Correlation between Phenotypic and In Silico Detection of Antimicrobial Resistance in Salmonella enterica in Canada Using Staramr
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2017 Non-Typhoidal Salmonella Invasive Disease Collaborators. The global burden of non-typhoidal salmonella invasive disease: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Shane, A.L.; Mody, R.K.; A Crump, J.; I Tarr, P.; Steiner, T.; Kotloff, K.; Langley, J.M.; Wanke, C.; Warren, C.A.; Cheng, A.C.; et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis. 2017, 65, 1963–1973. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A.; Murphy, C.P.; Mulvey, M.R.; Hussain, S.; Carson, C.A.; Reid-Smith, R.J.; CIPARS Provincial Partnership. Antimicrobial-Resistant Nontyphoidal Salmonella Infections, United States, 2004–2016. Emerg. Infect. Dis. 2021, 27, 2746. [Google Scholar] [CrossRef]
- Cox, G.W.; Parmley, E.J.; Avery, B.P.; Irwin, R.J.; Reid-Smith, R.J.; Deckert, A.E.; Finley, R.L.; Daignault, D.; Alexander, D.C.; Allen, V.; et al. A One-Health Genomic Investigation of Gentamicin Resistance in Salmonella from Human and Chicken Sources in Canada, 2014 to 2017. Antimicrob. Agents Chemother. 2021, 65, e00966-21. [Google Scholar] [CrossRef]
- Eshaghi, A.; Zittermann, S.; Bharat, A.; Mulvey, M.R.; Allen, V.G.; Patel, S.N. Importation of Extensively Drug-Resistant Salmonella enterica Serovar Typhi Cases in Ontario, Canada. Antimicrob. Agents Chemother. 2020, 64, 570. [Google Scholar] [CrossRef]
- Medalla, F.; Gu, W.; Friedman, C.R.; Judd, M.; Folster, J.; Griffin, P.M.; Hoekstra, R.M. Increased Incidence of Antimicrobi-al-Resistant Nontyphoidal Salmonella Infections, United States, 2004–2016. Emerg. Infect. Dis. 2021, 27, 1662–1672. [Google Scholar] [CrossRef]
- Tyson, G.H.; Li, C.; Harrison, L.B.; Martin, G.; Hsu, C.-H.; Tate, H.; Tran, T.-T.; Strain, E.; Zhao, S. A Multidrug-Resistant Salmonella Infantis Clone is Spreading and Recombining in the United States. Microb. Drug Resist. 2021, 27, 792–799. [Google Scholar] [CrossRef]
- Elnekave, E.; Hong, S.L.; Lim, S.; Boxrud, D.; Rovira, A.; Mather, A.E.; Perez, A.; Alvarez, J. Transmission of Multi-drug-Resistant Salmonella enterica Subspecies enterica 4,[5],12:i:- Sequence Type 34 between Europe and the United States. Emerg. Infect. Dis. 2020, 26, 3034–3038. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.; McDermott, P.F. Using Genomics to Track Global Antimicrobial Resistance. Front. Public Health 2019, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Ellington, M.; Ekelund, O.; Aarestrup, F.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.; Hopkins, K.; et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 2017, 23, 2–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the NCBI AM-RFinder Tool and Resistance Gene Database Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of NARMS Isolates. Antimicrob. Agents Chemother. 2019, 63, 2861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.-M. ARG-ANNOT, a New Bioinformatic Tool to Discover Antibiotic Resistance Genes in Bacterial Genomes. Antimicrob. Agents Chemother. 2013, 58, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Hunt, M.; Mather, A.E.; Sánchez-Busó, L.; Page, A.J.; Parkhill, J.; Keane, J.A.; Harris, S.R. ARIBA: Rapid antimicrobial re-sistance genotyping directly from sequencing reads. Microb. Genom. 2017, 3, e000131. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; Garcìa-Fernandez, A.; Larsen, M.; Lund, O.; Villa, L.; Aarestrup, F.; Hasman, H. PlasmidFinder and PMLST: In Silico Detection and Typing of Plasmids. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- CIPARS. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2018 Design and Methods; Public Health Agency of Canada: Guelph, ON, Canada, 2020; pp. 1–57.
- Clinical and Laboratory Standards Institute M100-ED27:2017. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2017; pp. 1–249. [Google Scholar]
- Karp, B.E.; Tate, H.; Plumblee, J.R.; Dessai, U.; Whichard, J.M.; Thacker, E.L.; Hale, K.R.; Wilson, W.; Friedman, C.R.; Griffin, P.M.; et al. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance. Foodborne Pathog. Dis. 2017, 14, 545–557. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Magnet, S.; Courvalin, P.; Lambert, T. Activation of the Cryptic aac(6′)-Iy Aminoglycoside Resistance Gene of Salmonella by a Chromosomal Deletion Generating a Transcriptional Fusion. J. Bacteriol. 1999, 181, 6650–6655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, P.F.; Tyson, G.H.; Kabera, C.; Chen, Y.; Li, C.; Folster, J.P.; Ayers, S.L.; Lam, C.; Tate, H.P.; Zhao, S. Whole-Genome Sequencing for Detecting Antimicrobial Resistance in Nontyphoidal Salmonella. Antimicrob. Agents Chemother. 2016, 60, 5515–5520. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 7.1. 2017. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 25 January 2020).
