Protective Effect of [Cu(NN1)2](ClO4) Complex in Rainbow Trout Challenged against Flavobacterium psychrophilum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Complex (I) Copper
2.2. Fish and Maintenance
2.3. Effect of the [Cu(NN1)2](ClO4) Complex on the Growth of Rainbow Trout
2.4. Determination of the Copper Concentration in Fish Tissues and Water
2.5. Bacterial Strain and Growth Conditions
2.6. Rainbow Trout Challenged with F. psychrophilum
2.7. DNA Extraction and qPCR
2.8. Statistical Analysis
3. Results
3.1. Effect of the [Cu(NN1)2](ClO4) Complex on the Growth of Rainbow Trout
3.2. Determination of the Copper Concentration in Rainbow Trout Organs after 15 Days of Feeding with [Cu (NN1)2](ClO4) Complex
3.3. Determination of the Copper Concentration in Pond Water after 15 Days of Feeding with [Cu(NN1)2](ClO4) Complex
3.4. Effect of the Administration of [Cu(NN1)2](ClO4) Complex in Rainbow Trout against Challenge with F. psychrophilum
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Su, H.; Yakovlev, I.A.; van Eerde, A.; Su, J.; Clarke, J.L. Plant-Produced Vaccines: Future Applications in Aquaculture. Front. Plant Sci. 2021, 12, 1592. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Chakraborty, T.; Kumar, V.; DeBoeck, G.; Mohanta, K.N. Aquaculture and Stress Management: A Review of Probiotic Intervention. J. Anim. Physiol. Anim. Nutr. 2013, 97, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.; Møller, J.D.; Dalsgaard, I. Flavobacterium Psychrophilum in Rainbow Trout, Oncorhynchus Mykiss (Walbaum), Hatcheries: Studies on Broodstock, Eggs, Fry and Environment. J. Fish Dis. 2005, 28, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Loch, T.P.; Faisal, M. Emerging Flavobacterial Infections in Fish: A Review. J. Adv. Res. 2015, 6, 283–300. [Google Scholar] [CrossRef]
- Barnes, M.E. A Review of Flavobacterium Psychrophilum Biology, Clinical Signs, and Bacterial Cold Water Disease Prevention and Treat. Open Fish Sci. J. 2011, 4, 40–48. [Google Scholar] [CrossRef]
- Starliper, C.E. Bacterial Coldwater Disease of Fishes Caused by Flavobacterium Psychrophilum. J. Adv. Res. 2011, 2, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Jarau, M.; MacInnes, J.I.; Lumsden, J.S. Erythromycin and Florfenicol Treatment of Rainbow Trout Oncorhynchus Mykiss (Walbaum) Experimentally Infected with Flavobacterium Psychrophilum. J. Fish Dis. 2019, 42, 325–334. [Google Scholar] [CrossRef]
- Lozano, I.; Díaz, N.F.; Muñoz, S.; Riquelme, C. Antibiotics in Chilean Aquaculture: A Review. In Antibiotic Use in Animals; Savic, S., Ed.; InTech: London, UK, 2018; ISBN 978-953-51-3750-4. [Google Scholar]
- Henríquez-Núñez, H.; Evrard, O.; Kronvall, G.; Avendaño-Herrera, R. Antimicrobial Susceptibility and Plasmid Profiles of Flavobacterium Psychrophilum Strains Isolated in Chile. Aquaculture 2012, 354, 38–44. [Google Scholar] [CrossRef]
- Miranda, C.D.; Smith, P.; Rojas, R.; Contreras-Lynch, S.; Vega, J.M.A. Antimicrobial Susceptibility of Flavobacterium Psychrophilum from Chilean Salmon Farms and Their Epidemiological Cut-Off Values Using Agar Dilution and Disk Diffusion Methods. Front. Microbiol. 2016, 7, 1880. [Google Scholar] [CrossRef]
- Van Vliet, D.; Loch, T.P.; Smith, P.; Faisal, M. Antimicrobial Susceptibilities of Flavobacterium Psychrophilum Isolates from the Great Lakes Basin, Michigan. Microb. Drug Resist. 2017, 23, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.P.H.; Smith, P.; Bartie, K.L.; Thompson, K.D.; Verner-Jeffreys, D.W.; Hoare, R.; Adams, A. Antimicrobial Susceptibility of Flavobacterium Psychrophilum Isolates from the United Kingdom. J. Fish Dis. 2018, 41, 309–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saticioglu, I.B.; Duman, M.; Smith, P.; Wiklund, T.; Altun, S. Antimicrobial Resistance and Resistance Genes in Flavobacterium Psychrophilum Isolates from Turkey. Aquaculture 2019, 512, 734293. [Google Scholar] [CrossRef]
