Application of a High-Throughput Targeted Sequence AmpliSeq Procedure to Assess the Presence and Variants of Virulence Genes in Salmonella
Abstract
:1. Introduction
2. Materials and Methods
2.1. Salmonella Strains and Genomes
2.2. AmpliSeqSalm_227VG Procedure
2.3. Library Preparation and Sequencing
2.4. Bioinformatic Analysis
2.5. Detection of Variants Using Ion Torrent Suite
2.6. Pathogenicity Assessment of 10 S. Typhimurium Strains in a Chicken Model
2.7. Pulsed-Field Gel Electrophoretic (PFGE) Analysis
2.8. Statistical Analysis and Data Availability
3. Results
3.1. Characteristics of 80 Salmonella Reference Genomes
3.2. AmpliSeqSalm_227VG Procedure for Evaluating Salmonella Virulence Genes
3.3. AmpliSeqSalm_227VG to Detect the Target VGs in 35 Salmonella Field Strains
3.4. Virulence Genes among the Test Panel of 35 Salmonella enterica Strains
3.5. AmpliSeq Analysis in the Validation Panel of 34 Salmonella Strains
3.6. Pathogenicity Evaluation for 10 OLF Salmonella Typhimurium Strains in a Chicken Infection Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, R.; Wang, L.R.; Ogunremi, D. Virulence determinants of non-typhoidal salmonellae. In Microorganisms; Blumenberg, M., Shaaban, M., Elgaml, A., Eds.; IntechOpen: London, UK, 2020; pp. 167–192. [Google Scholar]
- Fabrega, A.; Vila, J. Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, R.A.; Eade, C.R.; Wiedmann, M. Embracing diversity: Differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal Salmonella as a foodborne pathogen. Front. Microbiol. 2019, 10, 1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustin, S.A. The reproducibility of biomedical research: Sleepers awake! Biomol. Detect. Quantif. 2014, 2, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velazquez, E.M.; Nguyen, H.; Heasley, K.T.; Saechao, C.H.; Gil, L.M.; Rogers, A.W.L.; Miller, B.M.; Rolston, M.R.; Lopez, C.A.; Litvak, Y.; et al. Endogenous enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 2019, 4, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Kortmann, J.; Brubaker, S.W.; Monack, D.M. Inflammasome activation in primary human macrophages Is dependent on flagellin. J. Immunol. 2015, 195, 815–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birhanu, B.T.; Park, N.-H.; Lee, S.-J.; Hossain, M.A.; Park, S.-C. Inhibition of Salmonella Typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofoxacin. Vet. Res. 2018, 49, 101. [Google Scholar] [CrossRef] [Green Version]
- Crouse, A.; Schramm, C.; Emond Rheault, J.-G.; Herod, A.; Kerhoas, M.; Rohde, J.; Gruenheid, S.; Kukavica-Ibrulj, I.; Boyle, B.; Greenwood, C.M.T.; et al. Combining whole-genome sequencing and multimodel phenotyping to identify genetic predictors of Salmonella virulence. mSphere 2020, 5, e00293-20. [Google Scholar] [CrossRef]
- Cavestri, C.; Savard, P.; Fliss, I.; Emond-Rheault, J.G.; Hamel, J.; Kukavica-Ibrulj, I.; Boyle, B.; Daigle, F.; Malo, D.; Bekal, S.; et al. Salmonella enterica subsp. enterica virulence potential can be linked to higher survival within a dynamic in vitro human gastrointestinal model. Food Microbiol. 2022, 101, 103877. [Google Scholar]
- Emond-Rheault, J.G.; Jeukens, J.; Freschi, L.; Kukavica-Ibrulj, I.; Boyle, B.; Dupont, M.J.; Colavecchio, A.; Barrere, V.; Cadieux, B.; Arya, G.; et al. A Syst-OMICS approach to ensuring food safety and reducing the economic burden of Salmonellosis. Front. Microbiol. 2017, 8, 996. [Google Scholar] [CrossRef] [Green Version]
- Rakov, A.V.; Mastriani, E.; Liu, S.L.; Schifferli, D.M. Association of Salmonella virulence factor alleles with intestinal and invasive serovars. BMC Genom. 2019, 20, 429. [Google Scholar] [CrossRef]
- Gal-Mor, O.; Boyle, E.C.; Grassl, G.A. Same species, different diseases: How and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front. Microbiol. 2014, 5, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, B.R.; Griffin, P.M.; Cole, D.; Walsh, K.A.; Chai, S.J. Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerg. Inf. Dis. 2013, 19, 1239–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattaway, M.A.; Chandra, N.; Painset, A.; Shah, V.; Lamb, P.; Acheampong, E.; Lo, J.; Patel, B.; Larkin, L.; Sergeant, M.; et al. Genomic approaches used to investigate an atypical outbreak of Salmonella Adjame. Microb. Genom. 2019, 5, e000248. [Google Scholar] [CrossRef]
