Dissemination of High-Risk Clones Enterobacterales among Bulgarian Fecal Carriage Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates-Collection and Isolation
2.2. Antimicrobial Susceptibility Testing
2.3. Phenotypic ESBL and Carbapenemases Detection
2.4. Isoelectric Focusing and Bioassay
2.5. Molecular-Genetic β-lactamase Identification
2.6. ERIC, MLST Typing, and Phylotyping
3. Results
3.1. Bacterial Isolates
3.2. Antimicrobial Susceptibility Testing
3.3. Phenotypic ESBL and Carbapenemase Detection
3.4. Molecular-Genetic Identification of β-lactamase
3.5. Isoelectric Focusing and Bioassay
3.6. MLST, ERIC Typing, and Phylotyping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bush, K.; Bradford, P. Epidemiology of β-Lactamase-producing pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. 7), S521–S528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Katz, D.E.; Marchaim, D. The Continuing Plague of Extended-spectrum β-lactamase-producing Enterobacteriaceae Infections. Infect. Dis. Clin. N. Am. 2016, 30, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.U.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res. Int. 2018, 2018, 9519718. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 2011, 35, 736–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woerther, P.L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karanika, S.; Karantanos, T.; Arvanitis, M.; Grigoras, C.; Mylonakis, E. Fecal Colonization with Extended-spectrum Beta-lactamase-Producing Enterobacteriaceae and Risk Factors Among Healthy Individuals: A Systematic Review and Metaanalysis. Clin. Infect. Dis. 2016, 63, 310–318, Erratum in Clin. Infect. Dis. 2016, 63, 851. [Google Scholar] [CrossRef] [PubMed]
- Jolivet, S.; Vaillant, L.; Poncin, T.; Lolom, I.; Gaudonnet, Y.; Rondinaud, E.; Bendjelloul, G.; Lomont, A.; Lucet, J.C.; Armand-Lefèvre, L. Prevalence of carriage of extended-spectrum β-lactamase-producing enterobacteria and associated factors in a French hospital. Clin. Microbiol. Infect. 2018, 24, 1311–1314. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, H.; Roggenkamp, A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 2003, 69, 5306–5318. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Jayol, A.; Poirel, L. Universal Culture Medium for Screening Polymyxin-Resistant Gram-Negative Isolates. J. Clin. Microbiol. 2016, 54, 1395–1399. [Google Scholar] [CrossRef] [Green Version]
- Jarlier, V.; Nicolas, M.H.; Fournier, G.; Philippon, A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Matthew, M.; Harris, A.M.; Marshall, M.J.; Ross, G.W. The use of analytical isoelectric focussing for detection and identification of β-lactamases. J. Gen. Microbiol. 1975, 88, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Markovska, R.; Stoeva, T.; Schneider, I.; Boyanova, L.; Popova, V.; Dacheva, D.; Kaneva, R.; Bauernfeind, A.; Mitev, V.; Mitov, I. Clonal dissemination of multilocus sequence type ST15 KPC-2-producing Klebsiella pneumoniae in Bulgaria. APMIS 2015, 123, 887–894. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, J.K.; Kitchel, B.; Zhu, W.; Anderson, K.F.; Clark, N.C.; Ferraro, M.J.; Savard, P.; Humphries, R.M.; Kallen, A.J.; Limbago, B.M. New Delhi metallo-β-lactamase-producing Enterobacteriaceae, United States. Emerg. Infect. Dis. 2013, 19, 870–878. [Google Scholar] [CrossRef]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [Green Version]
