Biocontrol of Non-Saccharomyces Yeasts in Vineyard against the Gray Mold Disease Agent Botrytis cinerea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeasts and Culture Conditions
2.2. Screening to Evaluate the Antagonistic Effects of Yeasts
2.2.1. Control of B. cinerea in an Early Stage of Infection
2.2.2. Containment of Advanced Botrytis Infection (Late)
2.2.3. Antifungal Effect of Volatile Organic Compounds (VOCs) of Yeasts
2.3. Extracellular Enzymatic Activities of Yeasts
2.4. Antimicrobial Activity of Yeasts on Grape Berries
2.5. Evaluation of Two Selected Bioactive Yeasts by Field Experiments
2.6. Statistical Analyses
3. Results
3.1. In Vitro Antagonistic Effect of Potential BCAs
3.2. Extracellular Enzymatic Activities of Potential BCAs
3.3. Evaluation of the BCAs Effectiveness on Grapes
3.4. Application of M. pulcherrima DiSVA 269 and A. pullulans DiSVA 211 in the Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Steel, C.C.; Blackman, J.W.; Schmidtke, L.M. Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. J. Agric. Food Chem. 2013, 61, 5189–5206. [Google Scholar] [CrossRef] [PubMed]
- Bozoudi, D.; Tsaltas, D. The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation 2018, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol. 2016, 113, 69–76. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and table grapes: A review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods 2020, 9, 1138. [Google Scholar] [CrossRef]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing postharvest bunch rot of table grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef]
- Lemos Junior, W.J.F.; Bovo, B.; Nadai, C.; Crosato, G.; Carlot, M.; Favaron, F.; Giacomini, A.; Corich, V. Biocontrol ability and action mechanism of Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against gray mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Front. Microbiol. 2016, 7, 1249. [Google Scholar] [CrossRef]
- Linares-Morales, J.R.; Gutiérrez-Méndez, N.; Rivera-Chavira, B.E.; Pérez-Vega, S.B.; Nevárez-Moorillón, G.V. Biocontrol processes in fruits and fresh produce, the use of lactic acid bacteria as a sustainable option. Front. Sustain. Food Syst. 2018, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Nicot, P.C.; Stewart, A.; Bardin, M.; Elad, Y. Biological control and biopesticide suppression of Botrytis-incited diseases. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Basel, Switzerlad, 2016; pp. 165–188. [Google Scholar]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1498–1513. [Google Scholar] [CrossRef]
- Oro, L.; Feliziani, E.; Ciani, M.; Romanazzi, G.; Comitini, F. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Int. J. Food Microbiol. 2018, 265, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Montiel, L.G.; Gutierrez-Perez, E.D.; Murillo-Amador, B.; Vero, S.; Chiquito-Contreras, R.G.; Rincon-Enriquez, G. Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol. Technol. 2018, 139, 31–37. [Google Scholar] [CrossRef]
- Roberti, R.; Di Francesco, A.; Innocenti, G.; Mari, M. Potential for biocontrol of Pleurotus ostreatus green mould disease by Aureobasidium pullulans De Bary (Arnaud). Biol. Control 2019, 135, 9–15. [Google Scholar] [CrossRef]
- Guo, J.; Fang, W.; Lu, H.; Zhu, R.; Lu, L.; Zheng, X.; Yu, T. Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus laurentii. Postharvest Biol. Technol. 2014, 88, 72–78. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Li, P.; Zhang, H.; Zhang, X.; Zheng, X.; Yang, Q.; Apaliya, M.T.; Boateng, N.A.S.; Sun, Y. The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved. Biol. Control 2017, 113, 18–25. [Google Scholar] [CrossRef]
