Avian Oropharyngeal Trichomonosis: Treatment, Failures and Alternatives, a Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Databases and Strategy of Search
2.2. Reasons for Exclusion
3. Results and Discussion
3.1. Search Result
3.2. Treatments against T. gallinae
Product | Dose | Success Rate | Side Effects | Clinical Signs | Type of Infection | Reference |
---|---|---|---|---|---|---|
Enheptine | 18–45 mg/kg/d, 7 d | 100% | No | No | Natural | [14] |
No (83.3% mortality at 90–280 mg/kg/d) | Yes (controls died) | Experimental | ||||
Enheptine | 150 mg/bird | 80–100% (lower efficacy in old birds) | No (at 500 mg/bird vomit and absence of mourning) | No | Natural | [8] |
0.125% DW, 6 d | 86.7–100% (lower efficacy in old birds) | No | No | Most natural and some experimental | ||
Enheptine | 10–30 mg/bird/d, 7 d (DW) | 77.8–92.9% | No | Yes (controls died) | Experimental | [16] |
30 mg/bird/d, 14 d (DW) | 100% | No | Yes (controls died) | |||
Enheptine | 100 mg/bird | 70–100% | No | No | Natural (in cages or flocks) | [17] |
0.1 % DW | 100% | No | No | |||
Metronidazole | 25 mg/bird | 70–100% | No | No | ||
0.1% in DW | 100% | No | No | |||
Dimetridazole | 24 mg/bird | 80–100% | No | No | ||
0.125% in DW * (product at 40%) | 100% | No | No | |||
Metronidazole | 50 mg/kg, 5 d | 100% | No | No | Natural and Experimental | [15] |
Dimetridazole | 50 mg/kg, 5 d | 100% | No | No | ||
0.05% DW, 3–6 d | 100% | Ataxia for 24 h at 6 days (11.7%) | No | |||
Dimetridazole | 50 mg/kg, 5 d or 0.05% DW, 5 d | Effective | No | Weight loss, oropharyngeal lesions | Natural | [18] |
Metronidazole | 50 mg/kg, 5 d | Effective | No | |||
Ornidazole | 2.5–5 mg/bird 3 d DW | Effective | No | No | Natural | [23] |
Solid: 10–40 * mg/kg, 3 d | Effective (lower doses not effective) | No | No | |||
Dimetridazole | 200–400 * mg/L, 25 mL, 3 d | Effective at day 3 | No | No | Experimental | [19] |
Dimetridazole | 25 mg/bird/d, 5 d | 100% (not effective 1 dose) | No | No | Natural | [20] |
Dimetridazole | 10 mg/kg | 100% | No | No | Natural | [24] |
Carnidazole | 10 mg/kg | 87.5% | ||||
Nifursol 50% | 600–1200 mg/kg food | Effective | No | No | Natural | [26] |
Carnidazole | 10 mg/adult, 5 mg/squab | 100% adults, 40% squabs | No | Apathy, anorexia, diarrhea, 60% mortality squabs | Natural | [25] |
Metronidazole and oxytetracycline | 40–60 mg/kg, 6 d | 80% | No | Listless, oropharyngeal lesions, two deaths | Natural | [21] |
Metronidazole | 25 mg/kg, 5 d or 25 mg/kg iv | effective | No | No | Experimental | [22] |
Product | Dose | Successful | Species | Clinical Signs | Reference |
---|---|---|---|---|---|
Dimetridazole | 47 mg/kg (2 d in 1 week) | Yes | Bald eagle (Haliaeetus leucocephalus) | Debilitated, oropharyngeal lesions | [27] |
Dimetridazole | 250–500 mg/d (3 d in 1 week) | Yes | Bald eagle (Haliaeetus leucocephalus) | Debilitated, oropharyngeal lesions | [28] |
Metronidazole | 50 mg/kg/12 h, 5 d | Yes | Bald eagle (Haliaeetus leucocephalus) | No | [29] |
Metronidazole | 50 mg/kg, 5 d (repeated) | Yes | Cinereous vulture (Aegypius monachus) | Mild lesion at oropharynx | [30] |
Metronidazole | 50 mg/kg 5–7 d (+dimetridazole 5% injectable in infraorbital sinuses) | Yes | Falcons (several species) | Oral, nasal lesions, some with organs and infraorbital sinuses affected | [3] |
Carnidazole | Partially | Sparrowhawk (Accipiter nisus) | 4/5 chicks with severe oropharyngeal lesions | [9] | |
Dimetridazole | 0.05 mg/g bird DW, 7 d | Yes (emaciated birds died) | Budgerigars (Melopsittacus undulatus) | Vomit, emaciation | [4] |
Metronidazole | 30 mg/kg, 10 d | 40% (40% dead) | Budgerigars (Melopsittacus undulatus) | Vomit, emaciation, oral lesions | [7] |
Metronidazole | 200 mg/L DW, 5 d or 20 mg/Kg/d, 5 d | effective | Canaries (Serinus canaria) | Lethargy, vomit, emaciation, death | [6] |
