Near-Infrared Metabolomic Fingerprinting Study of Lichen Thalli and Phycobionts in Culture: Aquaphotomics of Trebouxia lynnae Dehydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material and Culture of the Phycobionts
- -
- Trebouxia jamesii TR1, isolated from the lichen Ramalina farinacea from a population of Sierra El Toro (Castellón, Spain; 39°54′16″ N, 0°48′22″ W), previously described in Gasulla et al. [17].
- -
2.2. Dehydration of Phycobionts
2.3. Acquisition of NIR spectra
2.4. Data Analysis
2.5. Aquaphotomics
2.6. Statistical Analysis
3. Results
3.1. Lichen Thalli Global Molecular Fingerprint by NIRS
3.1.1. NIRS Spectrum of Ramalina farinacea
3.1.2. NIRS Spectrum of Lobarina scrobiculata
3.1.3. Subtraction Spectrum of Ramalina farinacea and Lobarina scrobiculata
3.2. Spectra of Ramalina farinacea Phycobionts
3.2.1. NIRS Spectrum of Trebouxia lynnae
3.2.2. NIRS Spectrum of Trebouxia jamesii
3.2.3. Subtraction Spectrum of Trebouxia lynnae and Trebouxia jamesii
3.3. Phycobiont Dehydration Study
3.3.1. Spectra of Dehydrated Trebouxia lynnae and Principal Components Analysis (PCA)
3.3.2. Subtraction Spectrum of Trebouxia lynnae Fresh and Dehydrated for 48 h
3.3.3. Aquaphotomics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Watter, P. Introducción a La Biología Celular; Editorial Médica Panamericana: Madrid, Spain, 2006. [Google Scholar]
- Shah, S.H.; Kraus, W.E.; Newgard, C.B. Basic Science for Clinicians Metabolomic Profiling for the Identification of Novel Biomarkers and Mechanisms Related to Common. Circulation 2012, 126, 1110–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shintu, L.; Baudoin, R.; Navratil, V.; Prot, J.M.; Pontoizeau, C.; Defernez, M.; Blaise, B.J.; Domange, C.; Péry, A.R.; Toulhoat, P.; et al. Metabolomics-on-a-Chip and Predictive Systems Toxicology in Microfluidic Bioartificial Organs. Anal. Chem. 2012, 84, 1840–1848. [Google Scholar] [CrossRef] [PubMed]
- Earlia, N.; Rahmad, R.; Amin, M.; Prakoeswa, C.; Khairan, K.; Idroes, R. The Potential Effect of Fatty Acids from Pliek U on Epidermal Fatty Acid Binding Protein: Chromatography and Bioinformatic Studies. Sains Malays. 2019, 48, 1019–1024. [Google Scholar] [CrossRef]
- Estevam, E.C.; Griffin, S.; Nasim, M.J.; Zieliñski, D.; Aszyk, J.; Osowicka, M.; Dawidowska, N.; Idroes, R.; Bartoszek, A.; Jacob, C. Inspired by Nature: The Use of Plant-Derived Substrate/Enzyme Combinations to Generate Antimicrobial Activity in Situ. Nat. Prod. Commun. 2015, 10, 1733–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenna, O.V.; Berardo, N. Application of Near-Infrared Reflectance Spectroscopy (NIRS) to the Evaluation of Carotenoids Content in Maize. J. Agric. Food Chem 2004, 52, 5577–5582. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Zhou, S.; Yang, Y.; Ni, X.; Yang, J.; Zhu, Z.; Shi, C. Application of Near-Infrared Reflectance Spectroscopy to Evaluate the Lutein and Beta-Carotene in Chinese Kale. J. Food Compos. Anal. 2009, 22, 148–153. [Google Scholar] [CrossRef]
- Stehfest, K.; Toepel, J.; Wilhelm, C. The Application of Micro-FTIR Spectroscopy to Analyze Nutrient Stress-Related Changes in Biomass Composition of Phytoplankton Algae. Plant Physiol. Biochem. 2005, 43, 717–726. [Google Scholar] [CrossRef]
- Gillon, D.; Houssard, C.; Joffre, R. Using Near-Infrared Refectance Spectroscopy to Predict Carbon, Nitrogen and Phosphorus Content in Heterogeneous Plant Material. Oecologia 1999, 118, 173–182. [Google Scholar] [CrossRef]