- Vieira, A.; Jensen, A.R.; Pires, S.M.; Karlsmose, S.; Wegener, H.C.; Wong, D.L.F. WHO global foodborne infections network country databank—A resource to link human and non-human sources of Salmonella. In Proceedings of the 12th Symposium of the International Society for Veterinary Epidemiology and Economics, Durban, South Africa, 10–14 August 2009. [Google Scholar]
- Yoshida, C.E.; Kruczkiewicz, P.; Laing, C.R.; Lingohr, E.J.; Gannon, V.P.; Nash, J.H.; Taboada, E.N. The Salmonella in silico typing resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE 2016, 11, e0147101. [Google Scholar] [CrossRef] [Green Version]
- Buzolin, A.L.; Moreira, C.M.; Sacramento, P.R.; Oku, A.Y.; Fornari, A.; Antonio, D.S.M.; Quaio, C.; Baratela, W.R.; Mitne-Neto, M. Development and validation of a variant detection workflow for BRCA1 and BRCA2 genes and its clinical application based on the Ion Torrent technology. Hum. Genom. 2017, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, A.E.; Faquih, T.; Baz, B.; Kattan, R.; Al-Issa, A.; Tahir, A.I.; Imtiaz, F.; Ramzan, K.; Al-Sayed, M.; Alowain, M.; et al. Validation of Ion TorrentTM inherited disease panel with the PGMTM sequencing platform for rapid and comprehensive mutation detection. Genes 2018, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Franklin, K.; Lingohr, E.J.; Yoshida, C.; Anjum, M.; Bodrossy, L.; Clark, C.G.; Kropinski, A.M.; Karmali, M.A. Rapid genoserotyping tool for classification of Salmonella serovars. J. Clin. Microbiol. 2011, 49, 2954–2965. [Google Scholar] [CrossRef] [Green Version]
- Ogunremi, D.; Blais, B.; Huang, H.; Wang, L.; Elmufti, M.; Allain, R.; Hazelwood, J.; Grenier, C.; Amoako, K.; Savic, M.; et al. Draft genome sequences of two strains of Salmonella enterica serovar Typhimurium displaying different virulence in an experimental chicken model. Genome. Announc. 2017, 5, e01526-16. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Qazi, I.H.; Wang, L.; Zhou, G.; Han, H. Salmonella virulence and immune escape. Microorganisms 2020, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Fierer, J.; Guiney, D.G. Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J. Clin. Investig. 2001, 107, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.D.; Espinoza, L.L.; Huamán, D.C.; Rodríguez, G.S.; Alcántara, R.R.; Hernández, L.M. Evaluation of virulence factors of strains of Salmonella Typhimurium isolated from diseased and healthy guinea pigs (Cavia porcellus). Rev. Investig. Vet. Peru 2021, 32, e21331. [Google Scholar]
- Higgins, D.; Mukherjee, N.; Pal, C.; Sulaiman, I.M.; Jiang, Y.; Hanna, S.; Dunn, J.R.; Karmaus, W.; Banerjee, P. Association of virulence and antibiotic resistance in Salmonella—Statistical and computational insights into a selected set of clinical isolates. Microorganisms 2020, 8, 1465. [Google Scholar] [CrossRef] [PubMed]
- van Asten, A.J.A.M.; van Dijk, J.E. Distribution of “classic” virulence factors among Salmonella spp. FEMS Immunol. Med. Microbiol. 2005, 44, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, A.F.A.; Bonacic Marinovic, A.A.; Wijnands, L.M.; Delfgou-van Asch, E.H.M.; van Hoek, A.H.A.M.; Franz, E.; Pielaat, A. Phenotypic prediction: Linking in vitro virulence to the Genomics of 59 Salmonella enterica strains. Front. Microbiol. 2019, 9, 3182. [Google Scholar] [CrossRef] [PubMed]
- Chapman, T.A.; Wu, X.-Y.; Barchia, I.; Bettelheim, K.A.; Driesen, S.; Trott, D.; Wilson, M.; Chin, J.J.-C. Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. Appl. Environ. Microbiol. 2006, 72, 4782–4795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Government of Canada. Review of The State Of Knowledge on Verotoxigenic Escherichia coli and the Role of Whole Genome Sequencing as an Emerging Technology Supporting Regulatory Food Safety in Canada; Gill, A., Ed.; Health Canada: Ottawa, ON, Canada, 2019; 66p, Catalogue No A104-184/2019E-PDF; ISBN 978-0-660-33244-4.