Carnidazole | 20–30 mg/kg, 5 d | Partially | House finches (Haemorhous mexicanus) | Emaciation, ocular and nasal discharge, emaciation | [5] |
Dimetridazole | 200 ppm in food 10 d | Effective | Wood pigeon (Columba palumbus) | Oropharyngeal lesions, organs affected | [31] |
Carnidazole | 5–10 mg/bird, various doses | Effective in short term | Pink pigeon (Nesoenas mayeri) | Wight loss, emaciation, oropharyngeal lesions | [33] |
Ronidazole/Dimetridazole DW | Variable attendance |
3.3. Resistance of T. gallinae to Nitroimidazoles
3.3.1. In Vivo Resistance
3.3.2. In Vitro Resistance
3.4. Alternatives to the Traditional Treatment of Oropharyngeal Avian Trichomonosis
3.4.1. Old Drugs, New Molecules and Novel Delivery Systems
3.4.2. Natural Products from Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amin, A.; Bilic, I.; Liebhart, D.; Hess, M. Trichomonads in Birds–A Review. Parasitology 2014, 141, 733–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Herrero, M.C.; Sansano-Maestre, J.; López Márquez, I.; Obón, E.; Ponce, C.; González, J.; Garijo-Toledo, M.M.; Gómez-Muñoz, M.T. Genetic Characterization of Oropharyngeal Trichomonad Isolates from Wild Birds Indicates That Genotype Is Associated with Host Species, Diet and Presence of Pathognomonic Lesions. Avian Pathol. 2014, 43, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samour, J.H.; Bailey, T.A.; Cooper, J.E. Trichomoniasis in Birds of Prey (Order Falconiformes) in Bahrain. Vet. Rec. 1995, 136, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.R. Trichomoniasis, a Major Cause of Vomiting in Budgerigars. Vet. Rec. 1986, 19, 447–449. [Google Scholar] [CrossRef]
- Anderson, N.L.; Johnson, C.K.; Fender, S.; Heckly, S.; Metzler, M.; Nave, P.; Yim, J. Clinical Signs and Histopathologic Findings Associated with a Newly Recognized Protozoal Disease (Trichomonas gallinae) in Free-Ranging House Finches (Carpodacus mexicanus). J. Zoo Wildl. Med. 2010, 41, 249–254. [Google Scholar] [CrossRef]
- Zadravec, M.; Slavec, B.; Krapež, U.; Gombač, M.; Švara, T.; Poljšak-Prijatelj, M.; Gruntar, I.; Račnik, J. Trichomonosis Outbreak in a Flock of Canaries (Serinus canaria f. domestica) Caused by a Finch Epidemic Strain of Trichomonas gallinae. Vet. Parasitol. 2017, 239, 90–93. [Google Scholar] [CrossRef]
- Hochleithner, M.; Hochleithner, C. The Prevalence of Trichomonas gallinae in Budgerigars (Melopsittacus undulatus) in a Veterinary Clinic in Vienna between 2000-2019. Vet. Med. 2021, 66, 490–493. [Google Scholar] [CrossRef]
- Fritzsche, K. Zur Therapie Der Trichomoniasis Der Tauben. Zent. Veterinärmedizin 1955, 2, 392–407. [Google Scholar] [CrossRef]
- Hegemann, E.D.; Knüber, H.; Krone, O. Kurze Mitteilungen: Trichomonose Bei Bildlebenden Sperbern (Accipitur nisus). Vogelwarte 2003, 42, 352–354. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Jaquette, D.S. Copper Sulfate as a Treatment For Subclinical Trichomoniasis in Pigeons. Am. J. Vet. Res. 1948, 9, 206–209. [Google Scholar]
- Samberg, Y.; Bornstein, S. In Vitro Action of Various Chemical Agents on Trichomonas gallinae. Poult. Sci. 1955, 34, 157–164. [Google Scholar] [CrossRef]
- Stabler, R.M. The Effect of Furazolidone on Pigeon Trichomoniasis Due to Trichomonas gallinae. J. Parasitol. 1957, 43, 280–282. [Google Scholar] [CrossRef]
- Stabler, R.M.; Mellentin, R.W. Effect of 2-Amino-5-Nitrothiazole (Enheptin) and Other Drugs on Trichomonas gallinae Infection in the Domestic Pigeon. J. Parasitol. 1953, 39, 637–642. [Google Scholar] [CrossRef]
- McLoughlin, D.K. Observations on the Treatment of Trichomonas gallinae in Pigeons. Avian Dis. 1966, 10, 288–290. [Google Scholar] [CrossRef]
- Stabler, R.M.; Schmittner, S.M.; Harmon, W.M. Success of Soluble 2-Amino-5-Nitrothiazole in the Treatment of Trichomoniasis in the Domestic Pigeon. Poult. Sci. 1958, 37, 352–355. [Google Scholar] [CrossRef]