- Chang, G.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy-Principal Component Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Osborne, B.G.; Fearn, T.; Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific & Technical: Harlow, UK, 1993. [Google Scholar]
- Helm, D.; Labischinski, H.; Schallehn, G.; Naumann, D. Classification and Identification of Bacteria by Fourier-Transform Infrared Spectroscopy. J. Gen. Microbiol. 1991, 137, 69–79. [Google Scholar] [CrossRef]
- Ellis, D.I.; Harrigan, G.G.; Goodacre, R. Metabolic Fingerprinting with Fourier Transform Infrared Spectroscopy. In Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis; Springer: Boston, MA, USA, 2003; pp. 111–124. [Google Scholar]
- Pasquini, C. Review Near Infrared Spectroscopy: Fundamentals, Practical Aspects and Analytical Applications. J. Braz. Chem. Soc. 2003, 14, 198–219. [Google Scholar] [CrossRef] [Green Version]
- Spribille, T.; Tuovinen, V.; Resl, P.; Vanderpool, D.; Wolinski, H.; Aime, M.C.; Schneider, K.; Stabentheiner, E.; Toome-Heller, M.; Thor, G.; et al. Basidiomycete Yeasts in the Cortex of Ascomycete Macrolichens. Science 2016, 353, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Sanders, W.B.; Masumoto, H. Lichen Algae: The Photosynthetic Partners in Lichen Symbioses. Lichenol 2021, 53, 347–393. [Google Scholar] [CrossRef]
- Gasulla, F.; Guéra, A.; Barreno, E. A Simple and Rapid Method for Isolating Lichen Photobionts. Symbiosis 2010, 51, 175–179. [Google Scholar] [CrossRef]
- Domínguez-Morueco, N.; Moreno, H.; Barreno, E.; Catalá, M. Preliminary Assessment of Terrestrial Microalgae Isolated from Lichens as Testing Species for Environmental Monitoring: Lichen Phycobionts Present High Sensitivity to Environmental Micropollutants. Ecotoxicol. Environ. Saf. 2014, 99, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Traba, H.M.; Domínguez-morueco, N.; Barreno, E.; Catalá, M. Lichen Microalgae Are Sensitive to Environmental Concentrations of Atrazine. J. Environ. Sci. Health Part B 2017, 52, 223–228. [Google Scholar] [CrossRef]
- Gasulla, F.; Del Campo, E.M.; Casano, L.M.; Guéra, A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. Plants 2021, 10, 807. [Google Scholar] [CrossRef]
- Calatayud, A.; Deltoro, V.I.; Barreno, E.; Del Valle-Tascon, S. Changes in in Vivo Chlorophyll Fluorescence Quenching in Lichen Thalli as a Function of Water Content and Suggestion of Zeaxanthin-Associated Photoprotection. Physiol. Plant. 1997, 101, 93–102. [Google Scholar] [CrossRef]
- Fos, S.; Deltoro, V.I.; Calatayud, Á.; Barreno, E. Changes in Water Economy in Relation to Anatomical and Morphological Characteristics during Thallus Development in Parmelia Acetabulum. Lichenologist 1999, 31, 375–387. [Google Scholar] [CrossRef]
- Tretiach, M.; Pavanetto, S.; Pittao, E.; Sanità di Toppi, L.; Piccotto, M. Water Availability Modifies Tolerance to Photo-Oxidative Pollutants in Transplants of the Lichen Flavoparmelia Caperata. Oecologia 2012, 168, 589–599. [Google Scholar] [CrossRef]
- Petruzzellis, F.; Savi, T.; Bertuzzi, S.; Montagner, A.; Tretiach, M.; Nardini, A. Relationships between Water Status and Photosystem Functionality in a Chlorolichen and Its Isolated Photobiont. Planta 2018, 247, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Beckett, R.P.; Kranner, I.; Minibayeva, F.V. Stress Physiology and the Symbiosis. In Lichen Biology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 134–151. [Google Scholar]
- Larson, D.W. The Absorption and Release of Water by Lichens. Bibl. Lichenol. 1987, 25, 351–360. [Google Scholar]
- Nimis, P.; Stefano, M. The Information System on Italian Lichens. Bibl. Lichenol. 2002, 82, 271–283. [Google Scholar]