- Versalovic, J.; Koeuth, T.; Lupski, J. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Stoeva, T.; Boyanova, L.; Stankova, P.; Schneider, I.; Keuleyan, E.; Mihova, K.; Murdjeva, M.; Sredkova, M.; Lesseva, M.; et al. Multicentre investigation of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Bulgarian hospitals—Interregional spread of ST11 NDM-1-producing K. pneumoniae. Infect. Genet. Evol. 2019, 69, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Clermont, O.; Dhanji, H.; Upton, M.; Gibreel, T.; Fox, A.; Boyd, D.; Mulvey, M.R.; Nordmann, P.; Ruppé, E.; Sarthou, J.L.; et al. Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J. Antimicrob. Chemother. 2009, 64, 274–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple detection of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Markovska, R.; Stankova, P.; Stoeva, T.; Ivanova, D.; Pencheva, D.; Kaneva, R.; Boyanova, L. Fecal Carriage and Epidemiology of Extended-Spectrum Beta-Lactamase/Carbapenemases Producing Enterobacterales Isolates in Bulgarian Hospitals. Antibiotics 2021, 10, 747. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M.; Lopes, E.; Gonçalves, M.L.; Pereira, A.L.; Machado, E.; Costa, A.; de Lencastre, H.; Poirel, L. Intestinal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae at admission in a Portuguese hospital. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Pilmis, B.; Cattoir, V.; Lecointe, D.; Limelette, A.; Grall, I.; Mizrahi, A.; Marcade, G.; Poilane, I.; Guillard, T.; Bourgeois, N.N.; et al. Carriage of ESBL-producing Enterobacteriaceae in French hospitals: The PORTABLSE study. J. Hosp. Infect. 2018, 98, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.M.; Alnaiemi, N.; Reuland, E.A.; Wintermans, B.B.; Koek, A.; Abdelwahab, A.M.; Samy, A.; Abdelsalam, K.W.; Vandenbroucke-Grauls, C.M. Fecal carriage of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae in Egyptian patients with community-onset gastrointestinal complaints: A hospital -based cross-sectional study. Antimicrob. Resist. Infect. Control 2017, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, D.; Markovska, R.; Stoeva, T.; Stankova, P.; Boyanova, L.; Mihova, K.; Kaneva, R.; Mitov, I. First report of DHA-1 producing Enterobacter cloacae isolate in Bulgaria. Folia Med. 2019, 61, 458–461. [Google Scholar] [CrossRef]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef]
- De Oliveira Santos, J.V.; da Costa Júnior, S.D.; Cavalcanti, I.D.L.; de Souza, J.B.; Coriolano, D.L.; da Silva, W.R.C.; Alves, M.H.M.E.; Cavalcanti, I.M.F. Panorama of Bacterial Infections Caused by Epidemic Resistant Strains. Curr. Microbiol. 2022, 79, 175. [Google Scholar] [CrossRef]
- Yan, L.; Sun, J.; Xu, X.; Huang, S. Epidemiology and risk factors of rectal colonization of carbapenemase-producing Enterobacteriaceae among high-risk patients from ICU and HSCT wards in a university hospital. Antimicrob. Resist. Infect. Control 2020, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Errico, G.; Gagliotti, C.; Monaco, M.; Masiero, L.; Gaibani, P.; Ambretti, S.; Landini, M.P.; D’Arezzo, S.; di Caro, A.; Parisi, S.G.; et al. Colonization and infection due to carbapenemase-producing Enterobacteriaceae in liver and lung transplant recipients and donor-derived transmission: A prospective cohort study conducted in Italy. Clin. Microbiol. Infect. 2019, 25, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Hameed, M.F.; Chen, Y.; Wang, Y.; Shafiq, M.; Bilal, H.; Liu, L.; Ma, J.; Gu, P.; Ge, H. Epidemiological Characterization of Colistin and Carbapenem Resistant Enterobacteriaceae in a Tertiary: A Hospital from Anhui Province. Infect. Drug Resist. 2021, 14, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Bilal, H.; Zhang, G.; Rehman, T.; Han, J.; Khan, S.; Shafiq, M.; Yang, X.; Yan, Z.; Yang, X. First Report of blaNDM-1 Bearing IncX3 Plasmid in Clinically Isolated ST11 Klebsiella pneumoniae from Pakistan. Microorganisms 2021, 9, 951. [Google Scholar] [CrossRef]