- Chan, Z.L.; Tian, S.P. Interaction of antagonistic yeast against postharvest pathogens of apple fruit and possible mode of action. Postha. Biol. Technol. 2005, 36, 215–223. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of biocontrol products for postharvest diseases of fruit, The importance of elucidating the mechanisms of action of yeast Antagonists. Tre. Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Casagrande Pierantoni, D.; Corte, L.; Roscini, L.; Cardinali, G. High-Throughput rapid and inexpensive assay for quantitative determination of low cell-density yeast cultures. Microorganisms 2019, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzzini, P.; Martini, A. Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. J. Appl. Microbiol. 2002, 93, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Comitini, F.; Agarbati, A.; Canonico, L.; Galli, E.; Ciani, M. Purification and characterization of WA18, a new mycocin produced by Wickerhamomyces anomalus active in wine against Brettanomyces bruxellensis spoilage yeasts. Microorganisms 2021, 9, 56. [Google Scholar] [CrossRef]
- Guo, Z.; Duquesne, S.; Bozonnet, S.; Cioci, G.; Nicaud, J.M.; Marty, A.; O’Donohue, M.J. Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes. Biotechnol. Biofuels 2015, 8, 109. [Google Scholar] [CrossRef]
- Rosi, I.; Vinella, M.; Domizio, P. Characterization of β-glucosidase activity in yeasts of oenological origin. J. Appl. Bacteriol. 1994, 77, 519–527. [Google Scholar] [CrossRef]
- McKinney, H.H. Influence of soil temperature and moisture on infection of wheat seedlings by Helmintosporium sativum. J. Agric. Res. 1923, 26, 195–218. [Google Scholar]
- Elmer, P.A.G.; Reglinski, T. Biosuppression of Botrytis cinerea in grapes. Plant. Pathol. 2006, 55, 155–177. [Google Scholar] [CrossRef]
- Domingues, A.; Roberto, S.; Ahmed, S.; Shahab, M.; José Chaves Junior, O.; Sumida, C.; de Souza, R. Postharvest techniques to prevent the incidence of Botrytis mold of ‘BRS Vitoria’ seedless grape under cold storage. Horticulturae 2018, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Junaid, J.M.; Dar, N.A.; Bhat, T.A.; Bhat, A.H.; Bhat, M.A. Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int. J. Mod. Plant. Anim. Sci. 2013, 1, 39–57. [Google Scholar]
- Saravanakumar, D.; Ciavorella, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternate and Penicillium expansum in apples through iron depletion. Postharvest Biol. Technol. 2008, 49, 121–128. [Google Scholar] [CrossRef]
- Raspor, P.; Miklič-Milek, D.; Avbelj, M.; Čadež, N. Biocontrol of grey mould disease on grape caused by Botrytis cinerea with autochthonous wine yeasts. Food Technol. Biotechnol. 2010, 48, 336–343. [Google Scholar]
- Parafati, L.; Vitale, A.; Polizzi, G.; Restuccia, C.; Cirvilleri, G. Understanding the mechanism of biological control of postharvest phytopathogenic moulds promoted by food isolated yeasts. Acta Hortic. 2016, 93–110. [Google Scholar] [CrossRef]
- Sipiczki, M. Metschnikowia strains isolated from botrytised grapes antagonize fungal and bacterial growth by iron depletion. Appl. Environ. Microbiol. 2006, 72, 6716–6724. [Google Scholar] [CrossRef] [Green Version]
- Khalili, E.; Javed, M.A.; Huyop, F.; Wahab, R.A. Efficacy and cost study of green fungicide formulated from crude beta-glucosidase. Int. J. Environ. Sci. Technol. 2019, 16, 4503–4518. [Google Scholar] [CrossRef]
- Oro, L.; Ciani, M.; Comitini, F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. App. Microbiol. 2014, 116, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Agirman, B.; Erten, H. Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest diseases. Yeast 2020, 37, 437–448. [Google Scholar] [CrossRef]
- Di Francesco, A.; Ugolini, L.; D’Aquino, S.; Pagnotta, E.; Mari, M. Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: Insights on competition for nutrients and space. Int. J. Food Microbiol. 2017, 248, 32–38. [Google Scholar] [CrossRef]
- Don, S.M.Y.; Schmidtke, L.M.; Gambetta, J.M.; Steel, C.C. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata. Res. Microbiol. 2021, 172, 103788. [Google Scholar]
- Rathnayake, R.M.S.P.; Savocchia, S.; Schmidtke, L.M.; Steel, C.C. Characterisation of Aureobasidium pullulans isolates from Vitis vinifera and potential biocontrol activity for the management of bitter rot of grapes. Eur. J. Plant Pathol. 2018, 15, 593–611. [Google Scholar] [CrossRef]
- Schilder, A. Botector: A New Biofungicide for Control of Botrytis Bunch Rot in Grapes; Department of Plant, Soil and Microbial Sciences, Michigan State University Extension. 21 August 2013. Available online: https://www.canr.msu.edu/news/botector_a_new_biofungicide_for_control_of_botrytis_bunch_rot_in_grapes (accessed on 29 July 2021).