- Devos, A.; Viaene, N.; Staelens, M. Behandeling van de trichomonas-besmetting bij duiven met thiazol-en imidazol-derivaten. Vlaams Diergeneeskd. Tijdschr. 1965, 34, 241–252. [Google Scholar]
- Panigrahy, B.; Grimes, J.E.; Glass, S.E.; Naqi, S.A.; Hall, C.F. Diseases of Pigeons and Doves in Texas: Clinical Findings and Recommendations for Control. J. Am. Vet. Med. Assoc. 1982, 181, 384–386. [Google Scholar]
- Inghelbrecht, S.; Vermeersch, H.; Ronsmans, S.; Remon, J.P.; Debacker, P.; Vercruysse, J. Pharmacokinetics and Anti-Trichomonal Efficacy of a Dimetridazole Tablet and Water-Soluble Powder in Homing Pigeons (Columba livia). J. Vet. Pharmacol. Ther. 1996, 19, 62–67. [Google Scholar] [CrossRef]
- Gravendyck, vM.; Gravendyck, A.S.; Kaleta, E.F. Zur Oralen Verträglichkeit Und Wirksamkeit von 1,2 Dimethyl·5·Nitroimidazol (Dimetridazol) Gegen Die Spontane Rachentrichomonose (Gelber Knopf) Herpesvirus-Infizierter Brieftauben. Tierärztl. Umschau 1997, 52, 134–143. [Google Scholar]
- Kurtdede, A.; Haydardedeo¨glu, A.E.; Uarl, K.; Karakurum, M.Ç.; Cingi, C.Ç.; Kar, S. Treatment of Trichomoniasis with Metronidazole and Oxytetracycline Combination in Pigeons. Kafkas Univ. Vet. Fak. Derg. 2007, 13, 199–202. [Google Scholar] [CrossRef]
- Tabari, M.A.; Poźniak, B.; Youssefi, M.R.; Roudaki Sarvandani, M.R.; Giorgi, M. Comparative Pharmacokinetics of Metronidazole in Healthy and Trichomonas gallinae Infected Pigeons (Columba livia, Var. domestica). Br. Poult. Sci. 2021, 62, 485–491. [Google Scholar] [CrossRef]
- Kucera, J.; Bednirk, P.; Nastuneak, J. Veryfying the Therapeutic Action of the Czechoslovak Ornidazol [1-(3-Chloro-2-Hydroxypropil)-2-Methyl-5-Nitroimidazol] in Pigeons with Trichomoniasis. Vet. Med. 1988, 33, 551–556. [Google Scholar]
- Aydin, L.; Coskun, S.; Güleğen, E. Efficacy of Carnidazole (Spatrix®) and Metronidazole (Flagyl®) against Trichomonas gallinae in Naturally Infected Pigeons. Acta Parasitol. Turc. 2000, 24, 65–66. [Google Scholar]
- Ionita, M.; FlorincaŞ, O.N.; Mitrea, I.L. Outbreak of Trichomonosis in Racing Pigeons: Diagnosis and Treatment. Rev. Română De Med. Vet. 2016, 26, 13–17. [Google Scholar]
- Gawel, A.; Piasecki, T.; Mazurkievicz, M. Skutecznosc Preparatu Nifursol 50% w Zwalczaniu Trichomonozy Golêbi. Med. Wet 2007, 63, 823–826. [Google Scholar]
- Rettig, T. Trichomoniasis in a Bald Eagle (Haliaeetus leucocophalus) Diagnosis and Successful Treatment with Dimetridazole. J. Zoo Anim. Med. 1978, 9, 98–100. [Google Scholar] [CrossRef]
- Stone, W.B.; Nye, P.E. Trichomoniasis in Bald Eagles. Wilson Bull. 1981, 93, 109. [Google Scholar]
- Kelly-Clark, W.K.; McBurney, S.; Forzán, M.J.; Desmarchelier, M.; Greenwood, S.J. Detection and Characterization of a Trichomonas Isolate from a Rehabilitated Bald Eagle (Haliaeetus leucocephalus). J. Zoo Wildl. Med. 2013, 44, 1123–1126. [Google Scholar] [CrossRef]
- Martínez-Herrero, M.d.C.; González-González, F.; López-Márquez, I.; García-Peña, F.J.; Sansano-Maestre, J.; Martínez-Díaz, R.A.; Ponce-Gordo, F.; Garijo-Toledo, M.M.; Gómez-Muñoz, M.T. Oropharyngeal Trichomonosis Due to Trichomonas gypaetinii in a Cinereous Vulture (Aegypius monachus) Fledgling in Spain. J. Wildl. Dis. 2019, 55, 153–157. [Google Scholar] [CrossRef]
- Höfle, U.; Gortazar, C.; Ortíz, J.A.; Knispel, B.; Kaleta, E.F. Outbreak of Trichomoniasis in a Woodpigeon (Columba palumbus) Wintering Roost. Eur. J. Wildl. Res. 2004, 50, 73–77. [Google Scholar] [CrossRef]
- Mirzaei, M.; Ghashghaei, O.; Khedri, J. First Report of an Outbreak Trichomoniasis in Turkey in Sistan, Iran. J. Parasit. Dis. 2016, 40, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinnerton, K.J.; Greenwood, A.G.; Chapman, R.E.; Jones, C.G. The Incidence of the Parasitic Disease Trichomoniasis and Its Treatment in Reintroduced and Wild Pink Pigeons Columba mayeri. Ibis 2005, 147, 772–782. [Google Scholar] [CrossRef]
