Occurrence and Characteristics of Escherichia albertii in Wild Birds and Poultry Flocks in Switzerland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Enrichement, Growth Conditions, and DNA Extraction
2.3. Screening for the Eacdt Gene
2.4. Isolation of E. albertii
2.5. DNA Extraction and Whole-Genome Sequencing (WGS)
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asoshima, N.; Matsuda, M.; Shigemura, K.; Honda, M.; Yoshida, H.; Oda, T.; Hiwaki, H. Isolation of Escherichia albertii from Raw Chicken Liver in Fukuoka City, Japan. Jpn. J. Infect. Dis. 2015, 68, 248–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, A.; Ebuchi, S.; Uryu, K.; Hiwaki, H.; Ogata, K.; Washimi, E.; Hasegawa, A.; Utiyama, S. An Outbreak of Water-Borne Gastroenteritis Caused by Diarrheagenic Escherichia coli Possessing eae Gene. Jpn. J. Infect. Dis. 2006, 59, 59–60. [Google Scholar]
- Konno, T.; Yatsuyanagi, J.; Takahashi, S.; Kumagai, Y.; Wada, E.; Chiba, M.; Saito, S. Isolation and Identification of Escherichia albertii from a Patient in an Outbreak of Gastroenteritis. Jpn. J. Infect. Dis. 2012, 65, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K.; Ooka, T.; Akita, H.; Hiratsuka, T.; Takao, S.; Fukada, M.; Inoue, K.; Honda, M.; Toda, J.; Sugitani, W.; et al. Epidemiological Aspects of Escherichia albertii Outbreaks in Japan and Genetic Characteristics of the Causative Pathogen. Foodborne Pathog. Dis. 2020, 17, 144–150. [Google Scholar] [CrossRef]
- Ooka, T.; Seto, K.; Kawano, K.; Kobayashi, H.; Etoh, Y.; Ichihara, S.; Kaneko, A.; Isobe, J.; Yamaguchi, K.; Horikawa, K.; et al. Clinical Significance of Escherichia albertii. Emerg. Infect. Dis. 2012, 18, 488–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooka, T.; Tokuoka, E.; Furukawa, M.; Nagamura, T.; Ogura, Y.; Arisawa, K.; Harada, S.; Hayashi, T. Human Gastroenteritis Outbreak Associated with Escherichia albertii, Japan. Emerg. Infect. Dis. 2013, 19, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.J.; Alam, K.; Islam, M.; Montanaro, J.; Rahaman, A.S.; Haider, K.; Hossain, M.A.; Kibriya, A.K.; Tzipori, S. Hafnia alvei, a probable cause of diarrhea in humans. Infect. Immun. 1991, 59, 1507–1513. [Google Scholar] [CrossRef] [Green Version]
- Huys, G.; Cnockaert, M.; Janda, J.M.; Swings, J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int. J. Syst. Evol. Microbiol. 2003, 53, 807–810. [Google Scholar] [CrossRef] [Green Version]
- Abbott, S.L.; O’Connor, J.; Robin, T.; Zimmer, B.L.; Janda, J.M. Biochemical Properties of a Newly Described Escherichia Species, Escherichia albertii. J. Clin. Microbiol. 2003, 41, 4852–4854. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, M.; Yoshioka, S.; Ito, M.; Ahsan, C.R. Biochemical and Molecular Properties of Escherichia albertii Isolated from Human Urine and Stool Specimens. Jpn. J. Infect. Dis. 2021, 74, 604–606. [Google Scholar] [CrossRef]
- Hinenoya, A.; Yasuda, N.; Hibino, T.; Shima, A.; Nagita, A.; Tsukamoto, T.; Yamasaki, S. Isolation and Characterization of an Escherichia albertii Strain Producing Three Different Toxins from a Child with Diarrhea. Jpn. J. Infect. Dis. 2017, 70, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Hinenoya, A.; Ichimura, H.; Awasthi, S.P.; Yasuda, N.; Yatsuyanagi, J.; Yamasaki, S. Phenotypic and molecular characterization of Escherichia albertii: Further surrogates to avoid potential laboratory misidentification. Int. J. Med. Microbiol. 