Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Preparation
2.2. Culture Analyses
2.3. Water Quality Measurements
2.4. Collimated Beam Tests
2.5. Point-of-Entry (POE) Treatment Design and Sample Collection
2.6. Statistical Analyses
3. Results and Discussion
3.1. Collimated Beam Tests
3.2. Point-of-Entry Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fields, B.S. Legionellae. In Encyclopedia of Environmental Microbiology; Bitton, G., Ed.; Wiley: Hoboken, NJ, USA, 2003; pp. 1788–1796. [Google Scholar]
- Fliermans, C.B.; Cherry, W.B.; Orrison, L.H.; Smith, S.J.; Tison, D.L.; Pope, D.H. Ecological distribution of Legionella pneumophila. Appl. Environ. Microbiol. 1981, 41, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travis, T.C.; Brown, E.W.; Peruski, L.F.; Siludjai, D.; Jorakate, P.; Salika, P.; Yang, G.; Kozak, N.A.; Kodani, M.; Warner, A.K.; et al. Survey of Legionella species found in Thai soil. Int. J. Microbiol. 2012, 2012, 218791. [Google Scholar] [CrossRef] [PubMed]
- Buse, H.Y.; Schoen, M.E.; Ashbolt, N.J. Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Res. 2012, 46, 921–933. [Google Scholar] [CrossRef]
- Garrison, L.E.; Kunz, J.M.; Cooley, L.A.; Moore, M.R.; Lucas, C.; Schrag, S.; Sarisky, J.; Whitney, C.G. Vital Signs: Deficiencies in Environmental Control Identified in Outbreaks of Legionnaires’ Disease—North America, 2000–2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 576–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisar, M.A.; Ross, K.E.; Brown, M.H.; Bentham, R.; Whiley, H. Water stagnation and flow obstruction reduces the quality of potable water and increases the risk of legionelloses. Front. Environ. Sci. 2020, 8, 611611. [Google Scholar] [CrossRef]
- Lindsay, D.S.; Brown, A.W.; Brown, D.J.; Pravinkumar, S.J.; Anderson, E.; Edwards, G.F. Legionella longbeachae serogroup 1 infections linked to potting compost. J. Med. Microbiol. 2012, 61 Pt 2, 218–222. [Google Scholar] [CrossRef]
- Mondino, S.; Schmidt, S.; Rolando, M.; Escoll, P.; Gomez-Valero, L.; Buchrieser, C. Legionnaires’ Disease: State of the Art Knowledge of Pathogenesis Mechanisms of Legionella. Annu. Rev. Pathol. 2020, 15, 439–466. [Google Scholar] [CrossRef] [Green Version]
- Beauté, J. Legionnaires’ disease in Europe, 2011 to 2015. Eurosurveillance 2017, 22, 30566. [Google Scholar] [CrossRef] [Green Version]
- Yu, V.L.; Plouffe, J.F.; Pastoris, M.C.; Stout, J.E.; Schousboe, M.; Widmer, A.; Summersgill, J.; File, T.; Heath, C.M.; Paterson, D.L.; et al. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: An international collaborative survey. J. Infect. Dis. 2002, 186, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Lück, C.; Fry, N.; Helbig, J.; Jarraud, S.; Harrison, T. Typing Methods for Legionella. In Legionella; Methods in Molecular Biology (Methods and Protocols); Buchrieser, C., Hilbi, H., Eds.; Humana Press: New York, NY, USA, 2013; Volume 954, pp. 119–148. [Google Scholar]
- Buse, H.Y.; Morris, B.J.; Gomez-Alvarez, V.; Szabo, J.G.; Hall, J.S. Legionella diversity and spatiotemporal variation in the occurrence of opportunistic pathogens within a large building water system. Pathogens 2020, 9, 567. [Google Scholar] [CrossRef]
- Donohue, M.J.; King, D.; Pfaller, S.; Mistry, J.H. The sporadic nature of Legionella pneumophila, Legionella pneumophila Sg1 and Mycobacterium avium occurrence within residences and office buildings across 36 states in the United States. J. Appl. Microbiol. 2019, 126, 1568–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llewellyn, A.C.; Lucas, C.E.; Roberts, S.E.; Brown, E.W.; Nayak, B.S.; Raphael, B.H.; Winchell, J.M. Distribution of Legionella and bacterial community composition among regionally diverse US cooling towers. PLoS ONE 2017, 12, e0189937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Völker, S.; Schreiber, C.; Kistemann, T. Drinking water quality in household supply infrastructure—A survey of the current situation in Germany. Int. J. Hyg. Environ. Health 2010, 213, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). National Notifiable Diseases Surveillance System (NNDSS). Available online: https://www.cdc.gov/nndss/index.html (accessed on 1 December 2021).
