Low Salt Influences Archaellum-Based Motility, Glycerol Metabolism, and Gas Vesicles Biogenesis in Halobacterium salinarum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Growth Conditions, and RNA Extraction
2.2. RNA-seq Library Preparation, Sequencing, and Data Analysis
2.3. Proteomics and RNA-seq Data Comparison
2.4. Growth Curve Supplemented with Glycerol
2.5. Motility Assays
2.6. Gas Vesicles Evaluation
3. Results
3.1. A Global Transcriptomic Survey in Low Salt
3.2. Gas Vesicle Biogenesis and Cell Motility Are Down-Regulated on Low Salinity Stress
3.3. Glycerol Metabolism Is Up-Regulated in Low Salinity
3.4. Comparison between Transcriptome and Proteome
4. Discussion
4.1. Transcriptome Change under Hyposalinity Stress
4.2. Buoyancy and Swimming Impairment under Hyposalinity Stress
4.3. Glycerol Metabolism May Alleviate Hyposalinity Stress
4.4. Post-Transcriptional Regulation under Hyposalinity Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oren, A. Life at High Salt Concentrations. In The Prokaryotes: Volume 2: Ecophysiology and Biochemistry; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 263–282. ISBN 978-0-387-30742-8. [Google Scholar]
- Lee, C.J.D.; McMullan, P.E.; O’Kane, C.J.; Stevenson, A.; Santos, I.C.; Roy, C.; Ghosh, W.; Mancinelli, R.L.; Mormile, M.R.; McMullan, G.; et al. NaCl-Saturated Brines Are Thermodynamically Moderate, Rather than Extreme, Microbial Habitats. FEMS Microbiol. Rev. 2018, 42, 672–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, A.; Cray, J.A.; Williams, J.P.; Santos, R.; Sahay, R.; Neuenkirchen, N.; McClure, C.D.; Grant, I.R.; Houghton, J.D.; Quinn, J.P.; et al. Is There a Common Water-Activity Limit for the Three Domains of Life? ISME J. 2015, 9, 1333–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, A.; Finore, I.; Romano, I.; Gioiello, A.; Lama, L.; Nicolaus, B. Microbial Diversity in Extreme Marine Habitats and Their Biomolecules. Microorganisms 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vauclare, P.; Madern, D.; Girard, E.; Gabel, F.; Zaccai, G.; Franzetti, B. New Insights into Microbial Adaptation to Extreme Saline Environments. BIO Web Conf. 2014, 2, 02001. [Google Scholar] [CrossRef] [Green Version]
- Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.; Lasky, S.R.; Baliga, N.S.; Thorsson, V.; Sbrogna, J.; et al. Genome Sequence of Halobacterium Species NRC-1. Proc. Natl. Acad. Sci. USA 2000, 97, 12176–12181. [Google Scholar] [CrossRef] [Green Version]
- Van, P.T.; Schmid, A.K.; King, N.L.; Kaur, A.; Pan, M.; Whitehead, K.; Koide, T.; Facciotti, M.T.; Goo, Y.-A.; Deutsch, E.W.; et al. Halobacterium Salinarum NRC-1 PeptideAtlas: Strategies for Targeted Proteomics. J. Proteome Res. 2008, 7, 3755–3764. [Google Scholar] [CrossRef] [Green Version]
- Vauclare, P.; Marty, V.; Fabiani, E.; Martinez, N.; Jasnin, M.; Gabel, F.; Peters, J.; Zaccai, G.; Franzetti, B. Molecular Adaptation and Salt Stress Response of Halobacterium Salinarum Cells Revealed by Neutron Spectroscopy. Extremophiles 2015, 19, 1099–1107. [Google Scholar] [CrossRef]
- Leuko, S.; Raftery, M.J.; Burns, B.P.; Walter, M.R.; Neilan, B.A. Global Protein-Level Responses of Halobacterium Salinarum NRC-1 to Prolonged Changes in External Sodium Chloride Concentrations. J. Proteome Res. 2009, 8, 2218–2225. [Google Scholar] [CrossRef]
- Coker, J.A.; DasSarma, P.; Kumar, J.; Müller, J.A.; DasSarma, S. Transcriptional Profiling of the Model Archaeon Halobacterium Sp. NRC-1: Responses to Changes in Salinity and Temperature. Saline Syst. 2007, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Vauclare, P.; Natali, F.; Kleman, J.P.; Zaccai, G.; Franzetti, B. Surviving Salt Fluctuations: Stress and Recovery in Halobacterium Salinarum, an Extreme Halophilic Archaeon. Sci. Rep. 2020, 10, 3298. [Google Scholar] [CrossRef]