2019, 309, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Hinenoya, A.; Li, X.; Zeng, X.; Sahin, O.; Moxley, R.A.; Logue, C.M.; Gillespie, B.; Yamasaki, S.; Lin, J. Isolation and characterization of Escherichia albertii in poultry at the pre-harvest level. Zoon. Publ. Health 2021, 68, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Hyma, K.E.; Lacher, D.W.; Nelson, A.M.; Bumbaugh, A.C.; Janda, J.M.; Strockbine, N.A.; Young, V.B.; Whittam, T.S. Evolutionary Genetics of a New Pathogenic Escherichia Species: Escherichia albertii and Related Shigella boydii Strains. J. Bacteriol. 2005, 187, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Konno, T.; Takahashi, S.; Suzuki, S.; Kashio, H.; Ito, Y.; Kumagai, Y. Distribution of the O-Genotypes of Escherichia albertii Isolated from Humans and Environmental Water in Akita Prefecture, Japan. Jpn. J. Infect. Dis. 2021, 74, 381–384. [Google Scholar] [CrossRef]
- Nimri, L.F. Escherichia albertii, a newly emerging enteric pathogen with poorly defined properties. Diag. Microbiol. Infect. Dis. 2013, 77, 91–95. [Google Scholar] [CrossRef]
- Bhatt, S.; Egan, M.; Critelli, B.; Kouse, A.; Kalman, D.; Upreti, C. The Evasive Enemy: Insights into the Virulence and Epidemiology of the Emerging Attaching and Effacing Pathogen Escherichia albertii. Infect. Immun. 2019, 87, e00254-18. [Google Scholar] [CrossRef] [Green Version]
- Oaks, J.L.; Besser, T.E.; Walk, S.T.; Gordon, D.M.; Beckmen, K.B.; Burek, K.A.; Haldorson, G.J.; Bradway, D.S.; Ouellette, L.; Rurangirwa, F.R.; et al. Escherichia albertii in Wild and Domestic Birds. Emerg. Infect. Dis. 2010, 16, 638–646. [Google Scholar] [CrossRef]
- Gomes, T.A.T.; Ooka, T.; Hernandes, R.T.; Yamamoto, D.; Hayashi, T. Escherichia albertii Pathogenesis. EcoSal Plus 2020, 9. [Google Scholar] [CrossRef]
- Yamamoto, D.; Hernandes, R.T.; Liberatore, A.M.A.; Abe, C.M.; de Souza, R.B.; Romão, F.T.; Sperandio, V.; Koh, I.H.; Gomes, T.A.T. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites. PLoS ONE 2017, 12, e0171385. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-Y.; Kang, M.S.; Hwang, H.T.; An, B.K.; Kwon, J.H.; Kwon, Y.K. Epidemiological investigation of eaeA-positive Escherichia coli and Escherichia albertii strains isolated from healthy wild birds. J. Microbiol. 2011, 49, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Brandal, L.T.; Tunsjø, H.S.; Ranheim, T.E.; Løbersli, I.; Lange, H.; Wester, A.L. Shiga Toxin 2a in Escherichia albertii. J. Clin. Microbiol. 2015, 2, 1454–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Etoh, Y.; Tanaka, E.; Ichihara, S.; Horikawa, K.; Kawano, K.; Ooka, T.; Kawamura, Y.; Ito, K. Shiga Toxin 2f-Producing Escherichia albertii from a Symptomatic Human. Jpn. J. Infect. Dis. 2014, 67, 204–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ori, E.L.; Takagi, E.H.; Andrade, T.S.; Miguel, B.T.; Cergole-Novella, M.C.; Guth, B.E.C.; Hernandes, R.T.; Dias, R.C.B.; Pinheiro, S.R.S.; Camargo, C.H.; et al. Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: Pathotypes and serotypes over a 6-year period of surveillance. Epidemiol. Infect. 2019, 147, e10. [Google Scholar] [CrossRef] [Green Version]
- Iyoda, S.; Ishijima, N.; Lee, K.; Ishihara, T.; Ohnishi, M. stx2f-positive Escherichia albertii isolated from a patient with hemolytic uremic syndrome, August 2016. Infect. Agents Surveill. Re 2016, 37, 255. [Google Scholar]
- Melton-Celsa, A.R. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol. Spectrum 2014, 2, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Muchaamba, F.; Barmettler, K.; Treier, A.; Houf, K.; Stephan, R. Microbiology and Epidemiology of Escherichia albertii—An Emerging Elusive Foodborne Pathogen. Microorganisms 2022, 10, 875. [Google Scholar] [CrossRef]
