The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature
Abstract
:1. Introduction
2. Rotavirus Infection and the Gut
3. Probiotics and the Antiviral Mechanisms
4. Clinical Trials with Established Antiviral Effect of Probiotics against Rotaviruses
5. Studies with No Antiviral Effect of Probiotics against Rotavirus Infections
6. Conclusions, Limitations, and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bányai, K.; Estes, M.K.; Martella, V.; Parashar, U.D. Viral gastroenteritis. Lancet 2018, 392, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Kotwal, G.; Cannon, J.L. Environmental persistence and transfer of enteric viruses. Curr. Opin. Virol. 2014, 4, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Hamza, I.A.; Jurzik, L.; Überla, K.; Wilhelm, M. Methods to detect infectious human enteric viruses in environmental water samples. Int. J. Hyg. Environ. Health 2011, 214, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, O.; Svensson, L. Pathogenesis of Rotavirus diarrhea. Microbes Infect. 2001, 3, 1145–1156. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Ciarlet, M.; McDonald, S.M.; Attoui, H.; Banyai, K.; Brister, J.R.; Buesa, J.; Esona, M.D.; Estes, M.K.; Gentsch, J.R.; et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011, 156, 1397–1413. [Google Scholar] [CrossRef] [Green Version]
- Burnett, E.; Parashar, U.D.; Tate, J.E. Rotavirus Infection, Illness, and Vaccine Performance in Malnourished Children: A Review of the Literature. Pediatr. Infect. Dis. J. 2021, 40, 930–936. [Google Scholar] [CrossRef]
- Burke, R.M.; Tate, J.E.; Kirkwood, C.D.; Steele, A.D.; Parashar, U.D. Current and new rotavirus vaccines. Curr. Opin. Infect. Dis. 2019, 32, 435–444. [Google Scholar] [CrossRef]
- Armah, G.E.; Sow, O.S.; Breiman, R.F.; Dallas, M.J.; Tapia, M.D.; Feikin, D.R.; Binka, F.N.; Steele, A.D.; Laserson, K.F.; Ansah, A.N.; et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: A randomised, double-blind, placebo-controlled trial. Lancet 2010, 376, 606–614. [Google Scholar] [CrossRef]
- Zaman, K.; Anh, D.D.; Victor, J.C.; Shin, S.; MBBS, Y.; Dallas, M.J.; Podder, G.; Thiem, V.D.; Mai, L.T.P.; Luby, S.P.; et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: A randomised, double-blind, placebo-controlled trial. Lancet 2010, 376, 615–623. [Google Scholar] [CrossRef]
- Desselberger, U. Differences of Rotavirus Vaccine Effectiveness by Country: Likely Causes and Contributing Factors. Pathogens 2017, 6, 65. [Google Scholar] [CrossRef]
- Steele, A.; Victor, J.; Carey, M.; Tate, J.; Atherly, D.; Pecenka, C.; Diaz, Z.; Parashar, U.; Kirkwood, C. Experiences with rotavirus vaccines: Can we improve rotavirus vaccine impact in developing countries? Hum. Vaccines Immunother. 2019, 15, 1215–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandasamy, S.; Vlasova, A.N.; Fischer, D.; Kumar, A.; Chattha, K.S.; Rauf, A.; Shao, L.; Langel, S.N.; Rajashekara, G.; Saif, L.J. Differential Effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity. J. Immunol. 2016, 196, 1780–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.H.; Hogarty, M.P.; Harris, V.C.; Baldridge, M.T. The Complex Interactions Between Rotavirus and the Gut Microbiota. Front. Cell. Infect. Microbiol. 2021, 10, 586751. [Google Scholar] [CrossRef] [PubMed]
- Stevens, E.J.; Bates, K.A.; King, K.C. Host microbiota can facilitate pathogen infection. PLoS Pathog. 2021, 17, e1009514. [Google Scholar] [CrossRef]
- Gonzalez-Ochoa, G.; Flores-Mendoza, L.K.; Icedo-Garcia, R.; Gomez-Flores, R.; Tamez-Guerra, P. Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics. Arch. Microbiol. 2017, 199, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Villena, J.; Vizoso-Pinto, M.G.; Kitazawa, H. Intestinal Innate Antiviral Immunity and Immunobiotics: Beneficial Effects against Rotavirus Infection. Front. Immunol. 2016, 7, 563. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Moon, A.; Huang, J.; Sun, Y.; Qiu, H.-J. Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Front. Cell. Infect. Microbiol. 2022, 12, 724. [Google Scholar] [CrossRef]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef] [Green Version]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Fijan, S.; Frauwallner, A.; Langerholc, T.; Krebs, B.; Younes, J.A.T.H.; Heschl, A.; Turk, D.M.; Rogelj, I. Efficacy of Using Probiotics with Antagonistic Activity against Pathogens of Wound Infections: An Integrative Review of Literature. BioMed Res. Int. 2019, 2019, 7585486. [Google Scholar] [CrossRef]
- Hooper, L.V.; Littman, D.R.; MacPherson, A.J. Interactions Between the Microbiota and the Immune System. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettinger, S. Diet, Gut Microbiome, and Cognitive Decline. Curr. Nutr. Rep. 2022. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.; Zhou, L. Psychobiotics and the gut–brain axis: In the pursuit of happiness. Neuropsychiatr. Dis. Treat. 2015, 11, 715–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.E.; Walton, D.; O’Connor, C.P.; Wammes, M.; Burton, J.P.; Osuch, E.A. Drugs, Guts, Brains, but Not Rock and Roll: The Need to Consider the Role of Gut Microbiota in Contemporary Mental Health and Wellness of Emerging Adults. Int. J. Mol. Sci. 2022, 23, 6643. [Google Scholar] [CrossRef]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.; Shah, Z.; Baloch, Z.; Cui, X. The role of microbiota in respiratory health and diseases, particularly in tuberculosis. Biomed. Pharmacother. 2021, 143, 112108. [Google Scholar] [CrossRef]
