Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Cultivation
2.2. 16S rRNA Gene Sequencing and Phylogenetic Analysis
2.3. DNA Extraction, gDNA Library Preparation, and Genome Sequencing
2.4. Computational Pipeline for Finding Verrucomicrobiotal Genome Sequence
2.5. Comparative Genome Analysis
2.6. Metabolic Pathways and Relative Gene Alignments Analysis
2.7. Nucleotide Sequence Accession Numbers and Data Availability
3. Results and Discussion
3.1. Identification of Verrucomicrobiotal Methanotrophs from Yellowstone Hot Spring Samples
3.2. Metagenomic Approaches to Identify Verrucomicrobiotal Genomes
3.3. Selection of the Best Bin as a Verrucomicrobiotal Genome
3.4. Clusters of Orthologous Groups (COGs)
3.5. Methanotrophic and Central Metabolic Pathways
3.5.1. Pathways Associated with Methane Metabolism
3.5.2. Pathways Associated with Carbon Metabolism (CO2 Fixation)
3.5.3. Pathways Associated with Nitrogen Metabolism
3.6. Hydrogenases
3.7. Defense Mechanisms
3.7.1. Acid and Heat Stress Responses
3.7.2. Heavy Metal and Antimicrobial Resistance
3.7.3. CRISPR
3.7.4. IS607-Family Transposase and MerR Family DNA-Binding Transcriptional Regulator
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murrell, J. The aerobic methane oxidizing bacteria (methanotrophs). In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1953–1966. [Google Scholar]
- Mohammadi, S.; Pol, A.; Van Alen, T.A.; Jetten, M.S.; Den Camp, H.J.O. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and-insensitive hydrogenase. ISME J. 2017, 11, 945–958. [Google Scholar] [CrossRef]
- Pol, A.; Heijmans, K.; Harhangi, H.R.; Tedesco, D.; Jetten, M.S.; Den Camp, H.J.O. Methanotrophy below pH 1 by a new Verrucomicrobiota species. Nature 2007, 450, 874–878. [Google Scholar] [CrossRef]
- Dedysh, S. Exploring methanotroph diversity in acidic northern wetlands: Molecular and cultivation-based studies. Microbiology 2009, 78, 655–669. [Google Scholar] [CrossRef]
- Hanson, R.S.; Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef]
- Whittenbury, R.; Dalton, H. The methylotrophic bacteria. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 1981; pp. 894–902. [Google Scholar]
- Whittenbury, R.; Davies, S.L.; Davey, J. Exospores and cysts formed by methane-utilizing bacteria. Microbiology 1970, 61, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Dunfield, P.F.; Yuryev, A.; Senin, P.; Smirnova, A.V.; Stott, M.B.; Hou, S.; Ly, B.; Saw, J.H.; Zhou, Z.; Ren, Y. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007, 450, 879–882. [Google Scholar] [CrossRef]
- Islam, T.; Jensen, S.; Reigstad, L.J.; Larsen, Ú.; Birkeland, N.-K. Methane oxidation at 55 °C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. USA 2008, 105, 300–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 2015, 6, 1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Op Den Camp, H.J.; Islam, T.; Stott, M.B.; Harhangi, H.R.; Hynes, A.; Schouten, S.; Jetten, M.S.; Birkeland, N.K.; Pol, A.; Dunfield, P.F. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobiota. Environ. Microbiol. Rep. 2009, 1, 293–306. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [Google Scholar] [CrossRef] [PubMed]
- Anvar, S.Y.; Frank, J.; Pol, A.; Schmitz, A.; Kraaijeveld, K.; Den Dunnen, J.T.; Den Camp, H.J.O. The genomic landscape of the Verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genom. 2014, 15, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, R.A.; Peeters, S.H.; Versantvoort, W.; Picone, N.; Pol, A.; Jetten, M.S.; Op Den Camp, H.J. Verrucomicrobial methanotrophs: Ecophysiology of metabolically versatile acidophiles. FEMS Microbiol. Rev. 2021, 45, fuab007. [Google Scholar] [CrossRef] [PubMed]
- Van Teeseling, M.C.F.; Pol, A.; Harhangi, H.R.; van der Zwart, S.; Jetten, M.S.M.; Op den Camp, H.J.M.; van Niftrik, L. Expanding the Verrucomicrobial methanotrophic world: Description of three novel species of Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 2014, 80, 6782–6791. [Google Scholar] [CrossRef] [Green Version]