- Lumeij, J.T.; Zwijnenberg, R.J.G. Failure of Nitro-Imidazole Drugs to Control Trichomoniasis in the Racing Pigeon (Columba livia domestica). Avian Pathol. 1990, 19, 165–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franssen, F.F.J.; Lumeij, J.T. In Vitro Nitroimidazole Resistance of Trichomonas gallinae and Successful Therapy with an Increased Dosage of Ronidazole in Racing Pigeons (Columba livia domestica). J Vet. Pharmacol. Ther. 1992, 15, 409–415. [Google Scholar] [CrossRef]
- McKeon, T.; Dunsmore, J.; Raidal, S.R. Trichomonas gallinae in Budgerigars and Columbid Birds in Perth, Western Australia. Aust. Vet. J. 1997, 75, 652–655. [Google Scholar] [CrossRef]
- Duchatel, J.P.; Vindevogel, H. Sensibilité in Vitro Au ronidazole de Différentes Souches de Trichomonas gallinae de Pigeons. Ann. Méd. Vét. 1998, 142, 335–338. [Google Scholar]
- Munoz, E.; Castella, J.; Gutierrez, J.F. In Vivo and in Vitro Sensitivity of Trichomonas gallinae to Some Nitroimidazole Drugs. Vet. Parasitol. 1998, 78, 239–246. [Google Scholar] [CrossRef]
- Zimre-Grabensteiner, E.; Arshad, N.; Amin, A.; Hess, M. Genetically Different Clonal Isolates of Trichomonas gallinae, obtained from the Same Bird, Can Vary in Their Drug Susceptibility, an in Vitro Evidence. Parasitol. Int. 2011, 60, 213–215. [Google Scholar] [CrossRef]
- Seddiek, S.A.; El-Shorbagy, M.M.; Khater, H.F.; Ali, A.M. The Antitrichomonal Efficacy of Garlic and Metronidazole against Trichomonas gallinae Infecting Domestic Pigeons. Parasitol. Res. 2014, 113, 1319–1329. [Google Scholar] [CrossRef]
- Rouffaer, L.O.; Adriaensen, C.; de Boeck, C.; Claerebout, E.; Martel, A. Racing Pigeons: A Reservoir for Nitro-Imidazole-Resistant Trichomonas gallinae. J. Parasitol. 2014, 100, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Gerhold, R.W.; Yabsley, M.J.; Smith, A.J.; Ostergaardi, E.; Mannan, W.; Cann, J.D.; Fischer, J.R. Molecular Characterization of the Trichomonas gallinae Morphologic Complex in the United States. J. Parasitol. 2008, 94, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Sansano-Maestre, J.; Garijo-Toledo, M.M.; Gómez-Muñoz, M.T. Prevalence and Genotyping of Trichomonas gallinae in Pigeons and Birds of Prey. Avian Pathol. 2009, 38, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavassoli, M.; Baran, A.I.; Tajik, H.; Moradi, M.; Pourseyed, S.H. Novel in Vitro Efficiency of Chitosan Biomolecule against Trichomonas gallinae. Iran J. Parasitol. 2012, 7, 92–96. [Google Scholar] [PubMed]
- Yunessnia lehi, A.; Shagholani, H.; Ghorbani, M.; Nikpay, A.; Soleimani Lashkenari, M.; Soltani, M. Chitosan Nanocapsule-Mounted Cellulose Nanofibrils as Nanoships for Smart Drug Delivery Systems and Treatment of Avian Trichomoniasis. J. Taiwan Inst. Chem. Eng. 2019, 95, 290–299. [Google Scholar] [CrossRef]
- Yunessnia lehi, A.; Shagholani, H.; Nikpay, A.; Ghorbani, M.; Soleimani lashkenari, M.; Soltani, M. Synthesis and Modification of Crystalline SBA-15 Nanowhiskers as a PH-Sensitive Metronidazole Nanocarrier System. Int. J. Pharm. 2019, 555, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, H.; Ghorbani, M.; Nikpay, A.; Soltani, M. Tannic Acid-Coated Zeolite Y Nanoparticles as Novel Drug Nanocarrier with Controlled Release Behavior and Anti-Protozoan Activity against Trichomonas gallinae. J. Dispers. Sci. Technol. 2019, 40, 587–593. [Google Scholar] [CrossRef]
- Tabari, M.A.; Poźniak, B.; Abrishami, A.; Moradpour, A.A.; Shahavi, M.H.; Kazemi, S.; Youssefi, M.R. Antitrichomonal Activity of Metronidazole-Loaded Lactoferrin Nanoparticles in Pigeon Trichomoniasis. Parasitol. Res 2021, 120, 3263–3272. [Google Scholar] [CrossRef]
- Soleimani Lashkenari, M.; Nikpay, A.; Soltani, M.; Gerayeli, A. In Vitro Antiprotozoal Activity of Poly(Rhodanine)-Coated Zinc Oxide Nanoparticles against Trichomonas gallinae. J. Dispers. Sci. Technol. 2020, 41, 495–502. [Google Scholar] [CrossRef]