- Madern, D.; Ebel, C.; Zaccai, G. Halophilic Adaptation of Enzymes. Extremophiles 2000, 4, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Lanyi, J.K. Salt-Dependent Properties of Proteins from Extremely Halophilic Bacteria. Bacteriol. Rev. 1974, 38, 272–290. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.P.; Ng, W.V.; Salzberg, S.L.; Hood, L.; DasSarma, S. Understanding the Adaptation of Halobacterium Species NRC-1 to Its Extreme Environment through Computational Analysis of Its Genome Sequence. Genome Res. 2001, 11, 1641–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakrikar, S.; Schmid, A. An Archaeal Histone-like Protein Regulates Gene Expression in Response to Salt Stress. Nucleic Acids Res. 2021, 49, 12732–12743. [Google Scholar] [CrossRef] [PubMed]
- Kish, A.; Kirkali, G.; Robinson, C.; Rosenblatt, R.; Jaruga, P.; Dizdaroglu, M.; DiRuggiero, J. Salt Shield: Intracellular Salts Provide Cellular Protection against Ionizing Radiation in the Halophilic Archaeon, Halobacterium Salinarum NRC-1. Environ. Microbiol. 2009, 11, 1066–1078. [Google Scholar] [CrossRef]
- Kurt-Kızıldoğan, A.; Abanoz, B.; Okay, S. Global Transcriptome Analysis of Halolamina Sp. to Decipher the Salt Tolerance in Extremely Halophilic Archaea. Gene 2017, 601, 56–64. [Google Scholar] [CrossRef]
- Mei, Y.; Liu, H.; Zhang, S.; Yang, M.; Hu, C.; Zhang, J.; Shen, P.; Chen, X. Effects of Salinity on the Cellular Physiological Responses of Natrinema Sp. J7-2. PLoS ONE 2017, 12, e0184974. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Dalmet, S.; Litchfield, C.D.; Gillevet, P.; Baxter, B.K. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah. Genes 2018, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Ten-Caten, F.; Vêncio, R.Z.; Lorenzetti, A.P.R.; Zaramela, L.S.; Santana, A.C.; Koide, T. Internal RNAs Overlapping Coding Sequences Can Drive the Production of Alternative Proteins in Archaea. RNA Biol. 2018, 15, 1119–1132. [Google Scholar] [CrossRef] [Green Version]
- Vêncio, R.Z.N.; Koide, T. HTself: Self-Self Based Statistical Test for Low Replication Microarray Studies. DNA Res. 2005, 12, 211–214. [Google Scholar] [CrossRef]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.-P.; Mi, H. PANTHER: Making Genome-Scale Phylogenetics Accessible to All. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef]
- Aalberts, D.P.; Jannen, W.K. Visualizing RNA Base-Pairing Probabilities with RNAbow Diagrams. RNA 2013, 19, 475–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, R.; Bernhart, S.H.; Höner Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.G.A.E.-R.; Vêncio, R.Z.N.; Lorenzetti, A.P.R.; Koide, T. Halobacterium Salinarum and Haloferax Volcanii Comparative Transcriptomics Reveals Conserved Transcriptional Processing Sites. Genes 2021, 12, 1018. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J.G.; Wu, G.H. Effects of Salinity Changes on the Growth of Dunaliella Salina and Its Isozyme Activities of Glycerol-3-Phosphate Dehydrogenase. J. Agric. Food Chem. 2009, 57, 6178–6182. [Google Scholar] [CrossRef] [PubMed]
- Zaretsky, M.; Darnell, C.L.; Schmid, A.K.; Eichler, J. N-Glycosylation Is Important for Halobacterium Salinarum Archaellin Expression, Archaellum Assembly and Cell Motility. Front. Microbiol. 2019, 10, 1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, M.; Afolayan, S.; Igiraneza, A.B.; Schiller, H.; Krespan, E.; Beiting, D.P.; Dyall-Smith, M.; Pfeiffer, F.; Pohlschroder, M. Mutations Affecting HVO_1357 or HVO_2248 Cause Hypermotility in Haloferax Volcanii, Suggesting Roles in Motility Regulation. Genes 2020, 12, 58. [Google Scholar] [CrossRef]
- de Almeida, J.P.P.; Vêncio, R.Z.N.; Lorenzetti, A.P.R.; Ten-Caten, F.; Gomes-Filho, J.V.; Koide, T. The Primary Antisense Transcriptome of Halobacterium Salinarum NRC-1. Genes 2019, 10, 280. [Google Scholar] [CrossRef] [Green Version]