- Erikstad, H.-A.; Ceballos, R.M.; Smestad, N.B.; Birkeland, N.-K. Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front. Microbiol. 2019, 10, 1129. [Google Scholar] [CrossRef]
- Picone, N.; Blom, P.; Wallenius, A.J.; Hogendoorn, C.; Mesman, R.; Cremers, G.; Gagliano, A.L.; D’Alessandro, W.; Quatrini, P.; Jetten, M.S. C, a novel methane-and hydrogen-oxidizing bacterium isolated from volcanic soil on Pantelleria Island, Italy. Front. Microbiol. 2021, 12, 225. [Google Scholar] [CrossRef]
- Awala, S.I.; Gwak, J.; Kim, Y.; Kim, S.; Strazzulli, A.; Dunfield, P.F.; Yoon, H.; Kim, G.; Rhee, S. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME J. 2021, 15, 3636–3647. [Google Scholar] [CrossRef] [PubMed]
- Kruse, T.; Ratnadevi, C.M.; Erikstad, H.-A.; Birkeland, N.-K. Complete genome sequence analysis of the thermoacidophilic Verrucomicrobial methanotroph “Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives. BMC Genom. 2019, 20, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.C.; Singh, J.; Singh, D.; Singh, R.P. Methanotrophs: Promising bacteria for environmental remediation. Int. J. Environ. Sci. Technol. 2014, 11, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.O.; Rosenzweig, A.C. A tale of two methane monooxygenases. J. Biol. Inorg. Chem. 2017, 22, 307–319. [Google Scholar] [CrossRef]
- Erikstad, H.-A.; Jensen, S.; Keen, T.J.; Birkeland, N.-K. Differential expression of particulate methane monooxygenase genes in the Verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1. Extremophiles 2012, 16, 405–409. [Google Scholar] [CrossRef]
- Pol, A.; Barends, T.R.; Dietl, A.; Khadem, A.F.; Eygensteyn, J.; Jetten, M.S.; Op Den Camp, H.J. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 2014, 16, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, A.M.; Hemmerle, L.; Vonderach, T.; Nüssli, R.; Bortfeld-Miller, M.; Hattendorf, B.; Vorholt, J.A. Use of rare-earth elements in the phyllosphere colonizer Methylobacterium extorquens PA1. Mol. Microbiol. 2019, 111, 1152–1166. [Google Scholar] [CrossRef] [Green Version]
- Roszczenko-Jasińska, P.; Vu, H.N.; Subuyuj, G.A.; Crisostomo, R.V.; Cai, J.; Lien, N.F.; Clippard, E.J.; Ayala, E.M.; Ngo, R.T.; Yarza, F.; et al. Gene products and processes contributing to lanthanide homeostatis and methanol metabolism in Methylorubrum extorquens AM1. Sci. Rep. 2020, 10, 12663. [Google Scholar] [CrossRef] [PubMed]
- Piché-Choquette, S.; Constant, P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl. Environ. Microbiol. 2019, 85, e02418-18. [Google Scholar] [CrossRef] [Green Version]
- Carere, C.R.; Hards, K.; Houghton, K.M.; Power, J.F.; Mcdonald, B.; Collet, C.; Gapes, D.J.; Sparling, R.; Boyd, E.S.; Cook, G.M. Mixotrophy drives niche expansion of Verrucomicrobial methanotrophs. ISME J. 2017, 11, 2599–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, K.M.; Kouris, A.; England, W.; Anderson, R.E.; Mccleskey, R.B.; Nordstrom, D.K.; Whitaker, R.J. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs. Environ. Microbiol. 2017, 19, 2334–2347. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, D.; Pedersen, C.N.; Greening, C. HydDB: A web tool for hydrogenase classification and analysis. Sci. Rep. 2016, 6, 1–8. [Google Scholar]
- Jørgensen, T.S.; Xu, Z.; Hansen, M.A.; Sørensen, S.J.; Hansen, L.H. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS ONE 2014, 9, e87924. [Google Scholar]
- Stevenson, B.S.; Eichorst, S.A.; Wertz, J.T.; Schmidt, T.M.; Breznak, J.A. New strategies for cultivation and detection of previously uncultured microbes. Appl. Envion. Microbiol. 2004, 70, 4748–4755. [Google Scholar] [CrossRef] [Green Version]
- Uritskiy, G.V.; Diruggiero, J.; Taylor, J. MetaWRAP—A flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 2018, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Gu, J.-D. A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches. Appl. Microbiol. Biotechnol. 2013, 97, 10155–10162. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Zhong, M. Influence of elevated ozone concentration on methanotrophic bacterial communities in soil under field condition. Atmos. Environ. 2015, 108, 59–66. [Google Scholar] [CrossRef]