- Rytkönen, A.; Poh, J.; Garmendia, J.; Boyle, C.; Thompson, A.; Liu, M.; Freemont, P.; Hinton, J.C.D.; Holden, D.W. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl. Acad. Sci. USA 2007, 104, 3502–3507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towne, J.E.; Renshaw, B.R.; Douangpanya, J.; Lipsky, B.P.; Shen, M.; Gabel, C.A.; Sims, J.E. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36α, IL-36β, and IL-36γ) or antagonist (IL-36Ra) activity. J. Biol. Chem. 2011, 286, 42594–42602. [Google Scholar] [CrossRef] [Green Version]
- Jin, N.; Yin, X.; Gu, J.; Zhang, X.; Shi, J.; Qian, W.; Ji, Y.; Cao, M.; Gu, X.; Ding, F.; et al. Truncation and activation of dual specificity tyrosine phosphorylation-regulated kinase 1A by calpain I—A molecular mechanism linked to tau pathology in Alzheimer disease. J. Biol. Chem. 2015, 290, 15219–15237. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.V.; Harhay, D.M.; Bono, J.L.; Smith, T.P.L.; Fields, P.I.; Dinsmore, B.A.; Santovenia, M.; Wang, R.; Bosilevac, J.M.; Harhay, G.P. Comparative genomics of Salmonella enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association. Microb. Genom. 2018, 4, e000202. [Google Scholar] [CrossRef]
- Cui, L.; Wang, X.; Zhao, Y.; Peng, Z.; Gan, P.; Cao, Z.; Feng, J.; Zhang, F.; Guo, K.; Wu, M.; et al. Virulence comparison of Salmonella enterica subsp. enterica isolates from chicken and whole genome analysis. Microorganisms 2021, 9, 2239. [Google Scholar] [PubMed]
- Gurtler, J.B.; Doyle, M.; Kornacki, J.L. Foodborne Pathogens: Virulence Factors and Host Susceptibility; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
ID | Subspecies/Serovar | a Strain | Size (bp) | b VGs (Max = 227) |
---|---|---|---|---|
CP006602.1 | 4,[5],12:i:- | 08-1736 | 4,822,189 | 227 |
CP007532.1 | Abaetetuba | ATCC 35640 | 4,547,600 | 199 |
CP007534.1 | Abony | 0014 | 4,737,447 | 225 |
CP001138.1 | Agona | SL483 | 4,798,660 | 222 |
CP019177.1 | Albany | ATCC 51960 | 4,805,448 | 216 |
CP007531.1 | Anatum | ATCC BAA-1592 | 4,706,101 | 211 |
CP019116.1 | Antsalova | S01-0511 | 4,648,086 | 196 |
CP019403.1 | Apapa | SA20060561 | 4,801,658 | 206 |
CP006693.1 | arizonae 62:z36:- | RKS2983 | 4,574,846 | 177 |
CP006053.1 | Bareilly | CFSAN000189 | 4,730,612 | 210 |
CP019405.1 | Bergen | ST350 | 4,801,835 | 207 |
CP019406.1 | Blegdam | S-1824 | 4,693,979 | 222 |
CP019407.1 | Borreze | SA20041063 | 4,777,558 | 223 |
HF969015.2 | Bovismorbificans | 3114 | 4,680,283 | 216 |
CP022490.1 | Braenderup | SA20026289 | 4,734,880 | 209 |
CP007533.1 | Bredeney | CFSAN001080 | 4,603,849 | 211 |
