no growth |
42 | handle | Acinetobacter lwoffii group (14) | no growth | no growth |
43 | handle | CNS (1) | no growth | CNS (1) |
44 | handle | Micrococcus spp. (2), Aspergillus niger (2) | no growth | no growth |
45 | handle | CNS (2), Corynebacterium spp. (1), saprophytic hyphae (1) | no growth | CNS (1) |
46 | handle | Staphylococcus aureus (3), CNS (6) | no growth | no growth |
47 | handle | CNS (2) | no growth | no growth |
48 | handle | no growth | no growth | no growth |
49 | handle | CNS (13) | no growth | no growth |
50 | handle | Staphylococcus aureus (4), Micrococcus spp. (3), Aspergillus niger (2) | no growth | no growth |
51 | seat | Staphylococcus aureus (2), CNS (5) | no growth | no growth |
52 | seat | Klebsiella spp. (200) environmental blastomycetes (8) | no growth | no growth |
53 | seat | Bacillus spp. (30) | no growth | no growth |
54 | seat | CNS (6) | no growth | no growth |
55 | seat | CNS (25), Corynebacterium spp. (10) | no growth | no growth |
56 | seat | Escherichia coli (12), Micrococcus spp. (15), CNS (3), Aspergillus niger (1) Bacillus spp. (2) | no growth | no growth |
57 | seat | CNS (1), Micrococcus spp. (1), Corynebacterium spp. (1) | no growth | no growth |
58 | seat | CNS (90) | no growth | no growth |
59 | seat | CNS (10) | CNS (1) | no growth |
60 | seat | no growth | no growth | no growth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maltezou, H.C.; Horefti, E.; Papamichalopoulos, N.; Tseroni, M.; Ioannidis, A.; Angelakis, E.; Chatzipanagiotou, S. Antimicrobial Effectiveness of an Usnic-Acid-Containing Self-Decontaminating Coating on Underground Metro Surfaces in Athens. Microorganisms 2022, 10, 2233. https://doi.org/10.3390/microorganisms10112233
Maltezou HC, Horefti E, Papamichalopoulos N, Tseroni M, Ioannidis A, Angelakis E, Chatzipanagiotou S. Antimicrobial Effectiveness of an Usnic-Acid-Containing Self-Decontaminating Coating on Underground Metro Surfaces in Athens. Microorganisms. 2022; 10(11):2233. https://doi.org/10.3390/microorganisms10112233
Chicago/Turabian StyleMaltezou, Helena C., Elina Horefti, Nikolaos Papamichalopoulos, Maria Tseroni, Anastasios Ioannidis, Emmanouil Angelakis, and Stylianos Chatzipanagiotou. 2022. "Antimicrobial Effectiveness of an Usnic-Acid-Containing Self-Decontaminating Coating on Underground Metro Surfaces in Athens" Microorganisms 10, no. 11: 2233. https://doi.org/10.3390/microorganisms10112233
APA StyleMaltezou, H. C., Horefti, E., Papamichalopoulos, N., Tseroni, M., Ioannidis, A., Angelakis, E., & Chatzipanagiotou, S. (2022). Antimicrobial Effectiveness of an Usnic-Acid-Containing Self-Decontaminating Coating on Underground Metro Surfaces in Athens. Microorganisms, 10(11), 2233. https://doi.org/10.3390/microorganisms10112233