- Versantvoort, W.; Pol, A.; Daumann, L.J.; Larrabee, J.A.; Strayer, A.H.; Jetten, M.S.M.; van Niftrik, L.; Reimann, J.; Op den Camp, H.J.M. Characterization of a novel cytochrome cGJ as the electron acceptor of XoxF-MDH in the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV. BBA Proteins Proteom. 2019, 1867, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Keltjens, J.T.; Pol, A.; Reimann, J.; Den Camp, H.J.O. PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference. Appl. Microbiol. Biotechnol. 2014, 98, 6163–6183. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Makarova, K.S.; Saw, J.H.; Senin, P.; Ly, B.V.; Zhou, Z.; Ren, Y.; Wang, J.; Galperin, M.Y.; Omelchenko, M.V. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol. Direct 2008, 3, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noinaj, N.; Guillier, M.; Barnard, T.J.; Buchanan, S.K. TonB-dependent transporters: Regulation, structure, and function. Annual Rev. Microbiol. 2010, 64, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Khadem, A.F.; Pol, A.; Wieczorek, A.; Mohammadi, S.S.; Francoijs, K.-J.; Stunnenberg, H.G.; Jetten, M.S.; Den Camp, H.J.O. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J. Bacteriol. 2011, 193, 4438–4446. [Google Scholar] [CrossRef] [Green Version]
- Khadem, A.F.; Van Teeseling, M.C.; Van Niftrik, L.; Jetten, M.S.; Op Den Camp, H.J.; Pol, A. Genomic and physiological analysis of carbon storage in the Verrucomicrobial methanotroph “Ca. Methylacidiphilum fumariolicum” SolV. Front. Microbiol. 2012, 3, 345. [Google Scholar] [CrossRef] [Green Version]
- Kalyuzhnaya, M.G.; Puri, A.W.; Lidstrom, M.E. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 2015, 29, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Auman, A.J.; Speake, C.C.; Lidstrom, M.E. NifH sequences and nitrogen fixation in type I and type II methanotrophs. App. Environ. Microbiol. 2011, 67, 4009–4016. [Google Scholar] [CrossRef] [Green Version]
- Nyerges, G.; Stein, L.Y. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol. Lett. 2009, 297, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Stein, L.Y.; Klotz, M.G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans. 2011, 39, 1826–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klotz, M.G.; Stein, L.Y. Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol. Lett. 2008, 278, 146–156. [Google Scholar] [CrossRef]
- Mohammadi, S.S.; Pol, A.; Van Alen, T.; Jetten, M.S.; Op Den Camp, H.J. Ammonia oxidation and nitrite reduction in the Verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. Front. Microbiol. 2017, 8, 1901. [Google Scholar] [CrossRef] [Green Version]
- Greening, C.; Biswas, A.; Carere, C.R.; Jackson, C.J.; Taylor, M.C.; Stott, M.B.; Cook, G.M.; Morales, S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME 2016, 10, 761–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, S.; Matsumi, R.; Arai, T.; Atomi, H.; Imanaka, T.; Miki, K. Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: Insights into cyanation reaction by thiol redox signaling. Molecular Cell 2007, 27, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Richard, H.; Foster, J.W. YjdE (AdiC) is the arginine: Agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J. Bacteriol. 2003, 185, 4402–4409. [Google Scholar] [CrossRef] [Green Version]
- James, J.; Truglio, D.L.C.; Van Houten, B.; Kisker, C. Prokaryotic nucleotide excision repair: The UvrABCD system. Chem. Rev. 2006, 106, 233–252. [Google Scholar]
- Dopson, M.; Holmes, D.S. Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Appl. Microbiol. Biotechnol. 2014, 98, 8133–8144. [Google Scholar] [CrossRef]
- Nguyen, N.-L.; Yu, W.-J.; Gwak, J.-H.; Kim, S.-J.; Park, S.-J.; Herbold, C.W.; Kim, J.-G.; Jung, M.-Y.; Rhee, S.-K. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front. Microbiol. 2018, 9, 1982. [Google Scholar] [CrossRef] [Green Version]