- Fox, J.G.; Rogers, A.B.; Whary, M.T.; Ge, Z.; Taylor, N.S.; Xu, S.; Horwitz, B.H.; Erdman, S.E. Gastroenteritis in NF-κB-Deficient Mice Is Produced with Wild-Type Camplyobacter jejuni but Not with C. jejuni Lacking Cytolethal Distending Toxin despite Persistent Colonization with Both Strains. Infect. Immun. 2004, 72, 1116–1125. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.; Feng, Y.; Whary, M.T.; Nambiar, P.R.; Xu, S.; Ng, V.; Taylor, N.S.; Fox, J.G. Cytolethal Distending Toxin Is Essential for Helicobacter hepaticus Colonization in Outbred Swiss Webster Mice. Infect. Immun. 2005, 73, 3559–3567. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wang, H.; Payne, M.J.; Liang, C.; Bai, L.; Zheng, H.; Zhang, Z.; Zhang, L.; Zhang, X.; Yan, G.; et al. Comparative genomics of Chinese and international isolates of Escherichia albertii: Population structure and evolution of virulence and antimicrobial resistance. Microb. Genom. 2021, 15, 710. [Google Scholar] [CrossRef]
- Asoshima, N.; Matsuda, M.; Shigemura, K.; Honda, M.; Yoshida, H.; Hiwaki, H.; Ogata, K.; Oda, T. Identification of Escherichia albertii as a Causative Agent of a Food-Borne Outbreak Occurred in 2003. Jpn. J. Infect. Dis. 2014, 67, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinenoya, A.; Awasthi, S.P.; Yasuda, N.; Nagano, K.; Hassan, J.; Takehira, K.; Hatanaka, N.; Saito, S.; Watabe, T.; Yoshizawa, M.; et al. Detection, isolation and molecular characterization of Escherichia albertii in wild birds in West Japan. Jpn. J. Infect. Dis. 2021, 75, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Naka, A.; Hinenoya, A.; Awasthi, S.P.; Yamasaki, S. Isolation and characterization of Escherichia albertii from wild and safeguarded animals in Okayama Prefecture and its prefectural borders, Japan. J. Vet. Med. Sci. 2022, 84, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Hinenoya, A.; Ichimura, H.; Yasuda, N.; Harada, S.; Yamada, K.; Suzuki, M.; Iijima, Y.; Nagita, A.; Albert, M.J.; Hatanaka, N.; et al. Development of a specific cytolethal distending toxin (cdt) gene (Eacdt)–based PCR assay for the detection of Escherichia albertii. Diag. Microbiol. Infect. Dis. 2019, 95, 119–124. [Google Scholar] [CrossRef]
- Hinenoya, A.; Nagano, K.; Okuno, K.; Nagita, A.; Hatanaka, N.; Awasthi, S.P.; Yamasaki, S. Development of XRM-MacConkey agar selective medium for the isolation of Escherichia albertii. Diag. Microbiol. Infect. Dis. 2020, 97, 115006. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Shovill. 2019. Available online: https://github.com/tseemann/shovill (accessed on 15 September 2022).
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [Green Version]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucl. Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Ooka, T.; Seto, K.; Ogura, Y.; Nakamura, K.; Iguchi, A.; Gotoh, Y.; Honda, M.; Etoh, Y.; Ikeda, T.; Sugitani, W.; et al. O-antigen biosynthesis gene clusters of Escherichia albertii: Their diversity and similarity to Escherichia coli gene clusters and the development of an O-genotyping method. Microb. Genom. 2019, 5, e000314. [Google Scholar] [CrossRef]
- Nakae, K.; Ooka, T.; Murakami, K.; Hara-Kudo, Y.; Imuta, N.; Gotoh, Y.; Ogura, Y.; Hayashi, T.; Okamoto, Y.; Nishi, J. Diversification of Escherichia albertii H-Antigens and Development of H-Genotyping PCR. Front. Microbiol. 2021, 12, 737979. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Pettengill, J.B.; Luo, Y.; Payne, J.; Shpuntoff, A.; Rand, H.; Strain, E. CFSAN SNP Pipeline: An automated method for constructing SNP matrices from next-generation sequence data. PeerJ Comp. Sci. 2015, 1, e20. [Google Scholar] [CrossRef]
- WHA Fact Sheet. Escherichia Albertii in Birds in Australia. Wildlife Health Australia. 2013. Available online: https://wildlifehealthaustralia.com.au/FactSheets.aspx (accessed on 15 September 2022).