- Casano, L.M.; del Campo, E.M.; García-Breijo, F.J. Two Trebouxia Algae with Different Physiological Performances Are Ever-Present in Lichen Thalli of Ramalina Farinacea. Coexistence versus Competition? Env. Microbiol 2011, 13, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Vidal, E.; Marco, F.; Martínez-Alberola, F.; Escaray, F.J.; García-Breijo, F.J.; Reig-Armiñana, J.; Carrasco, P.; Barreno, E. Characterization of the Responses to Saline Stress in the Symbiotic Green Microalga Trebouxia Sp. TR9. Planta 2018, 248, 1473–1486. [Google Scholar] [CrossRef]
- Gasulla, F. Insights on Desiccation Tolerance of the Lichen Photobiont Trebouxia sp. pl. in both Thalline and Isolated Ones. Ph.D. Thesis, Universitat de València, València, Spain, 2009. [Google Scholar]
- Hell, A.F.; Gasulla, F.; González-Hourcade, M.; Del Campo, E.M.; Centeno, D.C.; Casano, L.M. Tolerance to Cyclic Desiccation in Lichen Microalgae Is Related to Habitat Preference and Involves Specific Priming of the Antioxidant System. Plant Cell Physiol. 2019, 60, 1880–1891. [Google Scholar] [CrossRef]
- Tsenkova, R.; Kovacs, Z.; Kubota, Y. Aquaphotomics: Near Infrared Spectroscopy and Water States in Biological Systems. Subcell. Biochem. 2015, 71, 189–211. [Google Scholar]
- Weber, J.M.; Kelley, J.A.; Robertson, W.H.; Johnson, M.A. Hydration of a Structured Excess Charge Distribution: Infrared Spectroscopy of the O2-·(H2O)n, (1≤n≤5) Clusters. J. Chem. Phys. 2001, 114, 2698–2706. [Google Scholar] [CrossRef]
- Tsenkova, R. Introduction Aquaphotomics: Dynamic Spectroscopy of Aqueous and Biological Systems Describes Peculiarities of Water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [Google Scholar] [CrossRef]
- Idroes, R.; Husna, I.; Rusyana, A.; Helwani, Z.; Idroes, G.M.; Suhendra, R.; Yandri, E.; Rahimah, S.; Sasmita, N.R. Analysis of Temperature and Column Variation in Gas Chromatography to Dead Time of Inert Gas and N-Alkane Homologous Series Using Randomized Block Design. Earth Environ. Sci. 2019, 364, 012020. [Google Scholar] [CrossRef]
- Nadia, Y.; Ramli, M.; Japnur, A.F.; Rusyana, A.; Idroes, G.M.; Suhendra, R.; Sasmita, N.R.; Tallei, T.E.; Idroes, R. Simple Combination Method of FTIR Spectroscopy and Chemometrics for Qualitative Identification of Cattle Bones. Earth Environ. Sci. 2019, 364, 012040. [Google Scholar] [CrossRef] [Green Version]
- Barreno, E.; Muggia, L.; Chiva, S.; Molins, A.; Bordenave, C.; García-Breijo, F.; Moya, P. Trebouxia Lynnae Sp. Nov. (Former Trebouxia Sp. TR9): Biology and Biogeography of an Epitome Lichen Symbiotic Microalga. Biology 2022, 11, 1196. [Google Scholar] [CrossRef]
- Ahmadjian, V. Some New and Interesting Species of Trebouxia, a Genus of Lichenized Algae. Am. J. Bot. 1960, 47, 677–683. [Google Scholar] [CrossRef]
- Álvarez, R.; del Hoyo, A.; Díaz-Rodríguez, C.; Coello, A.J.; del Campo, E.M.; Barreno, E.; Catalá, M.; Casano, L.M. Lichen Rehydration in Heavy Metal-Polluted Environments: Pb Modulates the Oxidative Response of Both Ramalina Farinacea Thalli and Its Isolated Microalgae. Microb. Ecol. 2015, 69, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Catalá, M.; Gasulla, F.; Pradas Del Real, A.E.; García-Breijo, F.; Reig-Armiñana, J.; Barreno, E. The Organic Air Pollutant Cumene Hydroperoxide Interferes with NO Antioxidant Role in Rehydrating Lichen. Environ. Pollut. 2013, 179, 277–284. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Xiaobo, Z.; Jiewen, Z.; Povey, M.J.W.; Holmes, M.; Hanpin, M. Variables Selection Methods in Near-Infrared Spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [Google Scholar] [CrossRef]