- Taghinezhad-S, S.; Keyvani, H.; Bermúdez-Humarán, L.G.; Donders, G.G.G.; Fu, X.; Mohseni, A.H. Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: An overview on the gut-vagina axis. Cell. Mol. Life Sci. 2020, 78, 1191–1206. [Google Scholar] [CrossRef]
- Desselberger, U. Significance of the Gut Microbiome for Viral Diarrheal and Extra-Intestinal Diseases. Viruses 2021, 13, 1601. [Google Scholar] [CrossRef]
- Harper, A.; Vijayakumar, V.; Ouwehand, A.C.; ter Haar, J.; Obis, D.; Espadaler, J.; Binda, S.; Desiraju, S.; Day, R. Viral Infections, the Microbiome, and Probiotics. Front. Cell. Infect. Microbiol. 2021, 10, 596166. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagga, D.; Reichert, J.L.; Koschutnig, K.; Aigner, C.S.; Holzer, P.; Koskinen, K.; Moissl-Eichinger, C.; Schöpf, V. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 2018, 9, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, R.; Lau, C. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Int. J. Gen. Med. 2016, 9, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Alookaran, J.J.; Rhoads, J.M. Probiotics in Autoimmune and Inflammatory Disorders. Nutrients 2018, 10, 1537. [Google Scholar] [CrossRef] [Green Version]
- Wahab, S.; Almaghaslah, D.; Mahmood, S.E.; Ahmad, F.; Alsayegh, A.A.; Abu Haddash, Y.M.; Rahman, M.A.; Ahamd, I.; Ahmad, W.; Khalid, M.; et al. Pharmacological Efficacy of Probiotics in Respiratory Viral Infections: A Comprehensive Review. J. Pers. Med. 2022, 12, 1292. [Google Scholar] [CrossRef]
- Rawashdeh, M.; Al-Zoubi, B.; Aliwat, M.B.; Burayzat, S.; Alhindawi, E.; Al-Matti, A.A.; Altamimi, E. National Consensus for the Management of Acute Gastroenteritis in Jordanian Children: Consensus Recommendations Endorsed by the Jordanian Paediatric Society. Int. J. Pediatr. 2022, 2022, 4456232. [Google Scholar] [CrossRef]
- George, S.; Aguilera, X.; Gallardo, P.; Farfán, M.; Lucero, Y.; Torres, J.P.; Vidal, R.; O’Ryan, M. Bacterial Gut Microbiota and Infections During Early Childhood. Front. Microbiol. 2022, 12, 793050. [Google Scholar] [CrossRef]
- Ghosh, S.; Malik, Y.S.; Kobayashi, N. Therapeutics and Immunoprophylaxis Against Noroviruses and Rotaviruses: The Past, Present, and Future. Curr. Drug Metab. 2018, 19, 170–191. [Google Scholar] [CrossRef]
- Omatola, C.A.; Olaniran, A.O. Rotaviruses: From Pathogenesis to Disease Control—A Critical Review. Viruses 2022, 14, 875. [Google Scholar] [CrossRef]
- Afchangi, A.; Latifi, T.; Jalilvand, S.; Marashi, S.M.; Shoja, Z. Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins. Arch. Virol. 2021, 166, 995–1006. [Google Scholar] [CrossRef]
- Ahmadi, E.; Alizadeh-Navaei, R.; Rezai, M.S. Efficacy of probiotic use in acute rotavirus diarrhea in children: A systematic review and meta-analysis. Casp. J. Intern. Med. 2015, 6, 187–195. [Google Scholar]
- Di, J.-B.; Gai, Z.-T. Protective efficacy of probiotics on the treatment of acute rotavirus diarrhea in children: An updated meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9675–9683. [Google Scholar] [PubMed]
- Mizutani, T.; Aboagye, S.Y.; Ishizaka, A.; Afum, T.; Mensah, G.I.; Asante-Poku, A.; Asandem, D.A.; Parbie, P.K.; Abana, C.Z.-Y.; Kushitor, D.; et al. Gut microbiota signature of pathogen-dependent dysbiosis in viral gastroenteritis. Sci. Rep. 2021, 11, 13945. [Google Scholar] [CrossRef] [PubMed]
- Gizatulina, S.S.; Birger, M.O.; Nikovskaia, M.I.; Mastiukova, I.N.; Potashova, L.A. Mikroflora kishechnika u deteĭ rannego vozrasta s rotavirusnoĭ infektsieĭ [Intestinal microflora in young children with rotavirus infection]. Zh Mikrobiol. Epidemiol. Immunobiol. 1992, 3, 29–30. [Google Scholar]
- Wilkins, L.J.; Monga, M.; Miller, A.W. Defining Dysbiosis for a Cluster of Chronic Diseases. Sci. Rep. 2019, 9, 12918. [Google Scholar] [CrossRef] [Green Version]
- Britton, R.A.; Versalovic, J. Probiotics and Gastrointestinal Infections. Interdiscip. Perspect. Infect. Dis. 2008, 2008, 290769. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Vieites, E.; López-Santamarina, A.; Miranda, J.M.; Mondragón, A.D.C.; Lamas, A.; Cardelle-Cobas, A.; Nebot, C.; Franco, C.M.; Cepeda, A. Influence of the Intestinal Microbiota on Diabetes Management. Curr. Pharm. Biotechnol. 2020, 21, 1603–1615. [Google Scholar] [CrossRef]
- Mahooti, M.; Miri, S.M.; Abdolalipour, E.; Ghaemi, A. The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment? Microb. Pathog. 2020, 148, 104452. [Google Scholar] [CrossRef]
- Belguesmia, Y.; Bendjeddou, K.; Kempf, I.; Boukherroub, R.; Drider, D. Heterologous Biosynthesis of Five New Class II Bacteriocins From Lactobacillus paracasei CNCM I-5369 With Antagonistic Activity Against Pathogenic Escherichia coli Strains. Front. Microbiol. 2020, 11, 1198. [Google Scholar] [CrossRef]
- Tabata, T.; Petitt, M.; Puerta-Guardo, H.; Michlmayr, D.; Wang, C.; Fang-Hoover, J.; Harris, E.; Pereira, L. Zika Virus Targets Different Primary Human Placental Cells, Suggesting Two Routes for Vertical Transmission. Cell Host Microbe 2016, 20, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Umair, M.; Jabbar, S.; Zhaoxin, L.; Jianhao, Z.; Abid, M.; Khan, K.-U.R.; Korma, S.A.; Alghamdi, M.A.; El-Saadony, M.T.; El-Hack, M.E.A.; et al. Probiotic-Based Bacteriocin: Immunity Supplementation Against Viruses. An Updated Review. Front. Microbiol. 2022, 13, 876058. [Google Scholar] [CrossRef] [PubMed]