- US Environmental Protection Agency (USEPA). Technologies for Legionella Control in Premise Plumbing Systems: Scientific Literature Review; EPA 810-R-16-001; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 2016.
- US Environmental Protection Agency (USEPA). UV Disinfection Guidance Manual for the Final LT2ESWTR; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 2006.
- Beck, S.E.; Rodriguez, R.A.; Hawkins, M.A.; Hargy, T.M.; Larason, T.C.; Linden, K.G. Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum. Appl. Environ. Microbiol. 2015, 82, 1468–1474. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Mandal, I.; Singh, S.; Paul, A.; Mandal, B.; Venkatramani, R.; Swaminathan, R. Near UV-Visible electronic absorption originating from charged amino acids in a monomeric protein. Chem. Sci. 2017, 8, 5416–5433. [Google Scholar] [CrossRef] [Green Version]
- Hijnen, W.A.; Beerendonk, E.F.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res. 2006, 40, 3–22. [Google Scholar] [CrossRef]
- Antopol, S.C.; Ellner, P.D. Susceptibility of Legionella pneumophila to ultraviolet radiation. Appl. Environ. Microbiol. 1979, 38, 347–348. [Google Scholar] [CrossRef] [Green Version]
- Cervero-Aragó, S.; Sommer, R.; Araujo, R.M. Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts. Water Res. 2014, 67, 299–309. [Google Scholar] [CrossRef]
- Gilpin, R.W.; Dillon, S.B.; Keyser, P.; Androkites, A.; Berube, M.; Carpendale, N.; Skorina, J.; Hurley, J.; Kaplan, A.M. Disinfection of circulating water systems by ultraviolet light and halogenation. Water Res. 1985, 19, 839–848. [Google Scholar] [CrossRef]
- Knudson, G.B. Photoreactivation of UV-irradiated Legionella pneumophila and other Legionella species. Appl. Environ. Microb. 1985, 49, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, M.; Yamaguchi, Y.; Sasatsu, M. Disinfectant effects of hot water, ultraviolet light, silver ions and chlorine on strains of Legionella and nontuberculous mycobacteria. Microbios 2000, 101, 7–13. [Google Scholar]
- Muraca, P.; Stout, J.E.; Yu, V.L. Comparative assessment of chlorine, heat, ozone, and UV light for killing Legionella pneumophila within a model plumbing system. Appl. Environ. Microbiol. 1987, 53, 447–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oguma, K.; Katayama, H.; Ohgaki, S. Photoreactivation of Legionella pneumophila after inactivation by low- or medium-pressure ultraviolet lamp. Water Res. 2004, 38, 2757–2763. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.; Hoenes, K.; Rath, M.; Vatter, P.; Hessling, M. UV-C inactivation of Legionella rubrilucens. GMS Hyg. Infect. Control 2017, 12, Doc06. [Google Scholar] [PubMed]
- Wilson, B.; Roessler, P.; Van Dellen, E.; Abbaszadegan, M.; Gerba, C.P. Coliphage MS-2 as a UV Water Disinfection Efficacy Test Surrogate for Bacterial and Viral Pathogens. In Proceedings of the AWWA Water Quality Technology Conference, Toronto, ON, Canada, 15–19 November 1992. [Google Scholar]
- Carlson, K.; Boczek, L.; Chae, S.; Ryu, H. Legionellosis and recent advances in technologies for Legionella control in premise plumbing systems: A review. Water 2020, 12, 676. [Google Scholar] [CrossRef] [Green Version]
- Grossi, M.R.; Dey, R.; Ashbolt, N.J. Searching for activity markers that approximate (VBNC) Legionella pneumophila infectivity in amoeba after ultraviolet (UV) irradiation. Water 2018, 10, 1219. [Google Scholar] [CrossRef] [Green Version]
