Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Infection
2.2. RNA Isolation and Processing for Microarray Experiments
2.3. Low-Level Analyses
2.4. Identification of Differentially Transcribed Microarray Probes and Corresponding Genes
2.5. Pathway Analyses
3. Results
3.1. Clinical Assessment
3.2. Microarray Data
3.3. Principal Component Analysis
3.4. Differentially Transcribed Microarray Probes and Corresponding Genes in Brains off T. canis-Infected Mice
3.5. Differentially Transcribed Microarray Probes and Corresponding Genes in Brains of T. cati-Infected Mice
3.6. DTG Overlap in Cerebra and Cerebella of T. canis- and T. cati-Infected Mice
3.7. PANTHER Pathway Analysis of DTGs
3.8. Enriched PANTHER Pathways at Different Study Days
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, A.D. Pathology of larvae and adults in dogs and cats. Adv. Parasitol. 2020, 109, 537–544. [Google Scholar] [PubMed]
- Rostami, A.; Riahi, S.M.; Hofmann, A.; Ma, G.; Wang, T.; Behniafar, H.; Taghipour, A.; Fakhri, Y.; Spotin, A.; Chang, B.C.H.; et al. Global prevalence of Toxocara infection in dogs. Adv. Parasitol. 2020, 109, 561–583. [Google Scholar] [PubMed]
- Rostami, A.; Sepidarkish, M.; Ma, G.; Wang, T.; Ebrahimi, M.; Fakhri, Y.; Mirjalali, H.; Hofmann, A.; Macpherson, C.N.L.; Hotez, P.J.; et al. Global prevalence of 615–639 infection in cats. Adv. Parasitol. 2020, 109, 615–639. [Google Scholar] [PubMed]
- Rubinsky-Elefant, G.; Hirata, C.E.; Yamamoto, J.H.; Ferreira, M.U. Human toxocariasis: Diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Ann. Trop. Med. Parasitol. 2010, 104, 3–23. [Google Scholar] [CrossRef]
- Rostami, A.; Riahi, S.M.; Holland, C.V.; Taghipour, A.; Khalili-Fomeshi, M.; Fakhri, Y.; Omrani, V.F.; Hotez, P.J.; Gasser, R.B. Seroprevalence estimates for toxocariasis in people worldwide: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007809. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, C.N. The epidemiology and public health importance of toxocariasis: A zoonosis of global importance. Int. J. Parasitol. 2013, 43, 999–1008. [Google Scholar] [CrossRef]
- Finsterer, J.; Auer, H. Neurotoxocarosis. Rev. Inst. Med. Trop. Sao Paulo 2007, 49, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.K.; Holland, C.V.; Loxton, K.; Barghouth, U. Cerebral Toxocariasis: Silent progression to neurodegenerative disorders? Clin. Microbiol. Rev. 2015, 28, 663–686. [Google Scholar] [CrossRef] [Green Version]
- Holland, C.V.; Hamilton, C.M. The significance of cerebral toxocariasis: A model system for exploring the link between brain involvement, behaviour and the immune response. J. Exp. Biol. 2013, 216, 78–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotez, P.J.; Wilkins, P.P. Toxocariasis: America’s most common neglected infection of poverty and a helminthiasis of global importance? PLoS Negl. Trop. Dis. 2009, 3, e400. [Google Scholar] [CrossRef]
- Eberhardt, O.; Bialek, R.; Nagele, T.; Dichgans, J. Eosinophilic meningomyelitis in toxocariasis: Case report and review of the literature. Clin. Neurol. Neurosurg. 2005, 107, 432–438. [Google Scholar] [CrossRef]
- Richartz, E.; Buchkremer, G. Cerebral toxocariasis: A rare cause of cognitive disorders. A contribution to differential dementia diagnosis. Der Nervenarzt 2002, 73, 458–462. [Google Scholar] [CrossRef]
- El-Sayed, N.M.; Ismail, K.A. Relationship between Toxocara canis infection and schizophrenia. Rawal Med. J. 2012, 37, 155–161. [Google Scholar]
- Walsh, M.G.; Haseeb, M.A. Reduced cognitive function in children with toxocariasis in a nationally representative sample of the United States. Int. J. Parasitol. 2012, 42, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Strube, C.; Waindok, P.; Raulf, M.K.; Springer, A. Toxocara-induced neural larva migrans (neurotoxocarosis) in rodent model hosts. Adv. Parasitol. 2020, 109, 189–218. [Google Scholar] [PubMed]
- Fisher, M. Toxocara cati: An underestimated zoonotic agent. Trends Parasitol. 2003, 19, 167–170. [Google Scholar] [CrossRef]