- Romanazzi, G.; Sanzani, S.M.; Bi, Y.; Tian, S.; Gutierrez-Martinez, P.; Alkan, N. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 2016, 122, 82–94. [Google Scholar] [CrossRef]
Species | Strain | Origin |
---|---|---|
Aureobasidium pullulans | DiSVA 211 | Flowers |
DiSVA 220 | Flowers | |
DiSVA 1001 | Montepulciano grape | |
DiSVA 710 | Montepulciano grape | |
Metschnikowia pulcherrima | DiSVA 267 | Grape |
DiSVA 269 | Grape | |
DiSVA 467 | Verdicchio grape | |
DiSVA 476 | Verdicchio grape | |
DiSVA 489 | Verdicchio grape | |
DiSVA 1069 | Verdicchio grape | |
DiSVA 1067 | Montepulciano grape | |
Cryptococcus albidus | DiSVA 192 | Flowers |
DiSVA 196 | Red berries | |
DiSVA 200 | Leaves | |
Cryptococcus magnus | DiSVA 468 | Verdicchio grape |
Cryptococcus carnescens | DiSVA 1025 | Montepulciano grape |
Cryptococcus sp. | DiSVA 478 | Verdicchio grape |
Wickerhamomyces anomalus | DiSVA 2 | Sourdough |
Kluyveromyces wickerhamii | DiSVA 15 | Ripened fruit |
Species | Strain | Production of Lytic Enzymes | |||||
---|---|---|---|---|---|---|---|
Protease | β-Glucosidase | Amylase | Cellobiosidase | Esterase | Killer | ||
Aureobasidium pullulans | DiSVA 211 | + | + | + | + | + | - |
DiSVA 220 | - | + | + | + | + | - | |
DiSVA 1001 | + | + | + | + | + | - | |
DiSVA 710 | - | + | + | + | + | - | |
Metschnikowia pulcherrima | DiSVA 267 | - | - | - | + | - | - |
DiSVA 269 | - | + | - | + | + | - | |
DiSVA 467 | + | - | - | + | - | - | |
DiSVA 476 | - | + | - | + | - | - | |
DiSVA 489 | - | - | - | + | - | - | |
DiSVA 1069 | - | - | - | + | - | - | |
DiSVA 1067 | - | - | - | + | - | - | |
Cryptococcus albidus | DiSVA 192 | + | - | + | + | + | - |
DiSVA 196 | + | - | + | - | + | - | |
DiSVA 200 | - | - | + | + | + | - | |
Cryptococcus magnus | DiSVA 468 | + | - | + | + | + | - |
Cryptococcus carnescens | DiSVA 1025 | - | - | + | + | + | - |
Cryptococcus sp. | DiSVA 478 | + | + | + | + | + | - |
Wickerhamomyces anomalus | DiSVA 2 | - | - | - | + | + | + |
Kluyveromyces wickerhamii | DiSVA 15 | - | - | - | + | - | + |
Species | Strain | Decay (%) | Rank |
---|---|---|---|
Aureobasidium pullulans | DiSVA 211 | 5.9 | 1 |
Aureobasidium pullulans | DiSVA 220 | 7.68 | 2 |
Metschnikowia pulcherrima | DiSVA 267 | 8.25 | 3 |
Metschnikowia pulcherrima | DiSVA 269 | 10.6 | 4 |
Aureobasidium pullulans | DiSVA 1001 | 14.8 | 5 |
Aureobasidium pullulans (C+) | Botector® | 16.69 | 6 |
Wickerhamomyces anomalus | DiSVA 2 | 18.91 | 7 |
Botrytis cinerea (C−) | N51 | 23.06 | 8 |
Species | Strain | Decay (%) | Rank |