- Wachsman, M.B.; Castilla, V.; De Ruiz Holgado, A.P.; De Torres, R.A.; Sesma, F.; Coto, C.E. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir. Res. 2003, 58, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Butel, M.-J. Probiotics, gut microbiota and health. Med. Mal. Infect. 2014, 44, 1–8. [Google Scholar] [CrossRef] [PubMed]
- de Vrese, M.; Offick, B. Chapter 14—Probiotics and Prebiotics: Effects on Diarrhea. In Bioactive Foods in Promoting Health; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 205–227. [Google Scholar]
- Lee, D.K.; Park, J.E.; Kim, M.J.; Seo, J.G.; Lee, J.H.; Ha, N.J. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 237–244. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Kumari, S.; Ghosh, A. Diarrheal disease and gut microbiome. Prog. Mol. Biol. Transl. Sci. 2022, 192, 149–177. [Google Scholar]
- Xiong, L.; Li, Y.; Li, J.; Yang, J.; Shang, L.; He, X.; Liu, L.; Luo, Y.; Xie, X. Intestinal microbiota profiles in infants with acute gastroenteritis caused by rotavirus and norovirus infection: A prospective cohort study. Int. J. Infect. Dis. 2021, 111, 76–84. [Google Scholar] [CrossRef]
- Shin, D.Y.; Yi, D.Y.; Jo, S.; Lee, Y.M.; Kim, J.-H.; Kim, W.; Park, M.R.; Yoon, S.M.; Kim, Y.; Yang, S.; et al. Effect of a new Lactobacillus plantarum product, LRCC5310, on clinical symptoms and virus reduction in children with rotaviral enteritis. Medicine 2020, 99, e22192. [Google Scholar] [CrossRef]
- Park, M.S.; Kwon, B.; Ku, S.; Ji, G.E. The Efficacy of Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 Probiotic Treatment in Infants with Rotavirus Infection. Nutrients 2017, 9, 887. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Gupta, P.K.; Das, R.R. Efficacy and Safety of Saccharomyces boulardii in Acute Rotavirus Diarrhea: Double Blind Randomized Controlled Trial from a Developing Country. J. Trop. Pediatr. 2016, 62, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Upadhyay, A.; Shah, D.; Teotia, N.; Agarwal, A.; Jaiswal, V. Lactobacillus GG for treatment of acute childhood diarrhoea: An open labelled, randomized controlled trial. Indian J. Med Res. 2014, 139, 379–385. [Google Scholar]
- Huang, Y.-F.; Liu, P.-Y.; Chen, Y.-Y.; Nong, B.-R.; Huang, I.-F.; Hsieh, K.-S.; Chen, K.-T. Three-Combination Probiotics Therapy in Children With Salmonella and Rotavirus Gastroenteritis. J. Clin. Gastroenterol. 2014, 48, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, K.N.C.; Sowmyanarayanan, T.V.; Paul, A.; Babji, S.; Ajjampur, S.S.R.; Priyadarshini, S.; Sarkar, R.; Balasubramanian, K.A.; Wanke, C.A.; Ward, H.D.; et al. Immune Response and Intestinal Permeability in Children With Acute Gastroenteritis Treated With Lactobacillus rhamnosus GG: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2014, 58, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, N.B.; Penna, F.J.; Lima, F.M.; Nicoli, J.R.; Filho, L.A. Treatment of Acute Diarrhea With Saccharomyces boulardii in Infants. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 497–501. [Google Scholar] [CrossRef]
- Dalgic, N.; Sancar, M.; Bayraktar, B.; Pullu, M.; Hasim, O. Probiotic, zinc and lactose-free formula in children with rotavirus diarrhea: Are they effective? Pediatr. Int. 2011, 53, 677–682. [Google Scholar] [CrossRef]
- Grandy, G.; Medina, M.; Soria, R.; Terán, C.G.; Araya, M. Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect. Dis. 2010, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Paul, D.K.; Ganguly, S.; Chatterjee, M.; Chandra, P.K. Efficacy of High-dose Lactobacillus rhamnosus GG in Controlling Acute Watery Diarrhea in Indian Children. J. Clin. Gastroenterol. 2009, 43, 208–213. [Google Scholar] [CrossRef]
- Teran, C.G.; Teran-Escalera, C.N.; Villarroel, P. Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: A randomized, single-blind, controlled trial in Bolivian children. Int. J. Infect. Dis. 2009, 13, 518–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, A.P.; Rajeshwari, K.; Chakravarty, A.; Famularo, G. Use of VSL♯3 in the Treatment of Rotavirus Diarrhea in Children. J. Clin. Gastroenterol. 2008, 42, S126–S129. [Google Scholar] [CrossRef] [PubMed]
- Narayanappa, D. Randomized double blinded controlled trial to evaluate the efficacy and safety of Bifilac in patients with acute viral diarrhea. Indian J. Pediatr. 2008, 75, 709–713. [Google Scholar] [CrossRef]
- Szymański, H.; Pejcz, J.; Jawień, M.; Chmielarczyk, A.; Strus, M.; Heczko, P.B. Treatment of acute infectious diarrhoea in infants and children with a mixture of three Lactobacillus rhamnosus strains—A randomized, double-blind, placebo-controlled trial. Aliment. Pharmacol. Ther. 2006, 23, 247–253. [Google Scholar] [CrossRef]
- Gaón, D.; García, H.; Winter, L.; Rodríguez, N.; Quintás, R.; Gonzalez, S.N.; Oliver, G. Effect of Lactobacillus strains and Saccharomyces boulardii on persistent diarrhea in children. Medicina 2003, 63, 293–298. [Google Scholar] [PubMed]