- Smith, H.; Holland, C.; Taylor, M.; Magnaval, J.; Schantz, P.; Maizels, R. How common is human toxocariasis? Towards standardizing our knowledge. Trends Parasitol. 2009, 25, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Fukae, J.; Kawanabe, T.; Akao, N.; Kado, M.; Tokoro, M.; Yokoyama, K.; Hattori, N. Longitudinal myelitis caused by visceral larva migrans associated with Toxocara cati infection: Case report. Clin. Neurol. Neurosurg. 2012, 114, 1091–1094. [Google Scholar] [CrossRef] [PubMed]
- Epe, C.; Sabel, T.; Schnieder, T.; Stoye, M. The behavior and pathogenicity of Toxacara canis larvae in mice of different strains. Parasitol. Res. 1994, 80, 691–695. [Google Scholar] [CrossRef]
- Springer, A.; Heuer, L.; Janecek-Erfurth, E.; Beineke, A.; Strube, C. Histopathological characterization of Toxocara canis- and T. cati-induced neurotoxocarosis in the mouse model. Parasitol. Res. 2019, 118, 2591–2600. [Google Scholar] [CrossRef]
- Heuer, L.; Beyerbach, M.; Lühder, F.; Beineke, A.; Strube, C. Neurotoxocarosis alters myelin protein gene transcription and expression. Parasitol. Res. 2015, 114, 2175–2186. [Google Scholar] [CrossRef]
- Waindok, P.; Janecek-Erfurth, E.; Lindenwald, D.; Wilk, E.; Schughart, K.; Geffers, R.; Balas, L.; Durand, T.; Rund, K.M.; Schebb, N.H.; et al. Multiplex profiling of inflammation-related bioactive lipid mediators in Toxocara canis- and Toxocara cati-induced neurotoxocarosis. PLoS Negl. Trop. Dis. 2019, 13, e0007706. [Google Scholar] [CrossRef]
- Waindok, P.; Strube, C. Neuroinvasion of Toxocara canis- and T. cati-larvae mediates dynamic changes in brain cytokine and chemokine profile. J. Neuroinflammation 2019, 16, 147. [Google Scholar] [CrossRef] [Green Version]
- Janecek, E.; Wilk, E.; Schughart, K.; Geffers, R.; Strube, C. Microarray gene expression analysis reveals major differences between Toxocara canis and Toxocara cati neurotoxocarosis and involvement of T. canis in lipid biosynthetic processes. Int. J. Parasitol. 2015, 45, 495–503. [Google Scholar] [CrossRef]
- Pommerenke, C.; Wilk, E.; Srivastava, B.; Schulze, A.; Novoselova, N.; Geffers, R.; Schughart, K. Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS ONE 2012, 7, e41169. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org (accessed on 13 January 2021).
- Oliveros, J.C. Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams 2007–2015. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 25 November 2021).
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Thomas, P. PANTHER pathway: An ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 2009, 563, 123–140. [Google Scholar] [PubMed]
- Janecek, E.; Waindok, P.; Bankstahl, M.; Strube, C. Abnormal neurobehaviour and impaired memory function as a consequence of Toxocara canis-as well as Toxocara cati-induced neurotoxocarosis. PLoS Negl. Trop. Dis. 2017, 11, e0005594. [Google Scholar] [CrossRef] [PubMed]
- Janecek, E.; Beineke, A.; Schnieder, T.; Strube, C. Neurotoxocarosis: Marked preference of Toxocara canis for the cerebrum and T. cati for the cerebellum in the paratenic model host mouse. Parasit. Vectors 2014, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.M.; Holland, C.V. Relationship between three intensity levels of Toxocara canis larvae in the brain and effects on exploration, anxiety, learning and memory in the murine host. J. Helminthol. 2001, 75, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.M.; Stafford, P.; Pinelli, E.; Holland, C.V. A murine model for cerebral toxocariasis: Characterization of host susceptibility and behaviour. Parasitology 2006, 132, 791–801. [Google Scholar] [CrossRef]
- Cardillo, N.; Rosa, A.; Ribicich, M.; Lopez, C.; Sommerfelt, I. Experimental infection with Toxocara cati in BALB/c mice, migratory behaviour and pathological changes. Zoonoses Public Health 2009, 56, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Dolinsky, Z.S.; Hardy, C.A.; Burright, R.G.; Donovick, P.J. The progression of behavioral and pathological effects of the parasite Toxocara canis in the mouse. Physiol. Behav. 1985, 35, 33–42. [Google Scholar] [CrossRef]