- Adebajo, A.C.; Iwalewa, E.O.; Obuotor, E.M.; Ibikunle, G.F.; Omisore, N.O.; Adewunmi, C.O.; Obaparusi, O.O.; Klaes, M.; Adetogun, G.E.; Schmidt, T.J.; et al. Pharmacological Properties of the Extract and Some Isolated Compounds of Clausena lansium Stem Bark: Anti-Trichomonal, Antidiabetic, Anti-Inflammatory, Hepatoprotective and Antioxidant Effects. J. Ethnopharmacol. 2009, 122, 10–19. [Google Scholar] [CrossRef]
- Adebajo, A.C.; Olayiwola, G.; Verspohl, J.E.; Iwalewa, E.O.; Omisore, N.O.A.; Bergenthal, D.; Kumar, V.; Adesina, S.K. Evaluation of the Ethnomedical Claims of Murraya koenigii. Pharm. Biol. 2004, 42, 610–620. [Google Scholar] [CrossRef]
- Adebajo, A.C.; Olaniyan, K.A.; Adewunmi, C.O. Anti-Trichomonal Activities of Extracts and Furocoumarins of Murraya Koenigii Fruits. Ife J. Sci. 2007, 9, 155–160. [Google Scholar] [CrossRef]
- Ibikunle, G.F.; Adebajo, A.C.; Famuyiwa, F.G.; Aladesanmi, A.J.; Adewunmi, C.O. In-Vitro Evaluation of Anti-Trichomonal Activities of Eugenia uniflora Leaf. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badparva, E.; Badparva, S.; Badparva, M.; Kheirandish, F. Comparing Effect of Some Herbal Medicines Extract with Metronidazole for Treatment of Trichomoniasis in Birds. Der Pharma Chem. 2016, 8, 241–244. [Google Scholar]
- Nikpay, A.; Soltani, M. In Vitro Anti-Parasitic Activities of Pulicaria dysenterica and Lycopus europaeus Methanolic Extracts against Trichomonas gallinae. J. Herb. Med. Pharmacol. 2018, 7, 112–118. [Google Scholar] [CrossRef]
- Gbolade, A.A.; Arcoraci, T.; D’Arrigo, M.; Olorunmola, F.O.; Biondi, D.M.; Ruberto, G. Essential Oils of Dennettia tripetala Bak. f. Stem Bark and Leaf—Constituents and Biological Activities. Nat. Prod. Commun. 2008, 3, 1925–1930. [Google Scholar] [CrossRef] [Green Version]
- Youssefi, M.R.; Abouhosseini Tabari, M.; Moghadamnia, A.A. In Vitro and in Vivo Activity of Artemisia Sieberi against Trichomonas gallinae. Iran J. Vet. Res. 2017, 18, 25–29. [Google Scholar] [CrossRef]
- Baccega, B.; Wahast Islabão, Y.; Brauner de Mello, A.; Obelar Martins, F.; Caetano dos Santos, C.; Ferreira Ourique, A.; da Silva Gündel, S.; Raquel Pegoraro de Macedo, M.; Elena Silveira Vianna, É.; Amélia da Rosa Farias, N.; et al. In Vitro and in Vivo Activity of the Essential Oil and Nanoemulsion of Cymbopogon flexuosus against Trichomonas gallinae. Avicenna J. Phytomed. 2021, 11, 32–43. [Google Scholar]
- Abouhosseini Tabari, M.; Youssefi, M.R. In Vitro and in Vivo Evaluations of Pelargonium roseum Essential Oil Activity against Trichomonas gallinae. Avicenna J. Phytomed. 2018, 8, 136–142. [Google Scholar] [CrossRef]
- Bailén, M.; Díaz-Castellanos, I.; Azami-Conesa, I.; Alonso Fernández, S.; Martínez-Díaz, R.A.; Navarro-Rocha, J.; Gómez-Muñoz, M.T.; González-Coloma, A. Anti-Trichomonas gallinae Activity of Essential Oils and Main Compounds from Lamiaceae and Asteraceae Plants. Front. Vet. Sci. 2022, 9, 981763. [Google Scholar] [CrossRef]
- Malekifard, F.; Tavassoli, M.; Alimoradi, M. In Vitro Assessment of Anti-Trichomonas Effects of Zingiber officinale and Lavandula angustifolia Alcoholic Extracts on Trichomonas gallinae. Vet. Res. Forum 2021, 12, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Iwalewa, E.O.; Omisore, N.O.; Adewunmi, C.O.; Gbolade, A.A.; Ademowo, O.G.; Nneji, C.; Agboola, O.I.; Daniyan, O.M. Anti-Protozoan Activities of Harungana madagascariensis Stem Bark Extract on Trichomonads and Malaria. J. Ethnopharmacol. 2008, 117, 507–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabari, M.A.; Youssefi, M.R.; Moghadamnia, A.A. Antitrichomonal Activity of Peganum harmala Alkaloid Extract against Trichomoniasis in Pigeon (Columba livia domestica). Br. Poult. Sci. 2017, 58, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Adebajo, A.C.; Ayoola, O.F.; Iwalewa, E.O.; Akindahunsi, A.A.; Omisore, N.O.A.; Adewunmi, C.O.; Adenowo, T.K. Anti-Trichomonal, Biochemical and Toxicological Activities of Methanolic Extract and Some Carbazole Alkaloids Isolated from the Leaves of Murraya koenigii Growing in Nigeria. Phytomedicine 2006, 13, 246–254. [Google Scholar] [CrossRef]