- Rosenfeldt, V.; Michaelsen, K.F.; Jakobsen, M.; Larsen, C.N.; Møller, P.L.; Pedersen, P.; Tvede, M.; Weyrehter, H.; Valerius, N.H.; Paerregaard, A. Effect of probiotic Lactobacillus strains in young children hospitalized with acute diarrhea. Pediatr. Infect. Dis. J. 2002, 21, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Guandalini, S.; Pensabene, L.; Abu Zikri, M.; Dias, J.A.; Casali, L.G.; Hoekstra, H.; Kolacek, S.; Massar, K.; Micetic–Turk, D.; Papadopoulou, A.; et al. Lactobacillus GG Administered in Oral Rehydration Solution to Children with Acute Diarrhea: A Multicenter European Trial. J. Craniofacial Surg. 2000, 30, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Guarino, A.; Canani, R.B.; Spagnuolo, M.I.; Albano, F.; Di Benedetto, L. Oral Bacterial Therapy Reduces the Duration of Symptoms and of Viral Excretion in Children with Mild Diarrhea. J. Pediatr. Gastroenterol. Nutr. 1997, 25, 516–519. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Faure, C. Role of Antidiarrhoeal Drugs as Adjunctive Therapies for Acute Diarrhoea in Children. Int. J. Pediatr. 2013, 2013, 612403. [Google Scholar] [CrossRef] [Green Version]
- Guarino, A.; Ashkenazi, S.; Gendrel, D.; Vecchio, A.L.; Shamir, R.; Szajewska, H. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition/European Society for Pediatric Infectious Diseases Evidence-Based Guidelines for the Management of Acute Gastroenteritis in Children in Europe. J. Craniofacial Surg. 2014, 59, 132–152. [Google Scholar] [CrossRef]
- Hojsak, I.; Fabiano, V.; Pop, T.L.; Goulet, O.; Zuccotti, G.V.; Çokuğraş, F.; Pettoello-Mantovani, M.; Kolacek, S. Guidance on the use of probiotics in clinical practice in children with selected clinical conditions and in specific vulnerable groups. Acta Paediatr. 2018, 107, 927–937. [Google Scholar] [CrossRef]
- Hojsak, I.; Szajewska, H.; Canani, R.B.; Guarino, A.; Indrio, F.; Kolacek, S.; Orel, R.; Shamir, R.; Vandenplas, Y.; van Goudoever, J.B.; et al. Probiotics for the Prevention of Nosocomial Diarrhea in Children. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 3–9. [Google Scholar] [CrossRef]
- Holscher, H.D.; Czerkies, L.A.; Cekola, P.; Litov, R.; Benbow, M.; Santema, S.; Alexander, D.D.; Perez, V.; Sun, S.; Saavedra, J.M.; et al. Bifidobacterium lactis Bb12 Enhances Intestinal Antibody Response in Formula-Fed Infants. J. Parenter. Enter. Nutr. 2012, 36, 106S–117S. [Google Scholar] [CrossRef]
- Szymański, H.; Chmielarczyk, A.; Strus, M.; Pejcz, J.; Jawień, M.; Kochan, P.; Heczko, P.B. Colonisation of the gastrointestinal tract by probiotic L. rhamnosus strains in acute diarrhoea in children. Dig. Liver Dis. 2006, 38, S274–S276. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-M.; Gao, S.; Wang, L.-Y.; Wang, Z.-L. Therapeutic effect of probiotics and oral IgY as supplementary drugs in the treatment of pediatric rotavirus enteritis: A comparative study. Zhongguo Dang Dai Er Ke Za Zhi 2013, 15, 1000–1005. [Google Scholar] [PubMed]
- Binns, C.; Lee, A.; Harding, H.; Gracey, M.; Barclay, D. The CUPDAY Study: Prebiotic-probiotic milk product in 1–3-year-old children attending childcare centres. Acta Paediatr. 2007, 96, 1646–1650. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-B.; Lee, H.-C.; Hu, J.-J.; Hou, S.-Y.; Liu, H.-L.; Fang, H.-W. Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children. J. Trop. Pediatr. 2009, 55, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Yu, T.; Xiong, Y.; Wang, Z.; Liu, H.; Gotteland, M.; Brunser, O. Effect of a lactose-free milk formula supplemented with bifidobacteria and streptococci on the recovery from acute diarrhoea. Asia Pac. J. Clin. Nutr. 2008, 17, 30–34. [Google Scholar]
- Nopchinda, S.; Varavithya, W.; Phuapradit, P.; Sangchai, R.; Suthutvoravut, U.; Chantraruksa, V.; Haschke, F. Effect of bifidobacterium Bb12 with or without Streptococcus thermophilus supplemented formula on nutritional status. J. Med Assoc. Thail. 2002, 85 (Suppl. 4), S1225–S1231. [Google Scholar]
- Zarin, I.; Ali, M.A.; Paul, S.K.; Mazid, R.; Amin, S.E. Efficacy of Probiotics in Treatment of Acute Rotavirus and Non Rotavirus Watery Diarrhoea in Children Admitted in Mymensingh Medical College Hospital. Mymensingh. Med. J. 2022, 31, 49–54. [Google Scholar]
- Liu, X.L.; Li, M.L.; Ma, W.X.; Xia, S.L.; Xu, B.L. Clinical trial on the prevention of diarrhea by oral BIFICO for infants aged 1–6 years. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 2013, 27, 277–279. [Google Scholar]
- Le Luyer, B.; Makhoul, G.; Duhamel, J.-F. Étude multicentrique, contrôlée en double insu d’une formule adaptée enrichie en Saccharomyces boulardii dans le traitement des diarrhées aiguës du nourrisson. Arch. Pédiatrie 2010, 17, 459–465. [Google Scholar] [CrossRef]
- Capurso, L. Thirty Years of Lactobacillus rhamnosus GG. J. Clin. Gastroenterol. 2019, 53, S1–S41. [Google Scholar] [CrossRef]
- Szajewska, H.; Kotowska, M.; Mrukowicz, J.Z.; Armánska, M.; Mikolajczyk, W. Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. J. Pediatr. 2001, 138, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-T.; Xu, H.; Ye, J.-Z.; Wu, W.-R.; Shi, D.; Fang, D.-Q.; Liu, Y.; Li, L.-J. Efficacy of Lactobacillus rhamnosus GG in treatment of acute pediatric diarrhea: A systematic review with meta-analysis. World J. Gastroenterol. 2019, 25, 4999–5016. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, A.L.; Nunziata, F.; Bruzzese, D.; Conelli, M.; Guarino, A. Rotavirus immunisation status affects the efficacy of Lacticaseibacillus rhamnosus GG for the treatment of children with acute diarrhoea: A meta-analysis. Benef. Microbes 2022, 13, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Peroni, D.; Morelli, L. Probiotics as Adjuvants in Vaccine Strategy: Is There More Room for Improvement? Vaccines 2021, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Cucchiara, S.; Cuomo, R.; Pace, F.; Papale, F. Saccharomyces boulardii: A summary of the evidence for gastroenterology clinical practice in adults and children. Eur. Rev. Med Pharmacol. Sci. 2011, 15, 809–822. [Google Scholar]