- Nguyen, M.; Brettin, T.; Long, S.W.; Musser, J.M.; Olsen, R.J.; Olson, R.; Shukla, M.; Stevens, R.L.; Xia, F.; Yoo, H.; et al. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Sci. Rep. 2018, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.; Long, S.W.; McDermott, P.F.; Olsen, R.J.; Olson, R.; Stevens, R.L.; Tyson, G.H.; Zhao, S.; Davis, J.J. Using Machine Learning To Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal Salmonella. J. Clin. Microbiol. 2019, 57, e01260-18. [Google Scholar] [CrossRef] [Green Version]
- Demczuk, W.; Martin, I.; Sawatzky, P.; Allen, V.; Lefebvre, B.; Hoang, L.; Naidu, P.; Minion, J.; VanCaeseele, P.; Haldane, D.; et al. Equations to Predict Antimicrobial MICs in Neisseria gonorrhoeae Using Molecular Antimicrobial Resistance Determinants. Antimicrob. Agents Chemother. 2020, 64, 64. [Google Scholar] [CrossRef]
Phenotype Resistant a | Phenotype Susceptible a | ||||||||
---|---|---|---|---|---|---|---|---|---|
Class and Antimicrobial c | Genotype Resistant | Genotype Susceptible | Genotype Resistant | Genotype Susceptible | Concordance (%) | Sensitivity (%) b | Specificity (%) b | PPV (%) b | NPV (%) b |
Aminoglycoside | |||||||||
GEN | 15 | 1 | 7 | 1298 | 99.4 | 93.8 | 99.5 | 68.2 | 99.9 |
STR | 162 | 16 | 16 | 1127 | 97.6 | 91.0 | 98.6 | 91.0 | 98.6 |
Beta-lactam/beta-lactam inhibitor | |||||||||
AMC | 36 | 5 | 1 | 1279 | 99.5 | 87.8 | 99.9 | 97.3 | 99.6 |
Carbapenem | |||||||||
MEM | 0 | 0 | 0 | 1321 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Cephem | |||||||||
FOX | 33 | 8 | 4 | 1277 | 99.2 | 80.5 | 99.7 | 89.2 | 99.5 |
CRO | 48 | 3 | 1 | 1269 | 99.7 | 94.1 | 99.9 | 98.0 | 99.8 |
Folate pathway inhibitors | |||||||||
FIS | 179 | 9 | 0 | 1133 | 99.3 | 95.2 | 100.0 | 100.0 | 99.2 |
SXT | 47 | 5 | 0 | 1269 | 99.6 | 90.4 | 100.0 | 100.0 | 99.6 |
Macrolide | |||||||||
AZM | 10 | 2 | 0 | 1309 | 99.8 | 83.3 | 100.0 | 100.0 | 99.8 |
Penicillin | |||||||||
AMP | 182 | 9 | 2 | 1128 | 99.2 | 95.3 | 99.8 | 98.9 | 99.2 |
Phenicol | |||||||||
CHL | 95 | 5 | 1 | 1220 | 99.5 | 95.0 | 99.9 | 99.0 | 99.6 |
Quinolones | |||||||||
CIP I/R | 259 | 20 | 2 | 1040 | 98.3 | 92.8 | 99.8 | 99.2 | 98.1 |
NAL | 202 | 49 | 13 | 1057 | 95.3 | 80.5 | 98.8 | 94.0 | 95.6 |
Tetracycline | |||||||||
TET | 162 | 10 | 0 | 1149 | 99.2 | 94.2 | 100.0 | 100.0 | 99.1 |
Total/Average | 1431 | 141 | 47 | 16,876 | 99.0 | 91.2 | 99.7 | 95.4 | 99.1 |
Predicted Phenotype | Genetic Resistance Determinants |
---|---|
Aminoglycosides | |
gentamicin (n = 23) | aac(3)-IVa (n = 9), aac(3)-VIa (n = 8), aac(3)-Id (n = 3), aac(3)-IId (n = 2), aac(6′)-Ib-cr (n = 1) |
gentamicin, kanamycin (n = 1) | ant(2″)-Ia (n = 1) |
streptomycin (n = 193) | aph(3″)-Ib (n = 91), aadA2 (n = 64), ant(3″)-Ia (n = 19), aadA1 (n = 9), strA (n = 4), aadA7 (n = 3), aadA16 (n = 1), aadA22 (n = 1), aph(6)-Ic (n = 1) |
Beta-lactams | |
ampicillin (n = 146) | blaTEM-1B (n = 90), blaCARB-2 (n = 49), blaTEM-206 (n = 3), blaTEM-1A (n = 2), blaTEM-1C (n = 1), blaTEM-90 (n = 1) |
ampicillin, amoxicillin/clavulanic acid, cefoxitin, ceftriaxone (n = 37) | blaCMY-2 (n = 33), blaCMY-44 (n = 2), blaCMY-4 (n = 1), blaCMY-54 (n = 1) |