- Martens, S.; Stark, E. Extended Multiplicative Signal Correction and Spectral Interference Subtraction: New Preprocessing Methods for near Infrared Spectroscopy. J. Pharm. Biomed. Anal. 1991, 9, 625–635. [Google Scholar] [CrossRef]
- Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. Near Infrared Spectroscopy and Chemometrics Studies of Temperature-Dependent Spectral Variations of Water: Relationship between Spectral Changes and Hydrogen Bonds. J. Near Infrared Spectrosc. 1995, 3, 191–201. [Google Scholar] [CrossRef]
- Segtnan, V.H.; Šašić, Š.; Isaksson, T.; Ozaki, Y. Studies on the Structure of Water Using Two-Dimensional near-Infrared Correlation Spectroscopy and Principal Component Analysis. Anal. Chem. 2001, 73, 3153–3161. [Google Scholar] [CrossRef]
- Kuroki, S.; Tsenkova, R.; Moyankova, D.; Muncan, J.; Morita, H.; Atanassova, S.; Djilianov, D. Water Molecular Structure Underpins Extreme Desiccation Tolerance of the Resurrection Plant Haberlea Rhodopensis. Sci. Rep. 2019, 9, 3049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muncan, J.; Tsenkova, R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petty, C.C.; Curcio, J.A. The Near Infrared Absorption Spectrum of Liquid Water. JOSA 1951, 41, 302–304. [Google Scholar] [CrossRef]
- Malegori, C.; Muncan, J.; Mustorgi, E.; Tsenkova, R.; Oliveri, P. Analysing the Water Spectral Pattern by Near-Infrared Spectroscopy and Chemometrics as a Dynamic Multidimensional Biomarker in Preservation: Rice Germ Storage Monitoring. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120396. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J.; Chen, T.; Yang, B.; Jiang, Y.; Wei, D.; Chen, F. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy. Int. J. Mol. Sci. 2015, 16, 7045–7056. [Google Scholar] [CrossRef]
- Laurens, L.M.L.; Wolfrum, E.J. High-Throughput Quantitative Biochemical Characterization of Algal Biomass by NIR Spectroscopy; Multiple Linear Regression and Multivariate Linear Regression Analysis. J. Agric. Food Chem. 2013, 61, 12307–12314. [Google Scholar] [CrossRef]
- Niu, C.; Guo, H.; Wei, J.; Sajid, M.; Yuan, Y.; Yue, T. Fourier Transform Near-Infrared Spectroscopy and Chemometrics To Predict Zygosacchromyces Rouxii in Apple and Kiwi Fruit Juices. J. Food Prot. 2018, 81, 1379–1385. [Google Scholar] [CrossRef]
- Wang, X.; Bao, Y.; Liu, G.; Li, G.; Lin, L. Study on the Best Analysis Spectral Section of NIR to Detect Alcohol Concentration Based on SiPLS. Procedia Eng. 2012, 29, 2285–2290. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Flood, L.; Bellon, J.; Gishen, M.; Lopes, M.D.B. Combining near Infrared Spectroscopy and Multivariate Analysis as a Tool to Differentiate Different Strains of Saccharomyces Cerevisiae: A Metabolomic Study. Yeast 2006, 23, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhuang, H.; Sohn, M.; Wang, W. Measurement of Soy Contents in Ground Beef Using Near-Infrared Spectroscopy. Appl. Sci. 2017, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Headrick, J.M.; Diken, E.G.; Walters, R.S.; Hammer, N.I.; Christie, R.A.; Cui, J.; Myshakin, E.M.; Duncan, M.A.; Johnson, M.A.; Jordan, K.D. Spectral Signatures of Hydrated Proton Vibrations in Water Clusters. Science 2005, 308, 1765–1769. [Google Scholar] [CrossRef]
- Heras, R. Desarrollo de Bioensayos y Biomarcadores Para la Evaluación Del Estrés Abiótico y la Toxicidad Ambiental. 2022. Available online: https://brain.urjc.es/permalink/f/vfr0g1/34URJC_ALMA21125465730004216 (accessed on 6 October 2022).