- Nordstrom, D.; Alpers, C.; Ptacek, C.J.; Blowes, D.W. Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol. 2000, 34, 254. [Google Scholar] [CrossRef] [Green Version]
- Baker-Austin, C.; Dopson, M.; Wexler, M.; Sawers, R.G.; Bond, P.L. Molecular insight into extreme copper resistance in the extremophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Microbiology 2005, 151, 2637–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangold, S.; Potrykus, J.; Björn, E.; Lövgren, L.; Dopson, M. Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains. Extremophiles 2013, 17, 75–85. [Google Scholar] [CrossRef]
- Al-Attar, S.; Westra, E.R.; Van Der Oost, J.; Brouns, S.J. Clustered regularly interspaced short palindromic repeats (CRISPRs): The hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol. Chem. 2011, 392, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Quatrini, R.; Ossandon, F.J.; Rawlings, D. The flexible genome of acidophilic prokaryotes. In Chapter 12 from Acidophiles: Life in Extremely Acidic Environments; Caister Academic Press: Norfolk, UK, 2016; pp. 199–220. [Google Scholar]
- Hauryliuk, V.; Atkinson, G.C.; Murakami, K.S.; Tenson, T.; Gerdes, K. Recent functional insights into the role of (p) ppGpp in bacterial physiology. Nat. Rev. Microbiol. 2015, 13, 298–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ipe, D.S.; Sullivan, M.J.; Goh, K.G.; Hashimi, S.M.; Munn, A.L.; Ulett, G.C. Conserved bacterial de novo guanine biosynthesis pathway enables microbial survival and colonization in the environmental niche of the urinary tract. ISME J. 2021, 15, 2158–2162. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Anantharaman, K.; Shaiber, A.; Eren, A.M.; Banfield, J.F. Accurate and complete genomes from metagenomes. Genome Res. 2020, 30, 315–333. [Google Scholar] [CrossRef] [Green Version]
Reference | Total Sequence Length | GC Content | Number of Contigs | Contig N50 | CDS | rRNA | tRNA | CRISPR |
---|---|---|---|---|---|---|---|---|
Ca. Methylacidiphilum sp. YNP IV | 2,467,065 bp | 41.3% | 82 | 76,993 | 2288 | 3 | 49 | 2 |
M. fumariolicum Ice | 2,376,773 bp | 41.0% | 91 | 56,162 | 2128 | 3 | 48 | 2 |
M. fumariolicum Fur | 2,391,355 bp | 41.0% | 101 | 53,961 | 2145 | 3 | 48 | 2 |
M. fumariolicum Rib | 2,392,263 bp | 41.0% | 113 | 53,912 | 2152 | 3 | 48 | 2 |
M. fumariolicum Fdl | 2,381,209 bp | 41.0% | 96 | 53,912 | 2136 | 3 | 48 | 2 |
Ca. Methylacidiphilum sp. Phi | 2,337,855 bp | 41.4% | 231 | 64,983 | 2112 | 3 | 50 | 3 |
Ca. Methylacidiphilum sp. Yel | 2,250,350 bp | 41.1% | 107 | 46,532 | 2073 | 3 | 47 | - |
M. fumariolicum SolV (NZ_LM997411.1) | 2,476,671 bp | 40.9% | 1 | - | 2296 | 3 | 48 | 2 |
M. kamchatkense Kam1 (NZ_CP037899.1) | 2,202,032 bp | 40.4% | 1 | - | 1962 | 3 | 46 | 1 |
M. infernorum V4 (NC_010794.1) | 2,287,145 bp | 45.5% | 1 | - | 2055 | 3 | 46 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.W.; Kim, N.K.; Phillips, A.P.R.; Parker, D.A.; Liu, P.; Whitaker, R.J.; Rao, C.V.; Mackie, R.I. Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction. Microorganisms 2022, 10, 142. https://doi.org/10.3390/microorganisms10010142
Kim HW, Kim NK, Phillips APR, Parker DA, Liu P, Whitaker RJ, Rao CV, Mackie RI. Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction. Microorganisms. 2022; 10(1):142. https://doi.org/10.3390/microorganisms10010142
Chicago/Turabian StyleKim, Hye Won, Na Kyung Kim, Alex P. R. Phillips, David A. Parker, Ping Liu, Rachel J. Whitaker, Christopher V. Rao, and Roderick Ian Mackie. 2022. "Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction" Microorganisms 10, no. 1: 142. https://doi.org/10.3390/microorganisms10010142
APA StyleKim, H. W., Kim, N. K., Phillips, A. P. R., Parker, D. A., Liu, P., Whitaker, R. J., Rao, C. V., & Mackie, R. I. (2022). Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction. Microorganisms, 10(1), 142. https://doi.org/10.3390/microorganisms10010142