- Chong, H.-X.; Yusoff, N.A.A.; Hor, Y.Y.; Lew, L.C.; Jaafar, M.H.; Choi, S.-B.; Yusoff, M.S.; Wahid, N.; Bin Abdullah, M.F.I.L.; Zakaria, N.; et al. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. J. Dairy Sci. 2019, 102, 4783–4797. [Google Scholar] [CrossRef] [PubMed]
- Cunningham-Rundles, S.; Ahrné, S.; Bengmark, S.; Johann-Liang, R.; Marshall, F.; Metakis, L.; Califano, C.; Dunn, A.M.; Grassey, C.; Hinds, G.; et al. Probiotics and immune response. Am. J. Gastroenterol. 2000, 95 (Suppl. 1), S22–S25. [Google Scholar] [CrossRef]
- Han, Y.; Kim, B.; Ban, J.; Lee, J.; Kim, B.J.; Choi, B.S.; Hwang, S.; Ahn, K.; Kim, J. A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis. Pediatr. Allergy Immunol. 2012, 23, 667–673. [Google Scholar] [CrossRef]
- Jung, K.; Kim, A.; Lee, J.-H.; Cho, D.; Seo, J.; Jung, E.S.; Kang, H.-J.; Roh, J.; Kim, W. Effect of Oral Intake of Lactiplantibacillus plantarum APsulloc 331261 (GTB1TM) on Diarrhea-Predominant Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2022, 14, 2015. [Google Scholar] [CrossRef]
- Lee, A.; Lee, Y.J.; Yoo, H.J.; Kim, M.; Chang, Y.; Lee, D.S.; Lee, J.H. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity. Nutrients 2017, 9, 558. [Google Scholar] [CrossRef] [Green Version]
- Mañé, J.; Pedrosa, E.; Lorén, V.; Gassull, A.M.; Espadaler, J.; Cuñé, J.; Audivert, S.; Bonachera, A.M.; Cabré, E. A mixture of Lactobacillus plantarum CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects. A dose-response, double-blind, placebo-controlled, randomized pilot trial. Nutr. Hosp. 2011, 26, 228–235. [Google Scholar] [PubMed]
- Yang, B.; Yue, Y.; Chen, Y.; Ding, M.; Li, B.; Wang, L.; Wang, Q.; Stanton, C.; Ross, R.P.; Zhao, J.; et al. Lactobacillus plantarum CCFM1143 Alleviates Chronic Diarrhea via Inflammation Regulation and Gut Microbiota Modulation: A Double-Blind, Randomized, Placebo-Controlled Study. Front. Immunol. 2021, 12, 746585. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.M.; Choi, Y.J.; Lee, D.H.; Moon, J.S.; Kim, T.-Y.; Kim, Y.-K.; Lee, W.-H.; Yoon, H.; Park, Y.S.; Kim, N. Validity and safety of ID-JPL934 in lower gastrointestinal symptom improvement. Sci. Rep. 2021, 11, 13046. [Google Scholar] [CrossRef] [PubMed]
- Phuapradit, P.; Varavithya, W.; Vathanophas, K.; Sangchai, R.; Podhipak, A.; Suthutvoravut, U.; Nopchinda, S.; Chantraruksa, V.; Haschke, F. Reduction of rotavirus infection in children receiving bifidobacteria-supplemented formula. J. Med Assoc. Thail. 1999, 82 (Suppl. 1), S43–S48. [Google Scholar]
- Kahan, B.C.; Cro, S.; Doré, C.J.; Bratton, D.J.; Rehal, S.; Maskell, A.N.; Rahman, N.; Jairath, V. Reducing bias in open-label trials where blinded outcome assessment is not feasible: Strategies from two randomised trials. Trials 2014, 15, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Bruno, C.; Paparo, L.; Pisapia, L.; Romano, A.; Cortese, M.; Punzo, E.; Canani, R.B. Protective effects of the postbiotic deriving from cow’s milk fermentation with L. paracasei CBA L74 against Rotavirus infection in human enterocytes. Sci. Rep. 2022, 12, 6268. [Google Scholar] [CrossRef]
- Morales-Ferré, C.; Azagra-Boronat, I.; Massot-Cladera, M.; Tims, S.; Knipping, K.; Garssen, J.; Knol, J.; Franch, A.; Castell, M.; Pérez-Cano, F.J.; et al. Preventive Effect of a Postbiotic and Prebiotic Mixture in a Rat Model of Early Life Rotavirus Induced-Diarrhea. Nutrients 2022, 14, 1163. [Google Scholar] [CrossRef] [PubMed]
- A Pedone, C.; Arnaud, C.C.; Postaire, E.R.; Bouley, C.F.; Reinert, P. Multicentric study of the effect of milk fermented by Lactobacillus casei on the incidence of diarrhoea. Int. J. Clin. Pr. 2000, 54, 568–571. [Google Scholar]
- Mastretta, E.; Longo, P.; Laccisaglia, A.; Balbo, L.; Russo, R.; Mazzaccara, A.; Gianino, P. Effect of Lactobacillus GG and Breast-feeding in the Prevention of Rotavirus Nosocomial Infection. J. Craniofacial Surg. 2002, 35, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Sabui, T.K.; Pal, N.K. A Randomized Controlled Trial to Evaluate the Efficacy of Lactobacillus GG in Infantile Diarrhea. J. Pediatr. 2009, 155, 129–132. [Google Scholar] [CrossRef]
- Ritchie, B.K.; Brewster, D.R.; Tran, C.D.; Davidson, G.P.; McNeil, Y.; Butler, R.N. Efficacy of Lactobacillus GG in Aboriginal Children With Acute Diarrhoeal Disease: A Randomised Clinical Trial. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 619–624. [Google Scholar] [CrossRef]
- Salazar-Lindo, E.; Miranda-Langschwager, P.; Campos-Sanchez, M.; Chea-Woo, E.; Sack, R.B. Lactobacillus caseistrain GG in the treatment of infants with acute watery diarrhea: A randomized, double-blind, placebo controlled clinical trial [ISRCTN67363048]. BMC Pediatr. 2004, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Freedman, S.B.; Williamson-Urquhart, S.; Farion, K.J.; Gouin, S.; Willan, A.R.; Poonai, N.; Hurley, K.; Sherman, P.M.; Finkelstein, Y.; Lee, B.E.; et al. Multicenter Trial of a Combination Probiotic for Children with Gastroenteritis. N. Engl. J. Med. 2018, 379, 2015–2026. [Google Scholar] [CrossRef]