- Lange, O.L.; Büdel, B.; Heber, U.; Meyer, A.; Zellner, H.; Green, T.G.A. Temperate Rainforest Lichens in New Zealand: High Thallus Water Content Can Severely Limit Photosynthetic CO2 Exchange. Oecologia 1993, 95, 303–313. [Google Scholar] [CrossRef]
- Kappen, L. Response to extreme environments. Lichens 1973, 311–380. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Rezanka, T.; Bychek, I.A. Lipid Composition of Some Lichens. Phytochemistry 1992, 31, 1617–1620. [Google Scholar] [CrossRef]
- Dertien, B.K.; de Kok, L.J.; Kuiper, P.J.C. Lipid and Fatty Acid Composition of Tree-Growing and Terrestrial Lichens. Physiol. Plant. 1977, 40, 175–180. [Google Scholar] [CrossRef]
- Trobajo, S.; Fernández-Salegui, A.B.; Hurtado, P.; Terrón, A.; Martínez, I. Interspecific and Intraspecific Variability of Water Use Traits in Macrolichen Species in a Fragmented Landscape along a Climatic Ecotone Area. Fungal Biol. 2022, 126, 438–448. [Google Scholar] [CrossRef]
- Malaspina, P.; Casale, M.; Malegori, C.; Hooshyari, M.; Di Carro, M.; Magi, E.; Giordani, P. Combining Spectroscopic Techniques and Chemometrics for the Interpretation of Lichen Biomonitoring of Air Pollution. Chemosphere 2018, 198, 417–424. [Google Scholar] [CrossRef]
- Matesanz, M.C.; Villa-Carvajal, M.; Linares, J.; Morante-Zarcero, S.; Sierra, I.; Barreno, E.; Catalá, M.; Portolés, M.T. Chemical Characterization of the Lichen-Symbiont Microalga Asterochloris Erici and Study of Its Cytostatic Effect on the L929 Murine Fibrosarcoma Cell Line. Processes 2021, 9, 1509. [Google Scholar] [CrossRef]
- Centeno, D.C.; Hell, A.F.; Braga, M.R.; del Campo, E.M.; Casano, L.M. Contrasting Strategies Used by Lichen Microalgae to Cope with Desiccation-Rehydration Stress Revealed by Metabolite Profiling and Cell Wall Analysis. Environ. Microbiol. 2016, 18, 1546–1560. [Google Scholar] [CrossRef]
- Gasulla, F.; Barreno, E.; Parages, M.L.; Cámara, J.; Jiménez, C.; Dörmann, P.; Bartels, D. The Role of Phospholipase D and MAPK Signalling Cascades in the Adaption of Lichen Microalgae to Desiccation: Changes in Membrane Lipids and Phosphoproteome. Plant Cell Physiol. Adv. 2016, 57, 1908–1920. [Google Scholar] [CrossRef]
- Candotto Carniel, F.; Fernandez-Marín, B.; Arc, E.; Craighero, T.; Laza, J.M.; Incerti, G.; Tretiach, M.; Kranner, I. How Dry Is Dry? Molecular Mobility in Relation to Thallus Water Content in a Lichen. J. Exp. Bot. 2021, 72, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.; Farrant, J.M. Recovery of the Resurrection Plant Craterostigma Wilmsii from Desiccation: Protection versus Repair. J. Exp. Bot. 2002, 53, 1805–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrant, J.M.; Cooper, K.; Hilgart, A.; Abdalla, K.O.; Bentley, J.; Thomson, J.A.; Dace, H.J.W.; Peton, N.; Mundree, S.G.; Rafudeen, M.S. A Molecular Physiological Review of Vegetative Desiccation Tolerance in the Resurrection Plant Xerophyta Viscosa (Baker). Planta 2015, 242, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, K.; Dagnon, S.; Gesheva, E.; Bojilov, D.; Mihailova, G.; Doncheva, S. Antioxidant Defense during Desiccation of the Resurrection Plant Haberlea Rhodopensis. Plant Physiol. Biochem. 2017, 114, 51–59. [Google Scholar] [CrossRef]