- Yazdani, N.; Youssefi, M.R.; Tabari, M.A. Antitrichomonal Activity of Nanoemulsion of Carvacrol on Trichomonas galline: Formulation Development and in Vitro Characterization. Ann. Parasitol. 2022, 68, 151–157. [Google Scholar] [CrossRef]
Strain | Host | MIC (μg/mL) | Ref. | |||||
---|---|---|---|---|---|---|---|---|
Dimetridazole | Ronidazole | Carnidazole | Ornidazole | Tinidazole | Metronidazole | |||
Not named (n = 6) | Budgerigar | 30–50 | 40–60 | -- | -- | -- | 40–50 | [36] |
HF26 | Bonelli’s eagle | 7.8 | 1.9 | 7.8 | 5.8 | -- | 7.8 | [38] |
79P | Rural pigeon | 7.8 | 1.4 | 3.9 | 2.9 | -- | 5.8 | |
P2 | Urban Pigeon | 3.9 | 1.9 | 3.9 | 3.9 | -- | 7.8 | |
1FG | Racing pigeon | 187.5 | 31.2 | 93.7 | 125 | -- | 500 | |
Not named (n = 31) | Pigeon | -- | 80 | -- | -- | -- | [37] | |
5895-C1/06 | Budgerigar | 2.5 ± 0.3 | 6.7 ± 1.7 | -- | 6.7 ± 1.7 | -- | 2 ± 0.3 | [39] |
15935-C3/06 | Budgerigar | 3.0 ± 0.7 | 2.7 ± 0.3 | -- | 2.0 ± 0.6 | -- | 2.7 ± 0.3 | |
231-C1/07 | Racing pigeon | 5.0 ± 0.0 | 5.0 ± 0.0 | -- | 16.7 ± 1.7 | -- | 8.8 ± 1.3 | |
Austria/ 231-C3/07 | Racing pigeon | 33.3 ± 3.3 | 65.0 ± 2.9 | -- | 76.7 ± 3.3 | -- | 28.3 ± 1.7 | |
7895-C2/06 | Racing pigeon | 36.7 ± 3.3 | 61.7 ± 1.7 | -- | 73.3 ± 6.7 | -- | 25.0 ± 2.9 | |
8855-C6/06 | Racing pigeon | 83.3 ± 6.7 | 83.3 ± 6.7 | -- | 103.3 ± 3.3 | -- | 103.3 ± 3.3 | |
Not named | Pigeon | -- | -- | -- | -- | -- | 50 (24 h); 25 (48 h); 12.5 (72 h) | [40] |
Not named (n = 15) | Wild pigeon | 0.98–125 | 0.98–500 | 1.95–250 | -- | 0.98–62.5 | 0.98–125 | [41] * |
Not named (n = 16) | Racing pigeon | 1.95500 | 1.95–500 | 3.9–500 | -- | 1.95–250 | 1.95 >500 | |
Not named (n = 5) | Pigeon | -- | -- | -- | -- | -- | 50 (12 h); 25 (24 h); 6.25 (36 h); 1.5 (48 h) | [22] |
% GI Carrier + Compound/% GI Carrier | |||||||
---|---|---|---|---|---|---|---|
Compound | Carrier (Loading-Entrapment Efficiency) | Concentration | 0–1 h | 1–2 h | 2–3 h | 6 h | Reference |
Chitosan | - | 125 µg/mL | >80/- | -/- | >80/- | 96.3/- | [44] |
250 µg/mL | >80/- | -/- | >80/- | >96.3/- | |||
500 µg/mL | >80/- | -/- | >80/- | >96.3/- | |||
1250 µg/mL | >80/- | -/- | >80/- | 100/- | |||
MTZ | Chitosan nanocapsule-cellulose nanofibrils-tannic acid composites (64.56%) † | 2 mg/mL | 30–100/0–55 | 100/55–75 | 100/75–85 | -/- | [45] |
1 mg/mL | 0–50/0–25 | 50–100/25–45 | 100/45–75 | -/- | |||
0.5 mg/mL | 0–30/0 | 30–60/0–25 | 60–100/25–60 | -/- | |||
MTZ | - | 50 µg/mL | 0 | 0–15 | 15–37 | -/- | |
MTZ | Nanowhiskers | 2 mg/mL | 0–5/0 | 5–90/0 | 90–100/0–5 | -/- | [46] |
1 mg/mL | 0/0 | 0–60/0 | 60–100/0 | -/- | |||
0.5 mg/mL | 0/0 | 0–50/0 | 50–100/0 | -/- | |||
MTZ | - | 50 µg/mL | 0 | 0–15 | 15–37 | -/- | |
MTZ | Zeolite Y nanoparticles with tannic acid (69.9%) | 2 mg/mL | 0/0 | 0–72/0 | 72–100/0 | -/- | [47] |
1 mg/mL | 0/0 | 0–25/0 | 25–100/0 | -/- | |||
0.5 mg/mL | 0/0 | 0–15/0 | 15–85/0 | -/- | |||
MTZ | - | 50 µg/mL | 0 | 0 | 0–37 /7 | -/- | |
Poly(rhodanine) | Zinc oxide | 10 mg/mL | 0–65/0–100 | 65–100/100 | 100/100 | -/- | [49] |
5 mg/mL | 0–40/0–85 | 40–70/85–100 | 70–100/100 | -/- | |||
2.5 mg/mL | 0–30/0–75 | 30–50/75–100 | 50–100/100 | -/- | |||
MTZ | - | 50 µg/mL | 0 | 0–15 | 15–37 | -/- | |
IC50/MIC 12 h | IC50/MIC 24 h | IC50/MIC 48 h | Cytotoxicity (fibroblast) | ||||
MTZ | Nanolactoferrin (55%) | -/100 | 0.995/12.5 | -/1.5 | No | [48] * | |
MTZ | - | -/50 | 0.936/25 | -/1.5 | No |
Plant (Extract, Part of The Plant) | IC50/MIC 24 h | IC50/MIC 24 h MTZ | ATS | Cytotoxicity (IC50)/Test | Major Components (>5%, Ordered from Higher to Lower) | Ref. |
---|---|---|---|---|---|---|