- Freedman, S.B.; Williamson-Urquhart, S.; Schuh, S.; Sherman, P.M.; Farion, K.J.; Gouin, S.; Willan, A.R.; Goeree, R.; Johnson, D.W.; Black, K.; et al. Impact of emergency department probiotic treatment of pediatric gastroenteritis: Study protocol for the PROGUT (Probiotic Regimen for Outpatient Gastroenteritis Utility of Treatment) randomized controlled trial. Trials 2014, 15, 170. [Google Scholar] [CrossRef] [Green Version]
- Freedman, S.B.; Xie, J.; Nettel-Aguirre, A.; Pang, X.L.; Chui, L.; Williamson-Urquhart, S.; Schnadower, D.; Schuh, S.; Sherman, P.M.; Lee, B.E.; et al. A randomized trial evaluating virus-specific effects of a combination probiotic in children with acute gastroenteritis. Nat. Commun. 2020, 11, 2533. [Google Scholar] [CrossRef]
- Freedman, S.B.; Finkelstein, Y.; Pang, X.-L.; Chui, L.; Tarr, I.P.; VanBuren, J.M.; Olsen, C.; Lee, E.B.; Hall-Moore, A.C.; Sapien, R.; et al. Pathogen-Specific Effects of Probiotics in Children With Acute Gastroenteritis Seeking Emergency Care: A Randomized Trial. Clin. Infect. Dis. 2021, 75, 55–64. [Google Scholar] [CrossRef]
- Freedman, S.B.; Horne, R.; Johnson-Henry, K.; Xie, J.; Williamson-Urquhart, S.; Chui, L.; Pang, X.-L.; Lee, B.; Schuh, S.; Finkelstein, Y.; et al. Probiotic stool secretory immunoglobulin A modulation in children with gastroenteritis: A randomized clinical trial. Am. J. Clin. Nutr. 2021, 113, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.P.; John, J.; Shanmugasundaram, E.; Rajan, A.K.; Thiagarajan, S.; Giri, S.; Babji, S.; Sarkar, R.; Kaliappan, P.S.; Venugopal, S.; et al. The effect of probiotics and zinc supplementation on the immune response to oral rotavirus vaccine: A randomized, factorial design, placebo-controlled study among Indian infants. Vaccine 2018, 36, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Chau, T.T.H.; Chau, N.N.M.; Le, N.T.H.; The, H.C.; Vinh, P.V.; To, N.T.N.; Ngoc, N.M.; Tuan, H.M.; Ngoc, T.L.C.; Kolader, M.-E.; et al. A Double-blind, Randomized, Placebo-controlled Trial of Lactobacillus acidophilus for the Treatment of Acute Watery Diarrhea in Vietnamese Children. Pediatr. Infect. Dis. J. 2018, 37, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbańska, M.; Gieruszczak–Białek, D.; Szymański, H.; Szajewska, H. Effectiveness of Lactobacillus reuteri DSM 17938 for the Prevention of Nosocomial Diarrhea in Children. Pediatr. Infect. Dis. J. 2016, 35, 142–145. [Google Scholar] [CrossRef]
- Wanke, M.; Szajewska, H. Lack of an effect of Lactobacillus reuteri DSM 17938 in preventing nosocomial diarrhea in children: A randomized, double-blind, placebo-controlled trial. J. Pediatr. 2012, 161, 40–43.e41. [Google Scholar] [CrossRef]
- Dargenio, V.; Cristofori, F.; Dargenio, C.; Giordano, P.; Indrio, F.; Celano, G.; Francavilla, R. Use of Limosilactobacillus reuteri DSM 17938 in paediatric gastrointestinal disorders: An updated review. Benef. Microbes 2022, 13, 221–242. [Google Scholar] [CrossRef]
- Zermiani, A.P.d.R.B.; Soares, A.L.P.P.d.P.; Moura, B.L.d.S.G.d.; Miguel, E.R.A.; Lopes, L.D.G.; Santana, N.D.C.S.; Santos, T.D.S.; Demarchi, I.G.; Teixeira, J.J. Evidence of Lactobacillus reuteri to reduce colic in breastfed babies: Systematic review and meta-analysis. Complement. Ther. Med. 2021, 63, 102781. [Google Scholar] [CrossRef]
- Foster, J.P.; Dahlen, H.G.; Fijan, S.; Badawi, N.; Schmied, V.; Thornton, C.; Smith, C.; Psaila, K. Probiotics for preventing and treating infant regurgitation: A systematic review and meta-analysis. Matern. Child Nutr. 2021, 18, e13290. [Google Scholar] [CrossRef]
- Dutta, P.; Mitra, U.; Dutta, S.; Rajendran, K.; Saha, T.K.; Chatterjee, I.K. Randomised controlled clinical trial of Lactobacillus sporogenes (Bacillus coagulans), used as probiotic in clinical practice, on acute watery diarrhoea in children. Trop. Med. Int. Health 2011, 16, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Sarker, S.A.; Sultana, S.; Fuchs, G.J.; Alam, N.H.; Azim, T.; Brussow, H.; Hammarstrom, L. Lactobacillus paracasei Strain ST11 Has No Effect on Rotavirus but Ameliorates the Outcome of Nonrotavirus Diarrhea in Children From Bangladesh. Pediatrics 2005, 116, e221–e228. [Google Scholar] [CrossRef] [Green Version]
- Zawistowska-Rojek, A.; Zaręba, T.; Tyski, S. Microbiological Testing of Probiotic Preparations. Int. J. Environ. Res. Public Health 2022, 19, 5701. [Google Scholar] [CrossRef] [PubMed]
- Lorbeg, P.M.; Golob, M.; Kramer, M.; Treven, P.; Matijašić, B.B. Evaluation of Dietary Supplements Containing Viable Bacteria by Cultivation/MALDI-TOF Mass Spectrometry and PCR Identification. Front. Microbiol. 2021, 12, 700138. [Google Scholar] [CrossRef] [PubMed]
Reference (First Author, Year) 1 | Study Design | Population | Intervention | Main Findings | ||
---|---|---|---|---|---|---|
Active | Control | Duration | ||||
Shin et al. (2020), Rep. Korea [58] | RCT | 50 hospitalized children with rotavirus gastroenteritis, aged up to 6 years. 15 in novel probiotic group. 8 in control group (group II). 27 in group III (retrospectively analysed through medical records). | Group I:
| Group II: standard treatment | Up to 8 days | Group I (Lactiplantibacillus plantarum LRCC5310) showed a statistically significant improvement in the number of patients with persistent diarrhoea, number of defecation events per day, and total diarrhoea period compared to group II (control). Group I showed slight improvement in the number of patients with loose stools, number of defecation events, and diarrhoea duration compared to group III (Saccharomyces cerevisiae-containing probiotic formulation). |