- Friedlander, R.M.; Nussenzweig, M.C.; Leder, P. Complete nucleotide sequence of the membrane form of the human IgM heavy chain. Nucleic Acids Res. 1990, 18, 4278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Max, E.E.; Korsmeyer, S.J. Human J chain gene. Structure and expression in B lymphoid cells. J. Exp. Med. 1985, 161, 832–849. [Google Scholar] [CrossRef]
- Stetler, G.; Brewer, M.T.; Thompson, R.C. Isolation and sequence of a human gene encoding a potent inhibitor of leukocyte proteases. Nucleic Acids Res. 1986, 14, 7883–7896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Liu, Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell 2015, 6, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Hering, H.; Lin, C.C.; Sheng, M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci. 2003, 23, 3262–3271. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Hummel, M.; Mitteregger, G.; Pace, C.; Windl, O.; Mansmann, U.; Kretzschmar, H.A. Transcriptome analysis reveals altered cholesterol metabolism during the neurodegeneration in mouse scrapie model. J. Neurochem. 2007, 102, 834–847. [Google Scholar] [CrossRef]
- Nishimura, M.; Tanaka, S.; Ihara, F.; Muroi, Y.; Yamagishi, J.; Furuoka, H.; Suzuki, Y.; Nishikawa, Y. Transcriptome and histopathological changes in mouse brain infected with Neospora Caninum. Sci. Rep. 2015, 5, 7936. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular stress responses: Cell survival and cell death. Int. J. Cell Biol. 2010, 2010, 214074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resende, N.M.; Gazzinelli-Guimarães, P.H.; Barbosa, F.S.; Oliveira, L.M.; Nogueira, D.S.; Gazzinelli-Guimarães, A.C.; Gonçalves, M.T.P.; Amorim, C.C.; Oliveira, F.M.; Caliari, M.V. New insights into the immunopathology of early Toxocara canis infection in mice. Parasit Vectors 2015, 8, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Berton, G.; Lowell, C.A. Integrin signaling in neutrophils and macrophages. Cell Signal 1999, 11, 621–635. [Google Scholar] [CrossRef]
- Kolbekova, P.; Vetvicka, D.; Svoboda, J.; Skirnisson, K.; Leissova, M.; Syrucek, M.; Mareckova, H.; Kolarova, L. Toxocara canis larvae reinfecting BALB/c mice exhibit accelerated speed of migration to the host CNS. Parasitol. Res. 2011, 109, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Phythian-Adams, A.T.; Cook, P.C.; Lundie, R.J.; Jones, L.H.; Smith, K.A.; Barr, T.A.; Hochweller, K.; Anderton, S.M.; Hammerling, G.J.; Maizels, R.M.; et al. CD11c depletion severely disrupts Th2 induction and development in vivo. J. Exp. Med. 2010, 207, 2089–2096. [Google Scholar] [CrossRef]
- Bayer, T.A.; Wirths, O.; Majtenyi, K.; Hartmann, T.; Multhaup, G.; Beyreuther, K.; Czech, C. Key factors in Alzheimer’s disease: Beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol. 2001, 11, 1–11. [Google Scholar] [CrossRef]
- Nakai, M.; Tanimukai, S.; Yagi, K.; Saito, N.; Taniguchi, T.; Terashima, A.; Kawamata, T.; Yamamoto, H.; Fukunaga, K.; Miyamoto, E.; et al. Amyloid beta protein activates PKC-delta and induces translocation of myristoylated alanine-rich C kinase substrate (MARCKS) in microglia. Neurochem. Int. 2001, 38, 593–600. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, Y.J.; Li, C.; Zheng, Q.Y.; Tian, J.; Li, Z.Y.; Huang, T.Y.; Zhang, W.; Xu, H.X. Inhibition of PKC delta reduces amyloid-beta levels and reverses Alzheimer disease phenotypes. J. Exp. Med. 2018, 215, 1665–1677. [Google Scholar] [CrossRef] [Green Version]
- Gourmaud, S.; Paquet, C.; Dumurgier, J.; Pace, C.; Bouras, C.; Gray, F.; Laplanche, J.L.; Meurs, E.F.; Mouton-Liger, F.; Hugon, J. Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: Links to cognitive decline. J. Psychiatry Neurosci. 2015, 40, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Meethal, S.V.; Smith, M.A.; Bowen, R.L.; Atwood, C.S. The gonadotropin connection in Alzheimer’s disease. Endocrine 2005, 26, 317–326. [Google Scholar] [CrossRef]