- Felföldi, T.; Heéger, Z.; Vargha, M.; Márialigeti, K. Detection of potentially pathogenic bacteria in the drinking water distribution system of a hospital in Hungary. Clin. Microbiol. Infect. 2010, 16, 89–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, S.; Yamaya, S.; Ohtsuka, K.; Konishi, N.; Obata, H.; Ooka, T.; Hirose, S.; Kai, A.; Hara-Kudo, Y. Detection of Escherichia albertii in Retail Oysters. J. Food Prot. 2022, 85, 173–179. [Google Scholar] [CrossRef]
- Lindsey, R.L.; Fedorka-Cray, P.J.; Abley, M.; Turpin, J.B.; Meinersmann, R.J. Evaluating the Occurrence of Escherichia albertii in Chicken Carcass Rinses by PCR, Vitek Analysis, and Sequencing of the rpoB Gene. Appl. Environ. Microbiol. 2015, 81, 1727–1734. [Google Scholar] [CrossRef] [Green Version]
- Maeda, E.; Murakami, K.; Sera, N.; Ito, K.; Fujimoto, S. Detection of Escherichia albertii from chicken meat and giblets. J. Vet. Med. Sci. 2015, 77, 871–873. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, Q.; Bai, X.; Xu, Y.; Zhao, A.; Sun, H.; Deng, J.; Xiao, B.; Liu, X.; Sun, S.; et al. Prevalence of eae-positive, lactose non-fermenting Escherichia albertii from retail raw meat in China. Epidemiol. Infect. 2016, 144, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, L.; Cao, L.; Zeng, X.; Gillespie, B.; Lin, J. Isolation and characterization of Escherichia albertii originated from the broiler farms in Mississippi and Alabama. Vet. Microbiol. 2022, 267, 109379. [Google Scholar] [CrossRef]
- Arai, S.; Ohtsuka, K.; Konishi, N.; Ohya, K.; Konno, T.; Tokoi, Y.; Nagaoka, H.; Asano, Y.; Maruyama, H.; Uchiyama, H.; et al. Evaluating Methods for Detecting Escherichia albertii in Chicken Meat. J. Food Prot. 2021, 84, 553–562. [Google Scholar] [CrossRef]
- Hinenoya, A.; Nagano, K.; Awasthi, S.P.; Hatanaka, N.; Yamasaki, S. Prevalence of Escherichia albertii in Raccoons (Procyon lotor), Japan. Emerg. Infect. Dis. 2020, 26, 1304–1307. [Google Scholar] [CrossRef]
- Maheux, A.F.; Brodeur, S.; Bérubé, È.; Boudreau, D.K.; Abed, J.Y.; Boissinot, M.; Bissonnette, L.; Bergeron, M.G. Method for isolation of both lactose-fermenting and—Non-fermenting Escherichia albertii strains from stool samples. J. Microbiol. Meth. 2018, 154, 134–140. [Google Scholar] [CrossRef] [PubMed]
Order | Family | Species | No. Specimens | No. (%) Eacdt-PCR Positive | No. E. albertii Isolates |
---|---|---|---|---|---|
Accipitriformes | Accipitridae | Black kite (Milvus migrans) | 3 | 0 | 0 |
Common buzzard (Buteo buteo) | 23 | 3 (13.0%) | 1 | ||
European honey buzzard (Pernis apivorus) | 1 | 0 | 0 | ||
Red kite (Milvus milvus) | 3 | 1 (33.3%) | 1 | ||
Sparrowhawk (Accipiter nisus) | 3 | 1 (33.3%) | 1 | ||
Pandionidae | Osprey (Pandion haliaetus) | 1 | 0 | 0 | |
Anseriformes | Anatidae | Mallard (Anas platyrhynchos) | 4 | 1 (25%) | 0 |
Charadriiformes | Laridae | Yellow-legged gull (Larus michahellis) | 4 | 4 (100%) | 2 |
Ciconiiformes | Ciconiidae | White stork (Ciconia ciconia) | 4 | 1 (25%) | 0 |
Columbiformes | Columbidae | Common wood pigeon (Columba palumbus) | 1 | 0 | 0 |
Feral pigeon (Columba livia domestica) | 14 | 0 | 0 | ||
Falconiformes | Falconidae | Common kestrel (Falco tinnunculus) | 18 | 1 (5.6%) | 0 |
Galliformes | Phasianidae | Broiler (Gallus gallus domesticus) | 150 | 0 | 0 |
Gruiformes | Rallidae | Coot (Fulica atra) | 1 | 0 | 0 |
Passeriformes | Turdidae | Blackbird (Turdus merula) | 2 | 0 | 0 |