- Zimmerman, F.S.; Assous, M.V.; Bdolah-Abram, T.; Lachish, T.; Yinnon, A.M.; Wiener-Well, Y. Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge. Am. J. Infect. Control 2013, 41, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Novais, Â.; Ferraz, R.V.; Viana, M.; da Costa, P.M.; Peixe, L. NDM-1 Introduction in Portugal through a ST11 KL105 Klebsiella pneumoniae Widespread in Europe. Antibiotics 2022, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Izdebski, R.; Sitkiewicz, M.; Urbanowicz, P.; Krawczyk, M.; Gniadkowski, M. Genomic background of the Klebsiella pneumoniae NDM-1 outbreak in Poland, 2012–2018. J. Antimicrob. Chemother. 2020, 75, 3156–3162. [Google Scholar] [CrossRef] [PubMed]
- Studentova, V.; Dobiasova, H.; Hedlova, D.; Dolejska, M.; Papagiannitsis, C.C.; Hrabak, J. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 2015, 59, 1325–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Pan, F.; Sun, Y.; Wang, C.; Shi, Y.; Zhang, T.; Yu, F.; Zhang, H. Fecal Carriage and Molecular Epidemiology of Carbapenem-Resistant Enterobacteriaceae from Inpatient Children in a Pediatric Hospital of Shanghai. Infect. Drug Resist. 2020, 13, 4405–4415. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, M.; Pérez-Viso, B.; Carmen Turrientes, M.; Díaz-Agero, C.; López-Fresneña, N.; Bonten, M.; Malhotra-Kumar, S.; Ruiz-Garbajosa, P.; Cantón, R. Characterization of carbapenemase-producing Enterobacteriaceae from colonized patients in a university hospital in Madrid, Spain, during the R-GNOSIS project depicts increased clonal diversity over time with maintenance of high-risk clones. J. Antimicrob. Chemother. 2018, 73, 3039–3043. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, M.; Huang, J.; Shah, J.M.; Ali, I.; Rahman, S.U.; Wang, L. Characterization and resistant determinants linked to mobile elements of ESBL-producing and mcr-1-positive Escherichia coli recovered from the chicken origin. Microb. Pathog. 2021, 150, 104722. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.U.; Muhammad, N.; Ali, T.; Saddique, U.; Ahmad, S.; Shafiq, M.; Han, B. Genotypic characterization of multidrug resistant Escherichia coli isolates reveals co-existence of ESBL- and carbapenemase- encoding genes linked to ISCR1. Vet. Ital. 2021, 57, 275–285. [Google Scholar]
- Rodrigues, C.; Machado, E.; Ramos, H.; Peixe, L.; Novais, Â. Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: A successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int. J. Med. Microbiol. 2014, 304, 1100–1108. [Google Scholar] [CrossRef]
- Markovska, R.; Stoeva, T.; Boyanova, L.; Stankova, P.; Pencheva, D.; Keuleyan, E.; Murjeva, M.; Sredkova, M.; Ivanova, D.; Lazarova, G.; et al. Dissemination of successful international clone ST15 and clonal complex 17 among Bulgarian CTX-M-15 producing K. pneumoniae isolates. Diagn. Microbiol. Infect. Dis. 2017, 89, 310–313. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, L.; Zhou, H.; Chan, E.W.; Li, J.; Fang, Y.; Li, Y.; Liao, K.; Chen, S. Nationwide Surveillance of Clinical Carbapenem-resistant Enterobacteriaceae (CRE) Strains in China. EBioMedicine 2017, 19, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, L.J.; Weinstock, G.M.; de La Cadena, E.; Diaz, L.; Rios, R.; Hanson, B.M.; Brown, J.S.; Vats, P.; Phillips, D.S.; Nguyen, H.; et al. An analysis of the epidemic of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: Convergence of two evolutionary mechanisms creates the “Perfect Storm”. J. Infect. Dis. 2017, 217, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Arzilli, G.; Scardina, G.; Casigliani, V.; Petri, D.; Porretta, A.; Moi, M.; Lucenteforte, E.; Rello, J.; Lopalco, P.; Baggiani, A.; et al. Screening for antimicrobial-resistant Gram-negative bacteria in hospitalised patients, and risk of progression from colonisation to infection: Systematic review. J. Infect. 2022, 84, 119–130. [Google Scholar] [CrossRef]
- Rogers, B.A.; Sidjabat, H.E.; Paterson, D.L. Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain. J. Antimicrob. Chemother. 2011, 66, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Can, F.; Azap, O.K.; Seref, C.; Ispir, P.; Arslan, H.; Ergonul, O. Emerging Escherichia coli O25b/ST131 clone predicts treatment failure in urinary tract infections. Clin. Infect. Dis. 2015, 60, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Mathers, A.J.; Peirano, G.; Pitout, J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, I.; Haverkate, M.; Veenemans, J.; Hendriks, Y.; Verhulst, C.; Mulders, A.; Couprie, W.; Bootsma, M.; Johnson, J.; Kluytmans, J. Prolonged colonisation with Escherichia coli O25:ST131 versus other extended-spectrum beta-lactamase-producing E. coli in a long-term care facility with high endemic level of rectal colonisation, the Netherlands, 2013 to 2014. Eurosurveillance 2016, 21, 30376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Cerero, L.; Salamanca, E.; Delgado-Valverde, M.; Rodríguez-Martínez, J.M.; Rodríguez-Baño, J.; Pascual, Á. Higher prevalence of CTX-M-27-producing Escherichia coli belonging to ST131 clade C1 among residents of two long-term care facilities in Southern Spain. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 335–338. [Google Scholar] [CrossRef]
- Adler, A.; Gniadkowski, M.; Baraniak, A.; Izdebski, R.; Fiett, J.; Hryniewicz, W.; Malhotra-Kumar, S.; Goossens, H.; Lammens, C.; Lerman, Y.; et al. Transmission dynamics of ESBL-producing Escherichia coli clones in rehabilitation wards at a tertiary care centre. Clin. Microbiol. Infect. 2012, 18, E497–E505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Martínez, M.; González-Rico, C.; Gozalo-Margüello, M.; Marco, F.; Gracia-Ahufinger, I.; Aranzamendi, M.; Sánchez-Díaz, A.M.; Vicente-Rangel, T.; Chaves, F.; Calvo Montes, J.; et al. Molecular characterization of multidrug resistant Enterobacterales strains isolated from liver and kidney transplant recipients in Spain. Sci. Rep. 2021, 11, 11875. [Google Scholar] [CrossRef]
- Fox, S.; Goswami, C.; Holden, M.; Connolly, J.P.R.; Mordue, J.; O’Boyle, N.; Roe, A.; Connor, M.; Leanord, A.; Evans, T.J. A highly conserved complete accessory Escherichia coli type III secretion system 2 is widespread in bloodstream isolates of the ST69 lineage. Sci. Rep. 2020, 10, 4135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Savov, E.; Nazli, A.; Trifonova, A.; Todorova, I.; Gergova, I.; Nordmann, P. Outbreak caused by NDM-1- and RmtB-producing Escherichia coli in Bulgaria. Antimicrob. Agents Chemother. 2014, 58, 2472–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, P.R.; McKinnon, J.; Liu, M.; Djordjevic, S.P. Multidrug Resistant uropathogenic Escherichia coli ST405 with a novel, composite IS26 transposon in a unique chromosomal location. Front. Microbiol. 2019, 9, 3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peirano, G.; Matsumura, Y.; Adams, M.D.; Bradford, P.; Motyl, M.