- Smith, P.; Endris, R.; Kronvall, G.; Thomas, V.; Verner-Jeffreys, D.; Wilhelm, C.; Dalsgaard, I. Epidemiological Cut-off Values for Flavobacterium Psychrophilum MIC Data Generated by a Standard Test Protocol. J. Fish Dis. 2016, 39, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, P.; Pontecorvi, V.; Rotondi, G. Natural Compounds and Extracts as Novel Antimicrobial Agents. Expert Opin. Ther. Pat. 2020, 30, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant Natural Products Targeting Bacterial Virulence Factors. Chem. Rev. 2016, 116, 9162–9236. [Google Scholar] [CrossRef]
- Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Biosynthesis of Coumarins in Plants: A Major Pathway Still to Be Unravelled for Cytochrome P450 Enzymes. Phytochem. Rev. 2006, 5, 293–308. [Google Scholar] [CrossRef]
- Bilal, M.; Munir, H.; Iqbal, H.M.N. Potentialities of Medicinal Plant Extracts Against Biofilm-Forming Bacteria. In Microbial Biofilms; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-367-41507-5. [Google Scholar]
- Yeu, J.-E.; Lee, H.-G.; Park, G.-Y.; Lee, J.; Kang, M.-S. Antimicrobial and Antibiofilm Activities of Weissella Cibaria against Pathogens of Upper Respiratory Tract Infections. Microorganisms 2021, 9, 1181. [Google Scholar] [CrossRef] [PubMed]
- Pancu, D.F.; Scurtu, A.; Macasoi, I.G.; Marti, D.; Mioc, M.; Soica, C.; Coricovac, D.; Horhat, D.; Poenaru, M.; Dehelean, C. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity—A Pharmaco-Toxicological Screening. Antibiotics 2021, 10, 401. [Google Scholar] [CrossRef]
- Angelusiu, M.V.; Barbuceanu, S.-F.; Draghici, C.; Almajan, G.L. New Cu(II), Co(II), Ni(II) Complexes with Aroyl-Hydrazone Based Ligand. Synthesis, Spectroscopic Characterization and in Vitro Antibacterial Evaluation. Eur. J. Med. Chem. 2010, 45, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- El-Halim, H.; Nour El-Dien, F.; Mohamed, G.; Mohamed, N. Synthesis, Spectroscopic, Thermal Characterization, and Antimicrobial Activity of Miconazole Drug and Its Metal Complexes. J. Therm. Anal. Calorim. 2011, 109, 883–892. [Google Scholar] [CrossRef]
- Aldabaldetrecu, M.; Parra, M.; Soto, S.; Arce, P.; Tello, M.; Guerrero, J.; Modak, B. New Copper(I) Complex with a Coumarin as Ligand with Antibacterial Activity against Flavobacterium Psychrophilum. Molecules 2020, 25, 3183. [Google Scholar] [CrossRef] [PubMed]
- Strepparava, N.; Wahli, T.; Segner, H.; Petrini, O. Detection and Quantification of Flavobacterium Psychrophilum in Water and Fish Tissue Samples by Quantitative Real Time PCR. BMC Microbiol. 2014, 14, 105. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. Aquatic Life Ambient Freshwater Quality Criteria—Copper-2007 Revision: CAS Registry Number 7440-50-8; United States Environmental Protection Agency: Washington, DC, USA, 2007.
- Nadella, S.R.; Bucking, C.; Grosell, M.; Wood, C.M. Gastrointestinal Assimilation of Cu during Digestion of a Single Meal in the Freshwater Rainbow Trout (Oncorhynchus Mykiss). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 143, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Clearwater, S.J.; Farag, A.M.; Meyer, J.S. Bioavailability and Toxicity of Dietborne Copper and Zinc to Fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 132, 269–313. [Google Scholar] [CrossRef]
- Dandawate, P.; Padhye, S.; Schobert, R.; Biersack, B. Discovery of Natural Products with Metal-Binding Properties as Promising Antibacterial Agents. Expert Opin. Drug Discov. 2019, 14, 563–576. [Google Scholar] [CrossRef]
- Evans, A.; Kavanagh, K.A. Evaluation of Metal-Based Antimicrobial Compounds for the Treatment of Bacterial Pathogens. J. Med. Microbiol. 2021, 70, 001363. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, F.M.; Fleuri, L.F.; Sartori, M.M.P.; Amorim, R.L.; Pezzato, L.E.; da Silva, R.L.; Carvalho, P.L.P.F.; Barros, M.M. Effect of Dietary Inorganic Copper on Growth Performance and Hematological Profile of Nile Tilapia Subjected to Heat-Induced Stress. Aquaculture 2016, 454, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhu, H.; Wang, X.; Li, E.; Du, Z.; Qin, J.; Chen, L. Comparison of Copper Bioavailability in Copper-Methionine, Nano-Copper Oxide and Copper Sulfate Additives in the Diet of Russian Sturgeon Acipenser Gueldenstaedtii. Aquaculture 2018, 482, 146–154. [Google Scholar] [CrossRef]