Murraya koenigii (ME, leaf) | 34/- | 0–1/ - | H | M: 61.5 | Yes (mahanimbine, girinimbine, isomahanimbine, murrayazoline, murrayazolidine, mahanine, % not shown) | [51] |
Murraya koenigii (ME, stem) | 25/- | 0–1/ - | H | H: 14.5 /Brine shrimp lethality test | Yes (mahanimbine, mahanimbilol, girinimbine, murrayanine, murrayacine, murrayaquinone-A, % not shown) | |
Murraya koenigii (ME, seed) | 1.9/- | 1.9/- | H | L: 750 | No | [52] |
Murraya koenigii (ME, pericarp) | 2/- | 1.9/- | H | L: 1500 /Hemagglutination Test | ||
Dennettia tripetala (EO, leaf) | 0.13% v/v/- | 1.02% v/v/- | H | N.t. | Yes (2-phenylnitroethane, linalool) | [56] |
Harungana madagascariensis (EE, stem bark) * | 187/- | 1.87/- | M | N.t. | No | [62] |
Clausena lansium (DME) * | 19/- | 1.9/- | H | N.t. | No | [50] |
Clausena lansium (ME, leaf) * | 2/- | 1.9/- | H | |||
Eugenia uniflora (ME, leaf) | 61.7/- | 13.7/- | M | L: 260 | No | [53] |
Eugenia uniflora (several unidentified subfractions) | 4.8–70.5/- | 13.7/- | H-M | L. 230–3000 /Hemagglutination | ||
Allium sativum (WE) * | 75,000 | -/50 | L | N.t. | No | [40] |
Quercus persica (ME) | 2500 (100% mortality) | 1250 (100% mortality) | L | N.t. | No | [54] |
Allium sativum (ME) | No effect | L | ||||
Artemisia annua (ME) | 5000 | L | ||||
Myrtus communis (ME) | 5000 | L | ||||
Rosmarinus officinalis (ME) | 5000 | L | ||||
Zataria multiflora (ME) | 5000 | L | ||||
Peganum harmala (AE, seed) * | -/15 | -/50 | H | N.t. | No | [63] |
Artemisia sieberi (EO) * | -/10 | -/20 | H | N.t. | Yes (α-thujone, β-thujone, camphor, 1,8-cineole, camphene) | [57] |
Pelargonium roseum (EO) * | -/20 | -/10 | H | N.t. | Yes (β-citronellol, geraniol, linalool) | [59] |
Pulycaria disenterica (ME, aerial) | 6250 (100% mortality 6 h) | 100 (100% mortality 6 h) | L | N.t. | No | [55] |
Lycopus europaeus (ME, aerial) | 28,370 (100% mortality 6 h) | L | N.t. | Np | ||
Zingiber officinale (EE) | -/25 | -/50 | H | N.t. | Yes (α-curumene, α-gigeberene, gingerol, ciclohexane, α-phernesene, cis-6-shagole) | [61] |
Lavandula angustifolia (EE) | -/50 | H | N.t. | Yes (linalool, borneol, α-pinene, 1,8-cineol, ocimene, linalyl acetate) | ||
Cymbopogon flexuosus (EO) * | 220/528 | N.t. Only one dose (880 µg/mL) | L | N.t. | Yes (β-geranial, z-citral, geraniol) | [58] |
Cymbopogon flexuosus (nanoemulsion EO) * | 110/418 | M | N.t. | |||
only the best result for each plant is shown | N.t. | [60] | ||||
Santolina chamaecyparissus (EO, aerial) | 394.3/- | 1 | L | No | ||
Dittrichia graveolens (EO, aerial) | 259.7/- | L | No | |||
Lavandula lanata (EO, aerial) | 731.7/- | L | No | |||
Lavandula luisieri 1 (EO, aerial) | 189.8/- | M | Yes (camphor, trans-α-necrodyl acetate, lavandulyl acetate) | |||
Lavandula luisieri 2 (EO, aerial) | 103.4/- | M | Yes (trans-α-necrodyl acetate, lavandulol, germacrene D, unidentified) | |||
Lavandula angustifolia (EO, aerial) | 600.4/- | L | No | |||
Lavandula x intermedia “Abrial” (EO, aerial) | 406.8/- | L | No | |||
Lavandula x intermedia “Super”(EO, aerial) | 321.2/- | L | No | |||
Lavandula angustiflia var. maillette (EO, aerial) | 373.9/- | L | No | |||
Origanum virens (EO, aerial) | 175.4/- | M | Yes (γ-terpinene, linalool, linalyl acetate) | |||
Origanum majorana SD (EO, aerial) | 139.8/- | M | Yes (carvacrol, p-cymene, β-caryophyllene) | |||
Origanum majorana HD (EO, aerial) | 158.8/- | M | Yes (4-terpineol, γ-terpinene, α-terpinene, sabinene, p-cymene, ocimene, β-caryophyllene) | |||
Rosmarinus officinalis (EO, aerial) | 256.6/- | L | No | |||
Satureja montana SD (EO, aerial) | 141.4/- | M | Yes (carvacrol, γ-terpinene, p-cymene, thymol) | |||
Mentha suaveolens (EO, aerial) | 303/- | L | No | |||
Salvia officinalis SD (EO, aerial) | 139.1/- | M | Yes (β-thujone, 1,8-cineole, β-pinene, β-caryophyllene, viridiflorol, α-humulene) | |||
Salvia hibrid (S. officinalis x S. lavandulifolia) SD (EO, aerial) | 134.6/- | M | Yes (β-pinene, 1,8-cineole, β-caryophyllene, camphene, trans-bornyl acetate, camphor, α-pinene) | |||