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D.D. Genomic Epidemiology of global carbapenemase-producing Enterobacter spp., 2008–2014. Emerg. Infect. Dis. 2018, 24, 1010–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izdebski, R.; Baraniak, A.; Zabicka, D.; Sekowska, A.; Gospodarek-Komkowska, E.; Hryniewicz, W.; Gniadkowski, M. VIM/IMP carbapenemase-producing Enterobacteriaceae in Poland: Epidemic Enterobacter hormaechei and Klebsiella oxytoca lineages. J. Antimicrob. Chemother. 2018, 73, 2675–2681. [Google Scholar] [CrossRef] [PubMed]
Bacterial Species β-lactamase Genes Detected | E.coli n = 103 | Klebsiella spp. n = 73 | Enterobacter spp. n = 16 | C. freundii Complex n = 10 | M. morganii n = 3 | Total Number n = 205 |
---|---|---|---|---|---|---|
blaCTX-M-15 | 46 (45%) | 24 (33%) | 7 (44%) | 6 (60%) | 1 (33%) | 84 (41%) |
blaCTX-M-15 + blaCMY-4 | - | 1 (1.4%) | - | - | - | 1 (0.5%) |
blaCTX-M-3 like + blaCTX-M-15 like | - | 1 (1.4%) | - | - | - | 1 (0.5%) |
blaCTX-M-3 | 18 (17%) | 30 (41%) | 1 (6%) | - | - | 49 (24%) |
blaCTX-M-9 | 1 (1%) | - | - | - | - | 1 (0.5%) |
blaCTX-M-14 | 7 (7%) | 1 (1.4%) | - | - | - | 8 (3.9%) |
blaCTX-M-27 | 22 (21%) | - | - | - | - | 22 (11%) |
blaSHV-12 | - | - | - | 1 (10%) | - | 1 (0.5%) |
blaNDM-1 + blaCTX-M-15 + blaCMY-4 | - | 9 (12%) | - | - | - | 9 (4.4%) |
blaNDM-1+ blaCTX-M-3 + blaCMY-4 | - | 1 (1.4%) | - | - | - | 1 (0.5%) |
blaNDM-1+ blaCTX-M-3 | - | 1 (1.4%) | - | - | - | 1 (0.5%) |
blaKPC-2 | - | 1 (1.4%) | - | - | - | 1 (0.5%) |
blaKPC-2 + blaCTX-M-15 | 1 (1%) | - | - | - | - | 1 (0.5%) |
blaKPC-2+ blaCTX-M-3 | - | 1 (1.4%) | - | - | - | 1 (0.5%) |
blaDHA-1 | 5 (5%) | - | - | - | - | 5 (2.4%) |
blaCMY-2 | 2 (2%) | - | - | - | - | 2 (1%) |
Other * | - | 1 (1.4%) | - | - | - | 1 (0.5%) |
Unknown mechanism | 1 (1%) | 2 (3%) | - | - | - | 3 (1.5%) |
AmpC hyperproducers | - | - | 8 (50%) | 3 (30%) | 2 (67%) | 13 (6%) |
ERIC TYPE (Number) | MLST Type (Number Isolates) | Center (Number Isolates) | Detected Gene/Gene Combinations (Number) |
---|---|---|---|
b (n = 10) b”(n = 2) | ST353 (n = 12) | A (11); D (1) | blaCTX-M-3 (10) unidentified (2) |
p (n = 11) | ST11 | D (11) | blaNDM-1 + blaCTX-M-15 + blaCMY-4 (9) blaNDM-1 + blaCTX-M-3 + blaCMY-4 (1) blaNDM-1 + blaCTX-M-3 (1) |
s (n = 8) | ST37 | A (2); B (6) | blaCTX-M-3 (6) blaCTX-M-15 (2) |
a (n = 6) | ST1198 | A (6) | blaCTX-M-15 |
h (n = 4) | ST280 | B (4) | blaCTX-M-15 (3) blaCTX-M-3 (1) |
w (n = 3) | ST34 | B (1); E (2) | blaCTX-M-15 (2) blaCTX-M-14 (1) |
m (n = 4) | ST15 | B (1); E (3) | blaCTX-M-15 |
t (n = 3) | ST1569 | E (1); A (2) | blaCTX-M-3 (2), blaCTX-M-15 (1) |
c (n = 2) | ST17 | A (2) | blaCTX-M-3 (1) blaCTX-M-15 (1) |
n (n = 2) | ST258 | D (1); F (1) | blaKPC-2 (1) blaKPC-2 + blaCTX-M-3 (1) |
r (n = 2) | ST253 | E (2) | blaCTX-M-15 |
e (n = 2) | ST449 | C (1); F (1) | blaCTX-M-3 (1) blaCTX-M-15 + blaCMY-4 (1) |
uni (n = 6) | ST429 (n = 1) ST627 (n = 1) ST20 (n = 1) ST215 (n = 1) ST1563 (n = 1) ND (n = 1) | A (1) F (1) A (1) B (1) F (1) B (1) | blaCTX-M-3 blaSHV-1 blaCTX-M-3 CTX-M-3/CTX-M-15 like blaCTX-M-15 blaCTX-M-15 |
ERIC Type (Number) | MLST Type (Number) | CC | Phylo Group | Center (Number Isolates) | Detected Gene (Number) |
---|---|---|---|---|---|
A (n = 32) A1 (n = 1) A2 (n = 3) A3 (n = 1) A4 (n = 3) A5 (n = 3) | ST131(n = 43) | 131 | B2 | A (3); B (11); E (6); C (14); F (9) | blaCTX-M-15 (17), blaCTX-M-3 (3) blaCTX-M-27 (20), blaCTX-M-14 (2), blaKPC-2 (1) |