CP012833.1 | Cerro | CFSAN001588 | 4,651,400 | 200 |
CP019178.1 | Chester | ATCC 11997 | 4,660,922 | 214 |
AE017220.1 | Choleraesuis | SC-B67 | 4,755,700 | 210 |
CP019408.1 | Crossness | 1422-74 | 4,847,468 | 227 |
CP006055.1 | Cubana | CFSAN002050 | 4,977,480 | 209 |
CP022494.1 | Derby | SA20035215 | 4,850,334 | 223 |
CP019409.1 | Djakarta | S-1087 | 4,668,861 | 195 |
CP001144.1 | Dublin | CT_02021853 | 4,842,908 | 222 |
NC_011294.1 | Enteritidis | P125109 | 4,685,848 | 222 |
NC_011274.1 | Gallinarum | 287/91 | 4,658,697 | 220 |
CP024165.1 | Gaminara | CFSAN070644 | 4,801,841 | 194 |
CP017719.1 | Hayindogo | CFSAN050752 | 4,765,719 | 210 |
CP001120.1 | Heidelberg | SL476 | 4,888,768 | 225 |
CP019410.1 | Hillingdon | N1529-D3 | 4,618,056 | 194 |
CM001471.1 | houtenae | ATCC BAA-1581 | 4,672,567 | 175 |
CP022503.1 | Hvittingfoss | SA20014981 | 4,940,239 | 210 |
CP022015.1 | India | SA20085604 | 5,395,280 | 192 |
CP022450.1 | Indiana | D90 | 4,779,514 | 213 |
LN649235.1 | Infantis | NA | 4,710,675 | 209 |
CP019181.1 | Inverness | ATCC 10720 | 4,865,682 | 211 |
LT571437.1 | Java | NCTC5706 | 4,756,780 | 221 |
CP004027.1 | Javiana | CFSAN001992 | 4,634,161 | 207 |
CP019411.1 | Johannesburg | ST203 | 4,651,794 | 196 |
CP022500.1 | Kentucky | SA20030505 | 4,782,363 | 216 |
CP019412.1 | Koessen | S-1501 | 4,566,169 | 208 |
CP019413.1 | Krefeld | SA20030536 | 4,942,273 | 216 |
CP022117.1 | Macclesfield | ST-1643 | 4,822,139 | 202 |
CP019414.1 | Manchester | ST278 | 4,532,753 | 204 |
CP022497.1 | Manhattan | SA20084699 | 4,732,484 | 216 |
CP019183.1 | Mbandaka | ATCC 51958 | 4,905,181 | 198 |
CP022489.1 | Mbandaka | SA20026234 | 4,796,292 | 207 |
CP019184.1 | Minnesota | ATCC 49284 | 4,592,393 | 195 |
CP007530.1 | Montevideo | 507440-20 | 4,694,375 | 195 |
CP019415.1 | Moscow | S-1843 | 4,690,402 | 222 |
CP019201.1 | Muenster | 420 | 4756014 | 203 |
NC_011080.1 | Newport | SL254 | 4,827,641 | 217 |
CP019404.1 | Newport | SA20113257 | 4,849,139 | 218 |
CP019416.1 | Nitra | S-1687 | 4,691,807 | 222 |
CP022034.1 | Onderstepoort | SA20060086 | 4,774,926 | 194 |
CP022116.1 | Ouakam | SA20034636 | 4,874,915 | 212 |
CP012346.1 | Panama | ATCC 7378 | 4,555,576 | 208 |
CP000026.1 | Paratyphi A | ATCC 9150 | 4,585,229 | 210 |
CP000886.1 | Paratyphi B | SPB7 | 4,858,887 | 227 |
CP000857.1 | Paratyphi C | RKS4594 | 4,833,080 | 210 |
CP019186.1 | Pomona | ATCC 10729 | 4,482,117 | 196 |
CP019189.1 | Poona | ATCC BAA-1673 | 4,876,720 | 192 |
CP012347.1 | Pullorum | ATCC 9120 | 4,694,842 | 221 |
CP019192.1 | Rubislaw | ATCC 10717 | 4,572,929 | 198 |