- El Basuini, M.F.; El-Hais, A.M.; Dawood, M.A.O.; Abou-Zeid, A.E.-S.; EL-Damrawy, S.Z.; Khalafalla, M.M.E.-S.; Koshio, S.; Ishikawa, M.; Dossou, S. Effects of Dietary Copper Nanoparticles and Vitamin C Supplementations on Growth Performance, Immune Response and Stress Resistance of Red Sea Bream, Pagrus Major. Aquacult. Nutr. 2017, 23, 1329–1340. [Google Scholar] [CrossRef]
- El Basuini, M.F.; El-Hais, A.M.; Dawood, M.A.O.; Abou-Zeid, A.E.-S.; EL-Damrawy, S.Z.; Khalafalla, M.M.E.-S.; Koshio, S.; Ishikawa, M.; Dossou, S. Effect of Different Levels of Dietary Copper Nanoparticles and Copper Sulfate on Growth Performance, Blood Biochemical Profiles, Antioxidant Status and Immune Response of Red Sea Bream (Pagrus Major). Aquaculture 2016, 455, 32–40. [Google Scholar] [CrossRef]
- Lorentzen; Maage; Julshamn Supplementing Copper to a Fish Meal Based Diet Fed to Atlantic Salmon Parr Affects Liver Copper and Selenium Concentrations. Aquac. Nutr. 1998, 4, 67–72. [CrossRef]
- Kamunde, C.; Wood, C.M. The Influence of Ration Size on Copper Homeostasis during Sublethal Dietary Copper Exposure in Juvenile Rainbow Trout, Oncorhynchus Mykiss. Aquat. Toxicol. 2003, 62, 235–254. [Google Scholar] [CrossRef]
- Tavares-Dias, M. Toxic, Physiological, Histomorphological, Growth Performance and Antiparasitic Effects of Copper Sulphate in Fish Aquaculture. Aquaculture 2021, 535, 736350. [Google Scholar] [CrossRef]
- Farmer, B.D.; Beck, B.H.; Mitchell, A.J.; Rawles, S.D.; Straus, D.L. Dietary Copper Effects Survival of Channel Catfish Challenged with Flavobacterium Columnare. Aquac. Res. 2017, 48, 1751–1758. [Google Scholar] [CrossRef]
Copper Concentration (ppm) | ||||
---|---|---|---|---|
Time | Control | C. Vehicle | 29 µg/g of Fish of Complex | 58 µg/g of Fish of Complex |
T0 | 1.94 ± 0.63 a | 1.52 ± 0.89 a | 1.17 ± 0.46 a | 1.41 ± 0.02 a |
T1 | 2.94 ± 0.77 a | 2.56 ± 0.03 a | 4.68 ± 0.07 b | 5.26 ± 0.47 b |
T2 | 0.78 ± 0.13 a | 1.21 ± 0.02 b | 2.36 ± 0.02 c | 3.49 ± 0.09 d |
T3 | 2.56 ± 0.28 a | 3.54 ± 0.54 b | 5.07 ± 0.44 c | 6.57 ± 2.5 c |
T4 | 6.60 ± 0.96 a | 4.17 ± 0.72 b | 7.43 ± 2.42 ac | 21.79 ± 12.12 d |
T5 | 1.14 ± 0.23 a | 0.42 ± 0.07 b | 2.35 ± 0.89 c | 6.23 ± 0.88 d |
T6 | 1.41 ± 0.10 a | 1.43 ± 0.02 a | 12.49 ± 1.80 b | 19.60 ± 5.82 c |
T7 | 2.56 ± 0.23 a | 2.44 ± 0.22 a | 9.56 ± 2.37 b | 11.51 ± 0.34 b |
T8 | 3.57 ± 0.43 a | 3.80 ± 0.55 a | 28.19 ± 7.51 b | 34.05 ± 1.15 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldabaldetrecu, M.; Parra, M.; Soto-Aguilera, S.; Arce, P.; Quiroz, A.P.d.l.V.; Segura, R.; Tello, M.; Guerrero, J.; Modak, B. Protective Effect of [Cu(NN1)2](ClO4) Complex in Rainbow Trout Challenged against Flavobacterium psychrophilum. Microorganisms 2022, 10, 2296. https://doi.org/10.3390/microorganisms10112296
Aldabaldetrecu M, Parra M, Soto-Aguilera S, Arce P, Quiroz APdlV, Segura R, Tello M, Guerrero J, Modak B. Protective Effect of [Cu(NN1)2](ClO4) Complex in Rainbow Trout Challenged against Flavobacterium psychrophilum. Microorganisms. 2022; 10(11):2296. https://doi.org/10.3390/microorganisms10112296
Chicago/Turabian StyleAldabaldetrecu, Maialen, Mick Parra, Sarita Soto-Aguilera, Pablo Arce, Amaya Paz de la Vega Quiroz, Rodrigo Segura, Mario Tello, Juan Guerrero, and Brenda Modak. 2022. "Protective Effect of [Cu(NN1)2](ClO4) Complex in Rainbow Trout Challenged against Flavobacterium psychrophilum" Microorganisms 10, no. 11: 2296. https://doi.org/10.3390/microorganisms10112296
APA StyleAldabaldetrecu, M., Parra, M., Soto-Aguilera, S., Arce, P., Quiroz, A. P. d. l. V., Segura, R., Tello, M., Guerrero, J., & Modak, B. (2022). Protective Effect of [Cu(NN1)2](ClO4) Complex in Rainbow Trout Challenged against Flavobacterium psychrophilum. Microorganisms, 10(11), 2296. https://doi.org/10.3390/microorganisms10112296