- Rattanakul, S.; Oguma, K. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water Res. 2018, 130, 31–37. [Google Scholar] [CrossRef]
- Buse, H.Y.; Morris, B.J.; Struewing, I.T.; Szabo, J.G. Chlorine and monochloramine disinfection of Legionella pneumophila colonizing copper and polyvinyl chloride drinking water biofilms. Appl. Environ. Microbiol. 2019, 85, e02956-18. [Google Scholar] [CrossRef] [Green Version]
- Zelver, N.; Hamilton, M.; Goeres, D.; Heersink, J. Development of a Standardized Antibiofilm Test. In Methods in Enzymology; Doyle, R.J., Ed.; Academic Press: Cambridge, MA, USA, 2001; Volume 337, pp. 363–376. [Google Scholar]
- Christensen, J.; Linden, K.G. How particles affect UV light in the UV disinfection of unfiltered drinking water. J. Am. Water Work. Assoc. 2003, 95, 179–189. [Google Scholar] [CrossRef]
- Qualls, R.G.; Flynn, M.P.; Johnson, J.D. The role of suspended particles in ultraviolet disinfection. J. Water Pollut. Control Fed. 1983, 55, 1280–1285. [Google Scholar]
- Wu, Y.; Clevenger, T.; Deng, B. Impacts of goethite particles on UV disinfection of drinking water. Appl. Environ. Microbiol. 2005, 71, 4140–4143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stubbins, A.; Law, K.L.; Muñoz, S.E.; Bianchi, T.S.; Zhu, L. Plastics in the Earth system. Science 2021, 373, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, E.G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E.Y.; Shi, H. A review of microplastics in table salt, drinking water, and air: Direct human exposure. Environ. Sci. Technol. 2020, 54, 3740–3751. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zeng, Z.; Li, L.; Song, B.; Zhou, C.; Zeng, G.; Zhang, Y.; Xiao, R. Microplastics act as an important protective umbrella for bacteria during water/wastewater disinfection. J. Clean. Prod. 2021, 315, 128188. [Google Scholar] [CrossRef]
- Wright, R.J.; Erni-Cassola, G.; Zadjelovic, V.; Latva, M.; Christie-Oleza, J.A. Marine plastic debris: A new surface for microbial colonization. Environ. Sci. Technol. 2020, 54, 11657–11672. [Google Scholar] [CrossRef]
- LeChevallier, M.W. Monitoring distribution systems for Legionella pneumophila using Legiolert. AWWA Water Sci. 2019, 1, e1122. [Google Scholar] [CrossRef] [Green Version]
- King, D.N.; Donohue, M.J.; Vesper, S.J.; Villegas, E.N.; Ware, M.W.; Vogel, M.; Furlong, E.F.; Kolpin, D.W.; Glassmeyer, S.; Pfaller, S. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health. Sci. Total Environ. 2016, 562, 987–995. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.K.; Giannetta, E.T.; Getchell-White, S.I.; Durbin, L.J.; Farr, B.M. Ultraviolet light disinfection of hospital water for preventing nosocomial Legionella infection: A 13-year follow-up. Infect. Control Hosp. Epidemiol. 2003, 24, 580–583. [Google Scholar] [CrossRef]
- Allen, M.J.; Edberg, S.C.; Reasoner, D.J. Heterotrophic plate count bacteria—What is their significance in drinking water? Int. J. Food Microbiol. 2004, 92, 265–274. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Heterotrophic Plate Counts and Drinking-Water Safety the Significance of HPCs for Water Quality and Human Health; Bartram, J., Cotruvo, J., Exner, M., Fricker, C.A.G., Eds.; World Health Organization: London, UK, 2003. [Google Scholar]