Salvia sclarea HD (EO, aerial) | 117.4/- | M | Yes (linalyl acetate, linalool, α-terpineol, neryl acetate, germacrene D) | |||
Thymus vulgaris HD (EO, aerial) | 166/- | M | Yes (thymol, p-cymene, γ-terpinene) | |||
Thymus vulgaris SD (EO, aerial) | 193.3/- | M | Yes (p-cymene, thymol, β-caryophyllene) | |||
Thymus zygis HD (EO, aerial) | 133.1/- | M | Yes (thymol, p-cymene, γ-terpinene, borneol, linalool, carvacrol) |
Plant | Compound | IC50 24 h/MIC 24 h | IC50 24 h/MIC 24 h MTZ | ATS | Cytotoxicity (IC50 µg/mL)/Test | Ref. |
---|---|---|---|---|---|---|
Murraya koenigii | mahanimbine | 2.5 µg/mL/- | 0.14 µg/mL/- | H | L/hemagglutination | [64] |
girinimbine | 1.1 µg/mL/- | H | ||||
koenimbine | 3.8 µg/mL/- | H | ||||
mahanimbinol | 4 µg/mL/- | H | ||||
girinimbinol | 1.2 µg/mL/- | H | ||||
mahanine | 3.5 µg/mL/- | H | ||||
murrayanine | 4.6 µg/mL/- | H | ||||
chemical derivates of the above compounds | 0.6–3.9 µg/mL/- | H | ||||
Murraya koenigii | bergapten | 4 µg/mL/- | 1.9/- | H | L/hemagglutination | [52] |
imperatorin | 6 µg/mL/- | H | ||||
isoimperatorin | 3.1 µg/mL/- | H | ||||
5-methoxyimperatorin | 15.2 µg/mL/- | H | ||||
heraclenin | 11 µg/mL/- | H | ||||
byakangelicol | 22 µg/mL/- | H | ||||
isogosferol | 2 µg/mL/- | H | ||||
8-geranylosypsoralen | 22 µg/mL/- | H | ||||
indicolatone | 2.1 µg/mL/- | H | ||||
β-sitosterol | 5.8 µg/mL/- | H | ||||
Clausena lansium | imperatorin * | 6/- | 1.9/- | H | N.t. (only for diabetes) | [50] |
phellopterin * | 15.2/- | H | ||||
3-phormylcarbazole * | 3.6/- | H | ||||
Chalepin * | 22.4/- | H | ||||
Peganum harmala | harmine | -/30 | -/50 | H | N.t. | [57] |
harmaline | -/100 | M | ||||
Commercial compounds present in several Lamiaceae plants | 1,8-cineole, linalool, carvacrol, α-terpineol, camphor, borneol | >100/- | 1 | L | L (>100) | [60] |
thymol | 38.4/- | H | L (>100) | |||
linalyl acetate | 32.2/- | H | L (>100) | |||
γ-terpinene | 43.8/- | H | L (>100) | |||
p-cymene | 59.7/- | M | L (>100) | |||
caryophyllene oxide | 100/- | M | L (>100) | |||
α-pinene | 44.2/- | H | M (88.9) | |||
β-pinene | 29.6/- | H | M (88.2) | |||
D-fenchone | 61.9/- | M | L (>100) | |||
β-caryophyllene | 86.1/- | M | M (60.8) | |||
α and β-thujone | 17.3/- | H | L (>100) | |||
4-terpineol | 41.5/- | H | L (>100) | |||
camphene | 24/- | H | M (74.8) | |||
Only compound | carvacrol | 0.39/- | 2.17/- | H | L (toxicity at doses higher than IC50 for T. gallinae) | [65] |
carvacrol (nanoemulsion) | 0.27/- | H | L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Muñoz, M.T.; Gómez-Molinero, M.Á.; González, F.; Azami-Conesa, I.; Bailén, M.; García Piqueras, M.; Sansano-Maestre, J. Avian Oropharyngeal Trichomonosis: Treatment, Failures and Alternatives, a Systematic Review. Microorganisms 2022, 10, 2297. https://doi.org/10.3390/microorganisms10112297
Gómez-Muñoz MT, Gómez-Molinero MÁ, González F, Azami-Conesa I, Bailén M, García Piqueras M, Sansano-Maestre J. Avian Oropharyngeal Trichomonosis: Treatment, Failures and Alternatives, a Systematic Review. Microorganisms. 2022; 10(11):2297. https://doi.org/10.3390/microorganisms10112297
Chicago/Turabian StyleGómez-Muñoz, María Teresa, Miguel Ángel Gómez-Molinero, Fernando González, Iris Azami-Conesa, María Bailén, Marina García Piqueras, and Jose Sansano-Maestre. 2022. "Avian Oropharyngeal Trichomonosis: Treatment, Failures and Alternatives, a Systematic Review" Microorganisms 10, no. 11: 2297. https://doi.org/10.3390/microorganisms10112297
APA StyleGómez-Muñoz, M. T., Gómez-Molinero, M. Á., González, F., Azami-Conesa, I., Bailén, M., García Piqueras, M., & Sansano-Maestre, J. (2022). Avian Oropharyngeal Trichomonosis: Treatment, Failures and Alternatives, a Systematic Review. Microorganisms, 10(11), 2297. https://doi.org/10.3390/microorganisms10112297