- Lorenzetti, A.P.R.; Kusebauch, U.; Zaramela, L.S.; Wu, W.-J.; de Almeida, J.P.P.; Turkarslan, S.; de Lomana, A.L.G.; Gomes-Filho, J.V.; Vêncio, R.Z.N.; Moritz, R.L.; et al. A Genome-Scale Atlas Reveals Complex Interplay of Transcription and Translation in an Archaeon. bioRxiv 2022. [Google Scholar] [CrossRef]
- Pfeifer, F. Haloarchaea and the Formation of Gas Vesicles. Life 2015, 5, 385–402. [Google Scholar] [CrossRef]
- Albers, S.-V.; Jarrell, K.F. The Archaellum: How Archaea Swim. Front. Microbiol. 2015, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsby, A.E. Gas Vesicles. Microbiol. Rev. 1994, 58, 94–144. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, F. Recent Advances in the Study of Gas Vesicle Proteins and Application of Gas Vesicles in Biomedical Research. Life 2022, 12, 1455. [Google Scholar] [CrossRef] [PubMed]
- Albers, S.-V.; Jarrell, K.F. The Archaellum: An Update on the Unique Archaeal Motility Structure. Trends Microbiol. 2018, 26, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Kinosita, Y.; Nishizaka, T. Cross-Kymography Analysis to Simultaneously Quantify the Function and Morphology of the Archaellum. Biophys. Phys. 2018, 15, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, J.; Spudich, J.L. Signal Transfer in Haloarchaeal Sensory Rhodopsin–Transducer Complexes. Photochem. Photobiol. 2008, 84, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Yaakop, A.S.; Chan, K.-G.; Ee, R.; Lim, Y.L.; Lee, S.-K.; Manan, F.A.; Goh, K.M. Characterization of the Mechanism of Prolonged Adaptation to Osmotic Stress of Jeotgalibacillus Malaysiensis via Genome and Transcriptome Sequencing Analyses. Sci. Rep. 2016, 6, 33660. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, A.; Hamill, P.G.; Medina, Á.; Kminek, G.; Rummel, J.D.; Dijksterhuis, J.; Timson, D.J.; Magan, N.; Leong, S.-L.L.; Hallsworth, J.E. Glycerol Enhances Fungal Germination at the Water-Activity Limit for Life. Environ. Microbiol. 2017, 19, 947–967. [Google Scholar] [CrossRef] [Green Version]
- Orellana, M.V.; Pang, W.L.; Durand, P.M.; Whitehead, K.; Baliga, N.S. A Role for Programmed Cell Death in the Microbial Loop. PLoS ONE 2013, 8, e0062595. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.J.; Allen, M.; Tschitschko, B.; Cavicchioli, R. Glycerol Metabolism of Haloarchaea. Environ. Microbiol. 2017, 19, 864–877. [Google Scholar] [CrossRef]
- López García de Lomana, A.; Kusebauch, U.; Raman, A.V.; Pan, M.; Turkarslan, S.; Lorenzetti, A.P.R.; Moritz, R.L.; Baliga, N.S. Selective Translation of Low Abundance and Upregulated Transcripts in Halobacterium Salinarum. mSystems 2020, 5, e00329-20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, T.; Yu, T.; Tan, Z.-J.; Zhang, W. Salt Effect on Thermodynamics and Kinetics of a Single RNA Base Pair. RNA 2020, 26, 470–480. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onga, E.A.; Vêncio, R.Z.N.; Koide, T. Low Salt Influences Archaellum-Based Motility, Glycerol Metabolism, and Gas Vesicles Biogenesis in Halobacterium salinarum. Microorganisms 2022, 10, 2442. https://doi.org/10.3390/microorganisms10122442
Onga EA, Vêncio RZN, Koide T. Low Salt Influences Archaellum-Based Motility, Glycerol Metabolism, and Gas Vesicles Biogenesis in Halobacterium salinarum. Microorganisms. 2022; 10(12):2442. https://doi.org/10.3390/microorganisms10122442
Chicago/Turabian StyleOnga, Evelyn Ayumi, Ricardo Z. N. Vêncio, and Tie Koide. 2022. "Low Salt Influences Archaellum-Based Motility, Glycerol Metabolism, and Gas Vesicles Biogenesis in Halobacterium salinarum" Microorganisms 10, no. 12: 2442. https://doi.org/10.3390/microorganisms10122442
APA StyleOnga, E. A., Vêncio, R. Z. N., & Koide, T. (2022). Low Salt Influences Archaellum-Based Motility, Glycerol Metabolism, and Gas Vesicles Biogenesis in Halobacterium salinarum. Microorganisms, 10(12), 2442. https://doi.org/10.3390/microorganisms10122442