- Green, P.N.; Ardley, J.K. Review of the genus Methylobacterium and closely related organisms: A proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int. J. Syst. Evol. Microbiol. 2018, 68, 2727–2748. [Google Scholar] [CrossRef]
- Mariita, R.M.; Blumenstein, S.A.; Beckert, C.M.; Gombas, T.; Randive, R.V. Disinfection performance of a drinking water bottle system with a UV subtype C LED cap against waterborne pathogens and heterotrophic contaminants. Front. Microbiol. 2021, 12, 719578. [Google Scholar] [CrossRef] [PubMed]
- Oguma, K.; Kanazawa, K.; Kasuga, I.; Takizawa, S. Effects of UV irradiation by light emitting diodes on heterotrophic bacteria in tap water. Photochem. Photobiol. 2018, 94, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Ma, J.; Wen, G.; Wei, Y. Considerable discrepancies among HPC, ATP, and FCM detection methods in evaluating the disinfection efficiency of Gram-positive and -negative bacterium by ultraviolet radiation and chlorination. Desalination Water Treat. 2016, 57, 17537–17546. [Google Scholar] [CrossRef]
- Yang, C.; Sun, W.; Ao, X. Bacterial inactivation, DNA damage, and faster ATP degradation induced by ultraviolet disinfection. Front. Environ. Sci. Eng. 2020, 14, 13. [Google Scholar] [CrossRef]
- Pinto, D.; Santos, M.A.; Chambel, L. Thirty years of viable but nonculturable state research: Unsolved molecular mechanisms. Crit. Rev. Microbiol. 2015, 41, 61–76. [Google Scholar] [CrossRef]
- Podlesek, Z.; Žgur Bertok, D. The DNA damage inducible SOS response is a key player in the generation of bacterial persister cells and population wide tolerance. Front. Microbiol. 2020, 11, 1785. [Google Scholar] [CrossRef]
- Charpentier, X.; Kay, E.; Schneider, D.; Shuman, H.A. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J. Bacteriol. 2011, 193, 1114–1121. [Google Scholar] [CrossRef] [Green Version]
Parameter (Units) | Legionella pneumophila Strain Used | |||
---|---|---|---|---|
sg1 | sg1 DW | sg4 | sg6 | |
pH | 8.60 ± 0.05 | 8.70 ± 0.04 | 9.0 ± 0.09 | 9.1 ± 0.01 |
Temperature (°C) | 9.9 ± 0.1 | 15.1 ± 0.1 | 19.9 ± 0.1 | 17.1 ± 0.1 |
Hardness (mg/L CaCO3) | 130 ± 14 | 130 ± 14 | 120 ± 0 | 140 ± 0 |
Turbidity (NTU) | 0.25 ± 0.10 | 0.33 ± 0.00 | 0.64 ± 0.02 | 0.22 ± 0.00 |
Free Chlorine (mg/L) Total Chlorine (mg/L) | 0.93 ± 0.00 | 0.92 ± 0.00 | 0.73 ± 0.00 | 0.92 ± 0.01 |
1.04 ± 0.00 | 1.04 ± 0.01 | 0.85 ± 0.01 | 1.05 ± 0.03 | |
Ferrous Iron (mg/L) Total Iron (mg/L) | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
0.05 ± 0.00 | 0.04 ± 0.01 | 0.00 ± 0.00 | 0.01 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buse, H.Y.; Hall, J.S.; Hunter, G.L.; Goodrich, J.A. Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water. Microorganisms 2022, 10, 352. https://doi.org/10.3390/microorganisms10020352
Buse HY, Hall JS, Hunter GL, Goodrich JA. Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water. Microorganisms. 2022; 10(2):352. https://doi.org/10.3390/microorganisms10020352
Chicago/Turabian StyleBuse, Helen Y., John S. Hall, Gary L. Hunter, and James A. Goodrich. 2022. "Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water" Microorganisms 10, no. 2: 352. https://doi.org/10.3390/microorganisms10020352
APA StyleBuse, H. Y., Hall, J. S., Hunter, G. L., & Goodrich, J. A. (2022). Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water. Microorganisms, 10(2), 352. https://doi.org/10.3390/microorganisms10020352