CP022491.1 | Saintpaul | SA20031783 | 4,775,303 | 226 |
CP022139.1 | salamae 55:k:z39 | NA | 4,859,044 | 187 |
CP001127.1 | Schwarzengrund | CVM19633 | 4,709,075 | 210 |
LN868943.1 | Senftenberg | NCTC10384 | 3,746,274 | NA |
CP012349.1 | Sloterdijk | ATCC 15791 | 4,817,791 | 218 |
CP017723.1 | Stanleyville | SARB61 | 4,888,463 | 226 |
CP007505.1 | Tennessee | TXSC_TXSC08-19 | 4,864,410 | 207 |
CP006717.1 | Thompson | RM6836 | 4,707,648 | 210 |
NC_003198.1 | Typhi | CT18 | 4,809,037 | 207 |
HF937208.1 | Typhimurium | DT104 | 4,933,631 | 227 |
NC_003197.2 | Typhimurium | LT2 | 4,857,450 | 227 |
CP006048.1 | Typhimurium var. 5- | CFSAN001921 | 4,859,931 | 227 |
CP019417.1 | Wandsworth | SA20092095 | 4,916,040 | 211 |
CP022138.1 | Waycross | SA20041608 | 4,812,886 | 198 |
LN890520.1 | Weltevreden | NA | 5,129,845 | 211 |
CP019418.1 | Yovokome | S-1850 | 4,640,929 | 215 |
Serovars/Strains | Predicted No. | Detected No. | Mapped Reads | Total Reads | a On Target | Assigned Serovar | b Variant Number |
---|---|---|---|---|---|---|---|
Agona 07D669 3-5 | 222 | 224 | 331,304 | 337,261 | 0.98 | Agona | 1 |
Enteritidis SE864 | 222 | 221 | 306,812 | 312,339 | 0.98 | Enteritidis | 8 |
Enteritidis PT8 | 222 | 222 | 313,320 | 319,143 | 0.98 | Enteritidis | 7 |
Gallinarum SA20103326 | 220 | 226 | 285,325 | 290,275 | 0.98 | Indiana | 28 |
Heidelberg D1005841 | 225 | 224 | 298,529 | 305,742 | 0.98 | Heidelberg | 0 |
Indiana 11SU006 5-3 | 213 | 217 | 330,510 | 335,680 | 0.98 | Indiana | 1 |
Infantis 39 | 209 | 226 | 276,145 | 282,107 | 0.98 | Infantis | 4 |
Javiana OLF16127-1 | 207 | 211 | 292,639 | 298,829 | 0.98 | Javiana | 47 |
Kentucky D0827783 | 216 | 215 | 278,679 | 283,095 | 0.98 | Kentucky | 2 |
Mbandaka 06D1004 8-11 | 207 | 208 | 257,337 | 264,129 | 0.97 | Mbandaka | 1 |
Montevideo 08D107 18-3 | 195 | 196 | 310,953 | 317,627 | 0.98 | Montevideo | 277 |
Newport S443 | 211 | 216 | 254,846 | 258,566 | 0.99 | Newport | 21 |
Newport S447 | 218 | 219 | 301,846 | 308,710 | 0.98 | Newport | 23 |
Nitra SA20103329 | 222 | 222 | 260,241 | 265,458 | 0.98 | Enteritidis | 390 |
Paratyphi A SA20114389 | 210 | 214 | 313,073 | 318,553 | 0.98 | Paratyphi A | 5 |
Pullorum ATCC19945 | 221 | 222 | 283,317 | 288,600 | 0.98 | Pullorum | 2 |
S.Kentucky | 216 | 217 | 273,264 | 279,534 | 0.98 | Kentucky | 1 |
S.Typhimurium 07-12345 | 227 | 226 | 248,137 | 252,351 | 0.98 | Typhimurium | 11 |
S.Typhimurium07-12335 | 227 | 227 | 257,763 | 264,195 | 0.98 | Typhimurium | 11 |
S.Typhimurium07-22495 | 227 | 227 | 333,463 | 342,427 | 0.97 | Typhimurium | 15 |
S.Typhimurium07-22792 | 227 | 227 | 292,454 | 300,721 | 0.97 | Typhimurium | 5 |