- Wang, L.; Chadwick, W.; Park, S.S.; Zhou, Y.; Silver, N.; Martin, B.; Maudsley, S. Gonadotropin-releasing hormone receptor system: Modulatory role in aging and neurodegeneration. CNS Neurol. Disord. Drug Targets 2010, 9, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, T.J.; Hahn, T.P.; MacDougall-Shackleton, S.A.; Ball, G.F. Gonadotropin-releasing hormone plasticity: A comparative perspective. Front. Neuroendocr. 2012, 33, 287–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuruddin, S.; Syverstad, G.H.; Lillehaug, S.; Leergaard, T.B.; Nilsson, L.N.; Ropstad, E.; Krogenaes, A.; Haraldsen, I.R.; Torp, R. Elevated mRNA-levels of gonadotropin-releasing hormone and its receptor in plaque-bearing Alzheimer’s disease transgenic mice. PLoS ONE 2014, 9, e103607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen, R.L.; Verdile, G.; Liu, T.; Parlow, A.F.; Perry, G.; Smith, M.A.; Martins, R.N.; Atwood, C.S. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-beta precursor protein and amyloid-beta deposition. J. Biol. Chem. 2004, 279, 20539–20545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadesus, G.; Webber, K.M.; Atwood, C.S.; Pappolla, M.A.; Perry, G.; Bowen, R.L.; Smith, M.A. Luteinizing hormone modulates cognition and amyloid-beta deposition in Alzheimer APP transgenic mice. Biochim. Biophys. Acta 2006, 1762, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Li, J.; Purkayastha, S.; Tang, Y.; Zhang, H.; Yin, Y.; Li, B.; Liu, G.; Cai, D. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature 2013, 497, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Falleti, M.G.; Maruff, P.; Burman, P.; Harris, A. The effects of growth hormone (GH) deficiency and GH replacement on cognitive performance in adults: A meta-analysis of the current literature. Psychoneuroendocrinology 2006, 31, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Nieves-Martinez, E.; Sonntag, W.E.; Wilson, A.; Donahue, A.; Molina, D.P.; Brunso-Bechtold, J.; Nicolle, M.M. Early-onset GH deficiency results in spatial memory impairment in mid-life and is prevented by GH supplementation. J. Endocrinol. 2010, 20, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, O.K.; Cortet-Rudelli, C.; Yollin, E.; Merlen, E.; Daveluy, W.; Rousseaux, M. Growth hormone replacement therapy in patients with traumatic brain injury. J. Neurotrauma 2013, 30, 998–1006. [Google Scholar] [CrossRef] [PubMed]
Enriched Biological Modules (Panther Pathway Accession Number) | DTGs | Fold-Enrichment | Adj. p-Value (FDR) | |
---|---|---|---|---|
Cerebrum | Cholesterol biosynthesis (P00014) | 6 | 10.76 | 0.003 |
Axon guidance mediated by Slit/Robo (P00008) | 7 | 6.80 | 0.005 | |
B cell activation (P00010) | 13 | 4.33 | 0.001 | |
T cell activation (P00053) | 14 | 3.63 | 0.003 | |
Apoptosis signaling pathway (P00006) | 18 | 3.56 | 0.001 | |
Interleukin signaling pathway (P00036) | 13 | 3.44 | 0.005 | |
Ras Pathway (P04393) | 10 | 3.33 | 0.030 | |
CCKR signaling map (P06959) | 21 | 3.08 | 0.001 | |
Inflammation mediated by chemokine and cytokine signaling pathway (P00031) | 23 | 2.08 | 0.034 | |
Unclassified | 790 | 0.93 | <0.001 | |
Cerebellum | Apoptosis signaling pathway (P00006) | 25 | 2.54 | 0.006 |
Inflammation mediated by chemokine and cytokine signaling pathway (P00031) | 44 | 2.04 | 0.004 | |
Integrin signaling pathway (P00034) | 32 | 2.02 | 0.023 | |
Unclassified | 1542 | 0.94 | <0.001 |
Study Day | Regulation | Number of DTGs | Enriched Biological Modules (PANTHER Pathway Accession Number) | |
---|---|---|---|---|
T. canis | ||||
cerebrum | 14 pi | up | 605 | Apoptosis signaling pathway (P00006), Axon guidance mediated by Slit/Robo (P00008), B-cell activation (P00010), CCKR signaling map (P06959), FAS signaling pathway (P00020), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), JAK/STAT signaling pathway (P00038), Ras Pathway (P04393), T-cell activation (P00053) |
down | 434 | Cholesterol biosynthesis (P00014) | ||
28 pi | up | 539 | Apoptosis signaling pathway (P00006), B-cell activation (P00010), CCKR signaling map (P06959), FAS signaling pathway (P00020), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), JAK/STAT signaling pathway (P00038), Ras Pathway (P04393), T-cell activation (P00053) | |
down | 500 | Cholesterol biosynthesis (P00014) | ||
70 pi | up | 534 | Apoptosis signaling pathway (P00006), Axon guidance mediated by Slit/Robo (P00008), B-cell activation (P00010), CCKR signaling map (P06959), FAS signaling pathway (P00020), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), JAK/STAT signaling pathway (P00038), Ras Pathway (P04393), T-cell activation (P00053) | |