Park, Kwon, Ku, and Ji (2017), Korea [59] | Double-blind RCT | 57 hospitalized infants with rotavirus disease, aged between 9 and 16 months. 28 in probiotic group. 29 in control group. |
| Placebo | 3 days | A significantly shorter duration of patients’ diarrhoea was observed in the probiotic group compared to the placebo group. Symptoms such as duration of fever, frequency of diarrhoea, and frequency of vomiting tended to be ameliorated by the probiotic treatment; however, differences were not statistically significant between the two groups. |
Das, Gupta, and Das (2016), India [60] | Double-blind RCT | 60 children, aged between 3 months to 5 years, with watery diarrhoea and stool rotavirus positive. 30 in probiotic group. 30 in control group. |
| Placebo | 5 days | A significantly shorter duration of diarrhoea and hospitalization was observed in the intervention group. No significant difference was seen for fever and vomiting. There was also no difference between the two groups in the proportion of children requiring parenteral rehydration and persistence of diarrhoea lasting beyond day 7. |
Lee et al. (2015), Rep. Korea [55] | Double-blind RCT | 29 children between 3 months and 7 years with viral gastroenteritis (9 rotavirus infection). 13 in probiotic group. 16 in control group. |
| Placebo | 1 week | The multi-strain probiotic significantly shortened the duration of diarrhoea and fever compared to the placebo. The mean duration of vomiting was shorter in the probiotic group, but the difference in the study groups was not statistically significant. |
Aggarwal et al. (2014), India [61] | Open Label RCT | 200 children with watery diarrhoea (41 positive for rotavirus in stool), aged between 6 months and 5 years. 100 in probiotic group. 100 control group. | Culturelle probiotic GG contains:
| Standard treatment | 5 days | A statistically significant decrease in the duration of diarrhoea, faster improvement in stool consistency, and reduction in average number of stools per day was observed in the probiotic group compared to standard treatment. |
Huang et al. (2014), Taiwan [62] | Open Label RCT | 159 hospitalized children with infectious gastroenteritis (42 rotavirus), aged between 3 months to 14 years. 82 in probiotic group. 77 in control group. | Bio-three contains 4:
| standard treatment | 7 days | A statistically significant decrease in the duration of severe diarrhoea was observed in the probiotic group compared to standard treatment. In the patients with rotavirus, a statistically significant decrease in gastroenteritis (Vesikari score) and diarrhoea frequency was also observed in the probiotic group. |
Sindhu et al. (2014), India [63] | Double-blind RCT | 124 children with gastroenteritis, aged between 6 months to 5 years, infected either with rotavirus (82) or Cryptosporidium species (42). 65 in probiotic group. 59 in control group. |
| Placebo | 4 weeks | A statistically significant increase in the IgG levels post-intervention was observed in children with rotavirus diarrhoea receiving LGG after 4 weeks. Fewer children with rotavirus diarrhoea on LGG had repeated diarrhoeal episodes. No differences were found in duration of diarrhoea. |
Corrêa, Penna, Lima, Nicoli, and Filho (2011), Brazil [64] | Double-blind RCT | 186 hospitalized children (57.4% with rotavirus), aged between 6 to 48 months, with acute diarrhoea. 90 in probiotic group. 86 in control group. |
| Placebo | 5 days | A statistically significant reduction in the duration of diarrhoea was observed in probiotic group compared to placebo. |
Dalgic, Sancar, Bayraktar, Pullu, and Hasim (2011), Turkey [65] | Single Blind RCT | 240 children with rotavirus diarrhoea, divided into eight groups. 60 in each group. | Group 1:
Group 3: lactose-free formula (LF), Group 4: Zn and
Group 7: Zn and LF and
Dosage: 250 mg once daily | Standard treatment | 5 days | A statistically significant reduction in diarrhoea duration and hospital stay was observed in groups 2 and 4 compared to standard treatment. A significant difference in the duration of hospitalization between groups 1 and 4; groups 2 and 7; groups 3 and 4; groups 4 and 5, and groups 4 and 7 was also found. |
Grandy, Medina, Soria, Terán, and Araya (2010), Bolivia [66] | Double-blind RCT | 64 hospitalized children with rotavirus infection, aged 1 to 23 months, divided in 3 groups. Group 1: single strain probiotic (20). Group 2: multi-strain probiotic (23). Group 3: control (21) | Group 1:
Group 2:
| Placebo | 5 days | Statistically significant decrease in duration of diarrhoea shorter duration of fever was observed in children who received the single-species probiotic compared to the placebo. Statistically significant fewer episodes of vomiting were observed with the multi-species probiotic compared to the placebo. When probiotic groups were merged, the statistical significance of changes increased (total duration of diarrhoea, fever, and vomiting). |
Basu, Paul, Ganguly, Chatterjee, and Chandra (2009), India [67] | Double-blind RCT | 559 hospitalized children (319 with rotavirus), aged up to 2 years, divided into 3 groups. 185 in group A. 188 in group B. 186 in group C. | Group A: control Group B: LGG, Dosage: 1010 cfu/g twice daily. Group C: LGG, Dosage: 1012 cfu/g twice daily | Standard treatment | 7 days | A statistically significant lower frequency and the duration of diarrhoea, requirement for intravenous therapy, and hospital was observed in both the intervention groups compared with the control. There was no significant difference between the 2 intervention groups. |