S.Typhimurium07-24355 | 227 | 227 | 344,674 | 355,565 | 0.97 | Typhimurium | 14 |
S.Typhimurium07-29216 | 227 | 227 | 258,620 | 263,517 | 0.98 | Typhimurium | 14 |
S.Typhimurium07-32529 | 227 | 226 | 263,450 | 271,411 | 0.97 | Typhimurium | 11 |
S.Typhimurium07-35522 | 227 | 227 | 305,560 | 313,980 | 0.97 | Typhimurium | 11 |
S.Typhimurium07-7666 | 227 | 226 | 289,621 | 298,397 | 0.97 | Typhimurium | 11 |
S.Typhimurium07-7670 | 227 | 226 | 294,378 | 302,460 | 0.97 | Typhimurium | 11 |
S.Worthington_43 | 209 | 209 | 303,102 | 314,934 | 0.96 | Mbandaka | 371 |
S.Worthington_70 | 209 | 209 | 304,260 | 317,665 | 0.96 | Mbandaka | 372 |
Schwarzengrund ADRI40 | 210 | 212 | 290,699 | 295,369 | 0.98 | Schwarzengrund | 3 |
Senftenberg OLF13070 | 217 | 217 | 304,695 | 313,491 | 0.97 | Senftenberg | - |
Tennesse D1019361 | 207 | 209 | 291,490 | 298,976 | 0.97 | Tennesse | 1 |
Thompson 08D021 13-6 | 210 | 213 | 292,588 | 297,576 | 0.98 | Thompson | 0 |
Typhimurium LT2 SA1930 | 227 | 227 | 278,222 | 284,938 | 0.98 | Typhimurium | 0 |
Weltevreden OLF18006-1 | 211 | 213 | 280,421 | 286,778 | 0.98 | Weltevreden | 0 |
Gene | No. | Gene | No. | Gene | No. | Gene | No. | Gene | No. | Gene | No. |
---|---|---|---|---|---|---|---|---|---|---|---|
safC | 26 | pagC | 5 | fhuE | 2 | ymdA | 2 | fhuC | 1 | sapB | 1 |
sseL | 13 | StiC | 5 | invA | 2 | barA | 1 | fimD | 1 | sapC | 1 |
sseD | 11 | sptP | 4 | iroB | 2 | BcfE | 1 | fimF | 1 | sicA | 1 |
ssaE | 10 | invJ | 3 | lpfA | 2 | BcfF | 1 | hilC | 1 | sifA | 1 |
ssaK | 10 | mgtA | 3 | lpfC | 2 | crp | 1 | hofB | 1 | sipC | 1 |
stdB | 10 | ompR | 3 | pagD | 2 | csgB | 1 | orgB | 1 | smpB | 1 |
cirA | 9 | rfbN | 3 | rfaY | 2 | csgC | 1 | pipC | 1 | ssaJ | 1 |
csgE | 9 | rfbV | 3 | rpoE | 2 | csgD | 1 | rfaB | 1 | ssaM | 1 |
fimH | 9 | sipA | 3 | ssaI | 2 | csgG | 1 | rfaP | 1 | SseA | 1 |
hilD | 9 | StbC | 3 | ssaO | 2 | entA | 1 | rfbM | 1 | stfF | 1 |
iacP | 9 | fepD | 2 | ssaT | 2 | entC | 1 | rfbX | 1 | stfG | 1 |
rfbG | 6 | fepG | 2 | sseI | 2 | fepE | 1 | rpoS | 1 | sthA | 1 |
csgF | 5 | fes | 2 | sspH2 | 2 | fhuB | 1 | sapA | 1 | ybdB | 1 |
SafC | 26 | pagC | 5 | fhuE | 2 | ymdA | 2 | fhuC | 1 | sapB | 1 |
sseL | 13 | stiC | 5 | invA | 2 | barA | 1 | fimD | 1 | sapC | 1 |
sseD | 11 | sptP | 4 | iroB | 2 | bcfE | 1 | fimF | 1 | sicA | 1 |
VG Type | No. | Gene Names |
---|---|---|
Attachment | 49 | barA, bcfA, bcfB, bcfC, bcfD, bcfE, bcfF, bcfG, csgA, csgB, csgC, csgD, csgE, csgF, csgG, fimC, fimD, fimF, fimH, FimI, fimW, FimY, FimZ, hofB, hofC, lpfA, lpfB, lpfC, lpfD, lpfE, ppdD, safC, stbC, stdB, stfA, stfC, stfD, stfE, stfF, stfG, sthA, sthB, sthD, stiA, stiB, stiC, STM0551, STM4595, yibR |