down | 505 | Cholesterol biosynthesis (P00014) | ||
98 pi | up | 553 | Apoptosis signaling pathway (P00006), B-cell activation (P00010), CCKR signaling map (P06959), FAS signaling pathway (P00020), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), JAK/STAT signaling pathway (P00038), Ras Pathway (P04393), T-cell activation (P00053) | |
down | 486 | Cholesterol biosynthesis (P00014), Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway (P00026) | ||
120 pi | up | 621 | Apoptosis signaling pathway (P00006), Axon guidance mediated by Slit/Robo (P00008), B-cell activation (P00010), CCKR signaling map (P06959), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), JAK/STAT signaling pathway (P00038), T-cell activation (P00053) | |
down | 418 | 5HT2 type receptor-mediated signaling pathway (P04374), Alzheimer disease-amyloid secretase pathway (P00003), Cholesterol biosynthesis (P00014), Gonadotropin-releasing hormone receptor pathway (P06664), Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway (P00026) | ||
cerebellum | 14 pi | up | 1106 | Apoptosis signaling pathway (P00006), B-cell activation (P00010), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), Toll receptor signaling pathway (P00054) |
down | 967 | n/a | ||
28 pi | up | 1139 | Apoptosis signaling pathway (P00006), B-cell activation (P00010), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), T-cell activation (P00053), Toll receptor signaling pathway (P00054) | |
down | 934 | n/a | ||
70 pi | up | 1017 | Apoptosis signaling pathway (P00006), B-cell activation (P00010), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), Plasminogen activating cascade (P00050), Toll receptor signaling pathway (P00054) | |
down | 1056 | n/a | ||
98 pi | up | 1091 | Apoptosis signaling pathway (P00006), B-cell activation (P00010), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), JAK/STAT signaling pathway (P00038), Plasminogen activating cascade (P00050), Toll receptor signaling pathway (P00054) | |
down | 982 | n/a | ||
120 pi | up | 1084 | Apoptosis signaling pathway (P00006), B-cell activation (P00010), Cadherin signaling pathway (P00012), Inflammation mediated by chemokine and cytokine signaling pathway (P00031), Interleukin signaling pathway (P00036), JAK/STAT signaling pathway (P00038), Plasminogen activating cascade (P00050), Toll receptor signaling pathway (P00054) | |
down | 989 | n/a | ||
T. cati | ||||
cerebrum | 14 pi | up | 150 | n/a |
down | 70 | n/a | ||
28 pi | up | 165 | n/a | |
down | 55 | n/a | ||
70 pi | up | 168 | n/a | |
down | 52 | n/a | ||
98 pi | up | 158 | n/a | |
down | 62 | n/a | ||
120 pi | up | 142 | n/a | |
down | 78 | n/a | ||
cerebellum | 14 pi | up | 163 | n/a |
down | 52 | n/a | ||
28 pi | up | 161 | n/a | |
down | 54 | n/a | ||
70 pi | up | 161 | n/a | |
down | 54 | n/a | ||
98 pi | up | 161 | n/a | |
down | 54 | n/a | ||
120 pi | up | 160 | n/a | |
down | 55 | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waindok, P.; Janecek-Erfurth, E.; Lindenwald, D.L.; Wilk, E.; Schughart, K.; Geffers, R.; Strube, C. Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations. Microorganisms 2022, 10, 177. https://doi.org/10.3390/microorganisms10010177
Waindok P, Janecek-Erfurth E, Lindenwald DL, Wilk E, Schughart K, Geffers R, Strube C. Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations. Microorganisms. 2022; 10(1):177. https://doi.org/10.3390/microorganisms10010177
Chicago/Turabian StyleWaindok, Patrick, Elisabeth Janecek-Erfurth, Dimitri L. Lindenwald, Esther Wilk, Klaus Schughart, Robert Geffers, and Christina Strube. 2022. "Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations" Microorganisms 10, no. 1: 177. https://doi.org/10.3390/microorganisms10010177
APA StyleWaindok, P., Janecek-Erfurth, E., Lindenwald, D. L., Wilk, E., Schughart, K., Geffers, R., & Strube, C. (2022). Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations. Microorganisms, 10(1), 177. https://doi.org/10.3390/microorganisms10010177