S1 (n = 4) S2 (n = 6) | ST38 (n = 10) | 38 | D | A (3); B (3) F (3); E (1) | blaCTX-M-15 (3), blaCTX-M-3 (1) blaCTX-M-14 (3), blaCTX-M-27 (2), blaDHA-1 (1) |
X (n = 1) | ST4981 | 10 | A | E (1) | unidentified (1) |
F (n = 5) | ST155 | 155 | B1 | A (2); B (3) | blaCTX-M-15 (3), blaCTX-M-3 (2) |
K (n = 2) | ST69 | 69 | D | B (2) | blaDHA-1 (1), blaCTX-M-3 (1) |
H (n = 4) | ST1196 | - | B1 | A (3); B (1) | blaCTX-M-15 (1), blaCTX-M-3 (2), blaDHA-1 (1) |
W (n = 3) | ST405 | 405 | D | B (2); F (1) | blaCTX-M-15 (3) |
F1 (n = 2) | ST56 | 155 | B1 | B (2) | blaCTX-M-3 (1), DHA-1 (1) |
J (n = 1) | ST10 | 10 | A | A (1) | blaCTX-M-3 (1) |
Z (n = 1) | ST88 | 23 | A | A (3) | blaCTX-M-3 (2), blaCTX-M-15 (1) |
R (n = 2) | ST1011 | - | D | A (1); B (1) | blaCTX-M-14 (1), blaCTX-M-9 (1) |
L (n = 2) | ST127 | - | B2 | A (2) | blaCTX-M-15 (2) |
T (n = 2) | ST144 | - | B2 | A (2) | blaCTX-M-15 (2) |
N (n = 2) | ST1485 | 648 | B1 | B (2) | blaCTX-M-3 (2) |
V (n = 1) | ST34 | 10 | A | A (1) | blaCTX-M-15 (1) |
C (n = 2) | ST681 | - | B2 | B (2) | blaCTX-M-3 (1), blaCTX-M-15 (1) |
B (n = 1) | ST95 | 95 | B2 | C (1) | blaCTX-M-14 (1) |
D (n = 1) | ST1993 | - | B2 | A (1) | blaCTX-M-15 (1) |
uni (n = 15) | ND | B1(7) A(5); D(3) | B (5), F (4) A (3); E (3) | blaCTX-M-15 (10), blaCTX-M-3 (2), blaCMY-2 (2), blaDHA-1 (1) |
ERIC Type (Number) | Species | MLST | Center (Number) | Detected Gene (Number) |
---|---|---|---|---|
A (n = 5) | E. hormaechei spp. steigerwaltii | ST90 | B (4), E (1) | blaCTX-M-15 (5) |
V (n = 2) | E. hormaechei spp. hoffmanii | ST128 | A (2) | AmpC (2) |
uni (n = 1) | E. hormaechei spp. hoffmanii | ND | B (1) | blaCTX-M-15 (1) |
uni (n = 1) | E. hormaechei spp. hoffmanii | ST104 | C (1) | AmpC (1) |
uni (n = 1) | E. hormaechei spp. xiangfangensis | ST148 | F (1) | AmpC (1) |
uni (n = 1) | E. hormaechei spp. xiangfangensis | ST200 | F (1) | blaCTX-M-3 (1) |
uni (n = 1) | E. hormaechei spp. steigerwaltii | ST1116 | B (1) | AmpC (1) |
uni (n = 1) | E. hormaechei spp. steigerwaltii | ND | C (1) | AmpC (1) |
uni (n = 1) | E. kobei | ND | C (1) | AmpC (1) |
uni (n = 1) | E. hormaechei spp. steigerwaltii | ND | F (1) | AmpC (1) |
uni (n = 1) | E. hormaechei spp. steigerwaltii | ND | E (1) | blaCTX-M-15 (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markovska, R.; Stankova, P.; Stoeva, T.; Murdjeva, M.; Marteva-Proevska, Y.; Ivanova, D.; Sredkova, M.; Petrova, A.; Mihova, K.; Boyanova, L. Dissemination of High-Risk Clones Enterobacterales among Bulgarian Fecal Carriage Isolates. Microorganisms 2022, 10, 2144. https://doi.org/10.3390/microorganisms10112144
Markovska R, Stankova P, Stoeva T, Murdjeva M, Marteva-Proevska Y, Ivanova D, Sredkova M, Petrova A, Mihova K, Boyanova L. Dissemination of High-Risk Clones Enterobacterales among Bulgarian Fecal Carriage Isolates. Microorganisms. 2022; 10(11):2144. https://doi.org/10.3390/microorganisms10112144
Chicago/Turabian StyleMarkovska, Rumyana, Petya Stankova, Temenuga Stoeva, Marianna Murdjeva, Yulia Marteva-Proevska, Dobrinka Ivanova, Maryia Sredkova, Atanaska Petrova, Kalina Mihova, and Lyudmila Boyanova. 2022. "Dissemination of High-Risk Clones Enterobacterales among Bulgarian Fecal Carriage Isolates" Microorganisms 10, no. 11: 2144. https://doi.org/10.3390/microorganisms10112144
APA StyleMarkovska, R., Stankova, P., Stoeva, T., Murdjeva, M., Marteva-Proevska, Y., Ivanova, D., Sredkova, M., Petrova, A., Mihova, K., & Boyanova, L. (2022). Dissemination of High-Risk Clones Enterobacterales among Bulgarian Fecal Carriage Isolates. Microorganisms, 10(11), 2144. https://doi.org/10.3390/microorganisms10112144