Invasion/intracellular survival | 73 | crp, hilA, hilC, hilD, hnr, iacP, iagB, invA, invB, invC, invE, invF, invG, invH, invI, invJ, ompR, orgA, orgB, orgC, pagC, pagD, pagP, pipB, pipB2, pipC, pipD, prc, prgH, prgI, prgJ, prgK, rpoE, rpoS, sapA, sapB, sapC, sapD, sapF, sicA, sicP, sifA, sipA, sipB, sipC, sipD, slrP, slyA, sodA, sodB, sodC, sopA, sopB, sopD, sopD2sopE2, spaO, spaP, spaQ, spaR, spaS, sprB, sptP, sspH2, STM1056 (msgA), STM2231, STM2244, STM4315 (rtsA), yejA, yejB, yejE, yejF, ymdA |
Intramacrophage survival | 39 | csrA, hfq, mgtA, mgtB, mgtC, smpB, ssaB, ssaC, ssaD, ssaE, ssaG, ssaH, ssaI ssaJ, ssaK, ssaL, ssaM, ssaN, ssaO, ssaP, ssaQ, ssaR, ssaS, ssaT, ssaU, ssaV, sscA, sscB, sseA, sseB, sseC, sseD, sseE, sseF, sseG, sseI, sseJ, sseL, STM1410 (ssaX) |
Dissemination | 66 | cirA, entA, entB, entC, entD, entE, entF, fepA, fepB, fepC, fepD, fepE, fepG, fes, fhuA, fhuB, fhuC, fhuD, fhuE, foxA, fruR, fUR, iroB, iroC, iroD, iroE, iroN, msbA, msgA, rfaB, rfaC, rfaD, rfaF, rfaG, rfaH, rfaI, rfaJ, rfaK, rfaL, rfaP, rfaQ, rfaY, rfaZ, rfbB, rfbD, rfbF, rfbG, rfbH, rfbI, rfbJ, rfbK, rfbM, rfbN, rfbP, rfbU, rfbV, rfbX, rfc, STM0719, udhA, wzxC, wzxE, wzzB, wzzE, ybdA, ybdB |
Total | 227 |
Strain ID | SalFoS ID | Serovar | a VGs No. |
---|---|---|---|
UofLaval23 | S158 | NA | 196 |
UofLaval4 | S785 | 11:b:e,n,x | 182 |
UofLaval10 | S774 | 58:d:z6 | 183 |
UofLaval20 | S361 | Adelaide | 199 |
UofLaval32 | S1393 | Apapa | 214 |
UofLaval7 | S603 | Bareilly | 216 |
UofLaval16 | S333 | Berta | 223 |
UofLaval29 | S256 | Bovismorbificans | 218 |
UofLaval12 | S209 | Braenderup | 209 |
UofLaval33 | S325 | Bredeney | 213 |
UofLaval14 | S364 | Cerro | 200 |
UofLaval30 | S1426 | Cubana | 222 |
UofLaval5 | S229 | Derby | 218 |
UofLaval31 | S718 | Derby | 223 |
UofLaval9 | S354 | Gaminara | 198 |
UofLaval8 | S219 | Hadar | 215 |
UofLaval24 | S1603 | Havana | 208 |
UofLaval1 | S1288 | Javiana | 206 |
UofLaval17 | S551 | Johannesburg | 220 |
UofLaval3 | S246 | Kentucky | 216 |
UofLaval19 | S267 | Kiambu | 211 |
UofLaval25 | S334 | Kottbus | 216 |
UofLaval6 | S494 | Lockleaze | 192 |
UofLaval22 | S238 | Mbandaka | 201 |
UofLaval13 | S1395 | Mississippi | 207 |
UofLaval2 | S1925 | Muenchen | 218 |
UofLaval15 | S206 | Muenchen | 215 |
UofLaval27 | S317 | Ohio | 203 |
UofLaval28 | S307 | Poona | 197 |
UofLaval21 | S212 | Stanley | 223 |
UofLaval18 | S761 | Stanleyville | 218 |
UofLaval26 | S193 | Thompson | 210 |
UofLaval34 | S164 | Typhimurium | 226 |