- Müller, J.; Sprenger, N.; Bortlik, K.; Boller, T.; Wiemken, A. Desiccation Increases Sucrose Levels in Ramonda and Haberlea, Two Genera of Resurrection Plants in the Gesneriaceae. Physiol. Plant. 1997, 100, 153–158. [Google Scholar] [CrossRef]
Band (nm) | Source | Assignment |
---|---|---|
1149–1151 | 2nd derivative fresh 2nd derivative 24 h | Water [48] |
1202 | 2nd derivative fresh | Lipids [50] |
1180–1194 | 2nd derivative 48 h Subtraction 48 h PCA | Lipids [51] |
1345 | 2nd derivative fresh | Protonated clusters [47] Water solvation shell [49] |
1406–1415 | 2nd derivative fresh Subtraction F-24 Subtraction F-48 PCA | Free water [49] |
1420–1425 | 2nd derivative 24 h PCA | Water hydration band [49] |
1442 | 2nd derivative 48 h | S1 water [49] |
1466 | 2nd derivative fresh | S2 water [47] Hydronium involved in sugar–water interaction [49] |
1685 | 2nd derivative 24h | Unsaturated fatty acids [50] |
1718 | 2nd derivative 48h | Lipids [51] |
1760 | PCA | Lipids [50] |
1879–1920 | 2nd derivative fresh 2nd derivative 24 h 2nd derivative 48 h Subtraction F-24 Subtraction F-48 PCA | Water [48] |
2054 | 2nd derivative 24 h 2nd derivative 48 h | Lipids [51] |
2130–2197 | 2nd derivative 48 h Subtraction fresh-48 h PCA | Unsaturated fatty acids [50] |
2260–2272 | Subtraction fresh-48 h PCA | Polyols/glucides [52,54] |
2300–2350 | Subtraction fresh-48 h PCA | Lipids [51] |
2450–2480 | Subtraction fresh-24 h Subtraction fresh-48 h PCA | Aliphatic chains [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruñas Gómez, I.; Casale, M.; Barreno, E.; Catalá, M. Near-Infrared Metabolomic Fingerprinting Study of Lichen Thalli and Phycobionts in Culture: Aquaphotomics of Trebouxia lynnae Dehydration. Microorganisms 2022, 10, 2444. https://doi.org/10.3390/microorganisms10122444
Bruñas Gómez I, Casale M, Barreno E, Catalá M. Near-Infrared Metabolomic Fingerprinting Study of Lichen Thalli and Phycobionts in Culture: Aquaphotomics of Trebouxia lynnae Dehydration. Microorganisms. 2022; 10(12):2444. https://doi.org/10.3390/microorganisms10122444
Chicago/Turabian StyleBruñas Gómez, Irene, Monica Casale, Eva Barreno, and Myriam Catalá. 2022. "Near-Infrared Metabolomic Fingerprinting Study of Lichen Thalli and Phycobionts in Culture: Aquaphotomics of Trebouxia lynnae Dehydration" Microorganisms 10, no. 12: 2444. https://doi.org/10.3390/microorganisms10122444
APA StyleBruñas Gómez, I., Casale, M., Barreno, E., & Catalá, M. (2022). Near-Infrared Metabolomic Fingerprinting Study of Lichen Thalli and Phycobionts in Culture: Aquaphotomics of Trebouxia lynnae Dehydration. Microorganisms, 10(12), 2444. https://doi.org/10.3390/microorganisms10122444