---|---|---|---|
Metschnikowia pulcherrima | DiSVA 269 | 12.00 | 1 |
Metschnikowia pulcherrima | DiSVA 267 | 12.87 | 2 |
Aureobasidium pullulans | DiSVA 1001 | 16.65 | 3 |
Aureobasidium pullulans | DiSVA 211 | 17.47 | 4 |
Aureobasidium pullulans | DiSVA 220 | 18.43 | 5 |
Aureobasidium pullulans (C+) | Botector® | 20.15 | 6 |
Wickerhamomyces anomalus | DiSVA 2 | 26.05 | 7 |
Botrytis cinerea (C−) | N51 | 36.32 | 8 |
Yeast Colonization (log CFU/mL) | Yeast Persistence (log CFU/mL) | ||||
---|---|---|---|---|---|
Trials | Bunches Veraison | Bunches Maturity | 10th Day after Ripening | ||
Bf * | Af ** | Bf | Af | ||
Ap | 2.4.30 ± 0.01 | 4.68 ± 0.09 (Ap: 4.27 ± 0.12) | 4.96 ± 0.21 (Ap: 3.69 ± 0.21) | 4.99 ± 0.13 (Ap: 4.17 ± 0.08) | 5.43 ± 0.11 (Ap: 4.93 ± 0.08) |
Mp | 4.63 ± 0.03 | 4.64 ± 0.20 (Mp: 4.23 ± 0.15) | 4.61 ± 0.11 (Mp: 2.87 ± 0.02) | 4.73 ± 0.17 (Mp: 4.14 ± 0.30) | 5.38 ± 0.19 (Mp: 4.83 ± 0.05) |
MIX | 4.86 ± 0.15 | 4.94 ± 0.13 (Ap: 4.14 ± 0.07; Mp: 2.07 ± 0.01) | 5.51 ± 0.09 (Ap: 0.00 ± 0.00; Mp: 4.20 ± 0.07) | 5.20 ± 0.18 (Ap: 4.17 ± 0.08; Mp: 4.27 ± 0.29) | 5.36 ± 0.21 (Ap: 4.97 ± 0.06; Mp: 4.55 ± 0.23) |
Botector® | 4.64± 0.02 | 4.75 ± 0.01 (Ap: 4.11 ± 0.23) | 4.92 ± 0.21 (Ap: 0.00 ± 0.00) | 4.79 ± 0.19 (Ap: 3.84 ± 0.25) | 5.44 ± 0.04 (Ap: 5.04 ± 0.03) |
Untreated | 4.79 ± 0.07 | 4.57 ± 0.05 | 4.97 ± 0.07 | 4.77 ± 0.09 | 5.53 ± 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarbati, A.; Canonico, L.; Pecci, T.; Romanazzi, G.; Ciani, M.; Comitini, F. Biocontrol of Non-Saccharomyces Yeasts in Vineyard against the Gray Mold Disease Agent Botrytis cinerea. Microorganisms 2022, 10, 200. https://doi.org/10.3390/microorganisms10020200
Agarbati A, Canonico L, Pecci T, Romanazzi G, Ciani M, Comitini F. Biocontrol of Non-Saccharomyces Yeasts in Vineyard against the Gray Mold Disease Agent Botrytis cinerea. Microorganisms. 2022; 10(2):200. https://doi.org/10.3390/microorganisms10020200
Chicago/Turabian StyleAgarbati, Alice, Laura Canonico, Tania Pecci, Gianfranco Romanazzi, Maurizio Ciani, and Francesca Comitini. 2022. "Biocontrol of Non-Saccharomyces Yeasts in Vineyard against the Gray Mold Disease Agent Botrytis cinerea" Microorganisms 10, no. 2: 200. https://doi.org/10.3390/microorganisms10020200
APA StyleAgarbati, A., Canonico, L., Pecci, T., Romanazzi, G., Ciani, M., & Comitini, F. (2022). Biocontrol of Non-Saccharomyces Yeasts in Vineyard against the Gray Mold Disease Agent Botrytis cinerea. Microorganisms, 10(2), 200. https://doi.org/10.3390/microorganisms10020200