UofLaval11 | S277 | Uganda | 209 |
Pathogenesis Stage | Virulence Genes | ||
---|---|---|---|
Core69strains | Variable69strains | Total | |
Attachment | 25 | 24 | 49 |
Invasion | 54 | 19 | 73 |
Intramacrophage survival | 32 | 7 | 39 |
Systemic dissemination | 44 | 22 | 66 |
Total | 155 | 72 | 227 |
ID/Group | Host | Antigens | Phage Typing | PFGE Patterns | Survival (7d) | Survival (>13d) | 1st Sign | b Variant Number |
---|---|---|---|---|---|---|---|---|
1: ST07-7666 | Sparrow | 4,5:12 | 160 | XAI 0280/BNI 0071 | 50% | 40% | 3d | 10 |
2: ST07-7670 | Sparrow | 4,5:12 | 160 | XAI 0280/BNI 0071 | 90% | 70% | 3d | 10 |
3: ST07-12345 | Sparrow | 4,5:12 | 160 | XAI 0280/BNI 0071 | 100% | 90% | 3d | 10 |
4: ST07-32529 | Sparrow | 4,5:12 | 160 | XAI 0280/BNI 0296 | 60% | a ND | 2d | 10 |
5: ST07-12335 | Sparrow | 4,5:12 | 146 | XAI 0021/BNI 0096 | 70% | a ND | 2d | 10 |
6: ST07-35522 | Sparrow | 4,5:12 | 40 | XAI 0075/BNI 0297 | 60% | a ND | 2d | 9 |
7: ST07-22792 | Cormorant | 4,5:12 | 1 | XAI 0654/BNI 0295 | 100% | 100% | 13d | 17 |
8: ST07-22495 | Gull | 4,5:12 | 41 | XAI 0269/BNI 0081 | 60% | 40% | 2d | Index |
9: ST07-24355 | Gull | 4,5:12 | 125 | XAI 0269/BNI 0081 | 70% | 40% | 2d | 1 |
10: ST07-29216 | Chicken | 4,5:12 | 126 | XAI 0269/BNI 0081 | 100% | 40% | 3d | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Huang, H.; Hamel, J.; Levesque, R.C.; Goodridge, L.D.; Ogunremi, D. Application of a High-Throughput Targeted Sequence AmpliSeq Procedure to Assess the Presence and Variants of Virulence Genes in Salmonella. Microorganisms 2022, 10, 369. https://doi.org/10.3390/microorganisms10020369
Gao R, Huang H, Hamel J, Levesque RC, Goodridge LD, Ogunremi D. Application of a High-Throughput Targeted Sequence AmpliSeq Procedure to Assess the Presence and Variants of Virulence Genes in Salmonella. Microorganisms. 2022; 10(2):369. https://doi.org/10.3390/microorganisms10020369
Chicago/Turabian StyleGao, Ruimin, Hongsheng Huang, Jérémie Hamel, Roger C. Levesque, Lawrence D. Goodridge, and Dele Ogunremi. 2022. "Application of a High-Throughput Targeted Sequence AmpliSeq Procedure to Assess the Presence and Variants of Virulence Genes in Salmonella" Microorganisms 10, no. 2: 369. https://doi.org/10.3390/microorganisms10020369
APA StyleGao, R., Huang, H., Hamel, J., Levesque, R. C., Goodridge, L. D., & Ogunremi, D. (2022). Application of a High-Throughput Targeted Sequence AmpliSeq Procedure to Assess the Presence and Variants of Virulence Genes in Salmonella. Microorganisms, 10(2), 369. https://doi.org/10.3390/microorganisms10020369