(Teran, Teran-Escalera, and Villarroel (2009), Bolivia [68] | Single Blind RCT | 75 hospitalized children, aged from 28 days to 24 months with rotavirus diarrhoea, divided into three groups. Group 1: nitazoxanide (25). Group 2: probiotic group (25). Group 3: control (25). | Group 1: nitazoxanide Group 2:
| Standard treatment | 5 days | A statistically significant reduction in the duration of diarrhoea and hospital stay was observed in the probiotic group compared to standard treatment. |
Dubey, Rajeshwari, Chakravarty, and Famularo (2008), 2008, India [69] | Double-blind RCT | 230 hospitalized children with rotavirus diarrhoea, aged between 6 months and 2 years. 113 in probiotic group. 111 in control group. | VSL#3 contains 4: 4 strains of lactobacilli species:
| Placebo | 4 days | A statistically significant lower mean stool frequency and improved stool consistency was observed after day 2 up to day 4. After day 4, the control group also showed spontaneous improvement. The overall recovery rates were significantly better in the probiotic group compared with the placebo. A statistically significant lower overall requirement for oral rehydration salts was found. |
Narayanappa (2008), India [70] | Double-blind RCT | 80 hospitalized children with rotavirus diarrhoea, aged between 3 months and 3 years. 40 in probiotic group. 40 in control group. | BIFILAC contains 4:
| Placebo | Up to 14 days | A statistically significant reduction in the number of episodes (frequency) of diarrhoea, mean duration of diarrhoea, degree of dehydration, duration and volume of oral rehydration salt therapy, duration and volume of intravenous fluid therapy and duration of rotavirus shedding was observed in the probiotic group compared to the control group. |
Szymański, Pejcz, et al. (2006), Poland [71] | Double-blind RCT | 87 children with infectious diarrhoea (39 with rotavirus), aged between 2 months and 6 years. 49 in probiotic group. 44 in control group. | Lakcid L contains:
| Placebo | 5 days | A statistically significant reduction in the duration of rotavirus diarrhoea, but not of diarrhoea of any aetiology, in children was observed in the probiotic group compared to the control group. Intervention shortened the time of intravenous rehydration. |
Gaón et al. (2003), Argentina [72] | Double-blind RCT | 89 hospitalized children with infectious diarrhoea (27% with rotavirus), aged between 6 and 24 months. 29 in control group (group 1). 30 in group 2. 30 in lactobacilli group 3. | Group 1: placebo Group 2:
| Placebo | 5 days | A statistically significant reduction in the duration of diarrhoea and number of stools in children was observed in all probiotic groups compared to the control group. |
Rosenfeldt et al. (2002), Denmark [73] | Double-blind RCT | 69 hospitalized children with infectious diarrhoea (66% with rotavirus), aged between 6 and 36 months. 30 in probiotic group. 39 in control group. |
| Placebo | 5 days | A statistically significant reduction in the duration of hospital stay was observed in the probiotic group compared to the placebo. The beneficial effects (duration of diarrhoea, loose stool, length of hospital stay) were most prominent in children treated early in the diarrhoeal phase. |
Guandalini et al., (2000), European study [74] | Double-blind RCT | 287 children with liquid or semiliquid stools (101 with rotavirus), aged between 1 month and 3 years. 147 in probiotic group. 140 in placebo group. |
| Standard treatment | Up to 7 days | A statistically significant reduction in duration of diarrhoea and duration of hospital stay in rotavirus-positive and rotavirus-negative children was observed in the probiotic group compared to the control group. In rotavirus-positive children, a significant reduction in number of average stools was also found in the probiotic group compared to the control group. |
Guarino, Canani, Spagnuolo, Albano, and Di Benedetto (1997), Italy [75] | Double-blind RCT | 100 children with diarrhoea (61 positive for rotavirus), aged between 3 and 36 months. 52 in probiotic group. 48 in control group. |
| Standard treatment | Up to 5 days | A statistically significant reduction in the duration of diarrhoea rotavirus-positive and rotavirus-negative ambulatory children with diarrhoea was observed in the probiotic group compared to the control group. Furthermore, the duration of rotavirus excretion was reduced. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steyer, A.; Mičetić-Turk, D.; Fijan, S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms 2022, 10, 2392. https://doi.org/10.3390/microorganisms10122392
Steyer A, Mičetić-Turk D, Fijan S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms. 2022; 10(12):2392. https://doi.org/10.3390/microorganisms10122392
Chicago/Turabian StyleSteyer, Andrej, Dušanka Mičetić-Turk, and Sabina Fijan. 2022. "The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature" Microorganisms 10, no. 12: 2392. https://doi.org/10.3390/microorganisms10122392
APA StyleSteyer, A., Mičetić-Turk, D., & Fijan, S. (2022). The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms, 10(12), 2392. https://doi.org/10.3390/microorganisms10122392