Passeridae | House sparrow (Passer domesticus) | 1 | 0 | 0 | |
Corvidae | Carrion crow (Corvus corone) | 24 | 15 (62.5%) | 6 | |
Eurasian Jay (Garrulus glandarius) | 1 | 0 | 0 | ||
Magpie (Pica pica) | 5 | 2 (40%) | 1 | ||
Rook (Corvus frugilegus) | 2 | 0 | 0 | ||
Pelecaniformes | Ardeidae | Gray heron (Ardea cinerea) | 1 | 0 | 0 |
Podicipediformes | Podicipedidae | Great crested grebe (Podiceps cristatus) | 3 | 0 | 0 |
Strigiformes | Strigidae | Brown owl (Strix aluco) | 7 | 1 (14.3%) | 0 |
Eagle owl (Bubo bubo) | 2 | 0 | 0 | ||
Long-eared owl (Asio otus) | 1 | 0 | 0 | ||
Suliformes | Phalacrocoracidae | Cormorant (Phalacrocorax carbo) | 1 | 1 (100%) | 0 |
Total | 280 | 31 (11.1%) | 12 |
Isolate | Source | Facility | MLST | stx Subtype | eae Subtype (Sequence Identity) * | cdtB Subtype | O-Antigen Genotype | H-Antigen Genotype | Accession Number |
---|---|---|---|---|---|---|---|---|---|
KBV4i | Carrion crow | RSOI | ST13420 | - | Novel | cdtB-II | EAOg36 | EAHg1 | GCA_025600035.1 |
KBV24i | Carrion crow | RSOI | ST13420 | - | Novel | cdtB-II | EAOg36 | EAHg1 | GCA_025599995.1 |
KBV30i | Carrion crow | RSOI | ST5967 | - | sigma2 (99.9%) | cdtB-II | EAOg36 | EAHg2 | GCA_025599955.1 |
KBV26i | Magpie | RSOI | ST5399 | - | sigma2 (99.96%) | cdtB-II | EAOg32 | EAHg2 | GCA_025599965.1 |
KBV27i | Carrion crow | RSOI | ST4685 | - | alpha9 (100%) | cdtB-II | EAOg12 | EAHg1 | GCA_025599935.1 |
KBV38i | Yellow-legged gull | RSOI | ST8692 | stx2f | xi (99.97%) | cdtB-I, cdtB-II | Novel | EAHg3 | GCA_025599905.1 |
KBV42i | Carrion crow | RSOI | ST7834 | - | not determined (incompletely assembled) | cdtB-II | Novel | EAHg1 | GCA_025599895.1 |
KBV63i | Common buzzard | GBI | ST5967 | - | sigma2 (99.9%) | cdtB-II | EAOg36 | EAHg2 | GCA_025599875.1 |
KBV70i | Sparrowhawk | GBI | ST11471 | stx2f | sigma (100%) | cdtB-I, cdtB-II | EAOg4 | EAHg4 | GCA_025599835.1 |
KBV72i | Red kite | GBI | ST4170 | - | alpha8 (100%) | cdtB-II | EAOg16 | EAHg1 | GCA_025599845.1 |
KBV86i | Carrion crow | E | ST5967 | - | sigma2 (99.9%) | cdtB-II | EAOg36 | EAHg2 | GCA_025599815.1 |
KBV115i | Yellow-legged gull | E | ST3296 | - | lambda2 (100%) | cdtB-II | Novel | EAHg4 | GCA_025599765.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barmettler, K.; Biggel, M.; Treier, A.; Muchaamba, F.; Vogler, B.R.; Stephan, R. Occurrence and Characteristics of Escherichia albertii in Wild Birds and Poultry Flocks in Switzerland. Microorganisms 2022, 10, 2265. https://doi.org/10.3390/microorganisms10112265
Barmettler K, Biggel M, Treier A, Muchaamba F, Vogler BR, Stephan R. Occurrence and Characteristics of Escherichia albertii in Wild Birds and Poultry Flocks in Switzerland. Microorganisms. 2022; 10(11):2265. https://doi.org/10.3390/microorganisms10112265
Chicago/Turabian StyleBarmettler, Karen, Michael Biggel, Andrea Treier, Francis Muchaamba, Barbara Renate Vogler, and Roger Stephan. 2022. "Occurrence and Characteristics of Escherichia albertii in Wild Birds and Poultry Flocks in Switzerland" Microorganisms 10, no. 11: 2265. https://doi.org/10.3390/microorganisms10112265
APA StyleBarmettler, K., Biggel, M., Treier, A., Muchaamba, F., Vogler, B. R., & Stephan, R. (2022). Occurrence and Characteristics of Escherichia albertii in Wild Birds and Poultry Flocks in Switzerland. Microorganisms, 10(11), 2265. https://doi.org/10.3390/microorganisms10112265