ampicillin, ceftriaxone (n = 12) | blaCTX-M-65 (n = 8), blaCTX-M-55 (n = 3), blaCTX-M-9 (n = 1) |
Folate Pathway Inhibitors | |
sulfisoxazole (n = 206) | sul2 (n = 102), sul1 (n = 95), sul3 (n = 9) |
trimethoprim (n = 47) | dfrA1 (n = 13), dfrA7 (n = 11), dfrA12 (n = 8), dfrA14 (n = 8), dfrA15 (n = 3), dfrA5 (n = 3), dfrA27 (n = 1) |
Macrolides | |
erythromycin, azithromycin (n = 10) | mph(A) (n = 9), erm(B) (n = 1) |
Phenicol | |
chloramphenicol (n = 101) | floR (n = 79), catA1 (n = 11), cmlA1 (n = 6), catA2 (n = 3), oqxA (n = 1), oqxB (n = 1) |
Quinolones | |
ciprofloxacin I/R (n = 52) | qnrB19 (n = 37), qnrS1 (n = 8), qnrA1 (n = 5), aac(6′)-Ib-cr (n = 1), qnrB6 (n = 1) |
ciprofloxacin I/R, nalidixic acid (n = 251) | gyrA (S83F) (n = 100), gyrA (D87N) (n = 58), gyrA (D87Y) (n = 28), gyrA (S83Y) (n = 21), parC (S80I) (n = 17), gyrB (E466D) (n = 13), gyrA (D87G) (n = 11), gyrB (S464Y) (n = 2), parC (E84G) (n = 1) |
Tetracycline | |
tetracycline (n = 171) | tet(A) (n = 68), tet(B) (n = 55), tet(G) (n = 44), tet(M) (n = 4) |
Not tested phenotypically | |
fosfomycin (n = 156) | fosA7 (n = 150), fosA3 (n = 6) |
kanamycin (n = 140) | aph(6)-Id (n = 96), aph(3′)-Ia (n = 42), aph(3′)-IIa (n = 2) |
hygromicin (n = 9) | aph(4)-Ia (n = 9) |
lincomycin (n = 1) | lnu(G) (n = 1) |
rifampicin (n = 1) | ARR-3 (n = 1) |
erythromycin (n = 1) | mph(B) (n = 1) |
colistin (n = 1) | mcr-3 (n = 1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharat, A.; Petkau, A.; Avery, B.P.; Chen, J.C.; Folster, J.P.; Carson, C.A.; Kearney, A.; Nadon, C.; Mabon, P.; Thiessen, J.; et al. Correlation between Phenotypic and In Silico Detection of Antimicrobial Resistance in Salmonella enterica in Canada Using Staramr. Microorganisms 2022, 10, 292. https://doi.org/10.3390/microorganisms10020292
Bharat A, Petkau A, Avery BP, Chen JC, Folster JP, Carson CA, Kearney A, Nadon C, Mabon P, Thiessen J, et al. Correlation between Phenotypic and In Silico Detection of Antimicrobial Resistance in Salmonella enterica in Canada Using Staramr. Microorganisms. 2022; 10(2):292. https://doi.org/10.3390/microorganisms10020292
Chicago/Turabian StyleBharat, Amrita, Aaron Petkau, Brent P. Avery, Jessica C. Chen, Jason P. Folster, Carolee A. Carson, Ashley Kearney, Celine Nadon, Philip Mabon, Jeffrey Thiessen, and et al. 2022. "Correlation between Phenotypic and In Silico Detection of Antimicrobial Resistance in Salmonella enterica in Canada Using Staramr" Microorganisms 10, no. 2: 292. https://doi.org/10.3390/microorganisms10020292
APA StyleBharat, A., Petkau, A., Avery, B. P., Chen, J. C., Folster, J. P., Carson, C. A., Kearney, A., Nadon, C., Mabon, P., Thiessen, J., Alexander, D. C., Allen, V., El Bailey, S., Bekal, S., German, G. J., Haldane, D., Hoang, L., Chui, L., Minion, J., ... Mulvey, M. R. (2022). Correlation between Phenotypic and In Silico Detection of Antimicrobial Resistance in Salmonella enterica in Canada Using Staramr. Microorganisms, 10(2), 292. https://doi.org/10.3390/microorganisms10020292