Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures
Abstract
:1. Introduction
- (1)
- ΔG°′ = −135.6 kJ/reaction
- (2)
- ΔG°′ = −104.6 kJ/reaction
- (3)
- ΔG°′ = +104.6 kJ/reaction
- (4)
- ΔG°′ = −31.0 kJ/reaction
- (5)
- ΔG°′ = −1.3 kJ/reaction
2. Materials and Methods
2.1. Chemicals, Media, and Cultivation Conditions
2.2. Inhibition Experiments with Anaerobic Granules
2.3. Inhibition Experiments with a Hydrogenotrophic Enrichment Culture
2.4. Inhibition Experiments with Methanogenic Pure Cultures
2.5. Analytical Methods
3. Results
3.1. Physiological Response of Anaerobic Granules to BES
3.2. Physiological Response of the Hydrogenotrophic Enrichment Culture to BES
3.3. Physiological Response of Methanogenic Strains to BES
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lefebvre, J.; Friedemann, M.; Manuel, G.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable power-to-gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Thema, M.; Bauer, F.; Sterner, M. Power-to-gas: Electrolysis and methanation status review. Renew. Sustain. Energy Rev. 2019, 112, 775–787. [Google Scholar] [CrossRef]
- Muñoz, R.; Meier, L.; Diaz, I.; Jeison, D. A Review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Biotechnol. 2015, 14, 727–759. [Google Scholar] [CrossRef] [Green Version]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villadsen, S.N.B.; Fosbøl, P.L.; Angelidaki, I.; Woodley, J.M.; Nielsen, L.P.; Møller, P. The potential of biogas; The solution to energy storage. ChemSusChem 2019, 12, 2147–2153. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, T.C.; Isha, A.; Chandra, R.; Vijay, V.K.; Subbarao, P.M.V.; Kumar, R.; Chaudhary, V.P.; Singh, H.; Khan, A.A.; Tyagi, V.K.; et al. Enhancing methane production in anaerobic digestion through hydrogen assisted pathways—A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 151, 111536. [Google Scholar] [CrossRef]
- Fu, S.; Angelidaki, I.; Zhang, Y. In situ biogas upgrading by CO2-to-CH4 bioconversion. Trends Biotechnol. 2020, 39, 336–347. [Google Scholar] [CrossRef]
- Aryal, N.; Kvist, T.; Ammam, F.; Pant, D.; Ottosen, L.D.M. An overview of microbial biogas enrichment. Bioresour. Technol. 2018, 264, 359–369. [Google Scholar] [CrossRef]
- Rittmann, S.; Seifert, A.; Herwig, C. Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Crit. Rev. Biotechnol. 2015, 35, 141–151. [Google Scholar] [CrossRef]
- Mauerhofer, L.; Zwirtmayr, S.; Pappenreiter, P.; Bernacchi, S.; Reischl, B.; Schmider, T.; Taubner, R.; Paulik, C.; Rittmann, S.K.R.; Seifert, A.H. Hyperthermophilic methanogenic archaea act as high-pressure CH4 cell factories. Commun. Biol. 2021, 4, 289. [Google Scholar] [CrossRef]
- Hoelzle, R.D.; Virdis, B.; Batstone, D.J. Regulation mechanisms in mixed and pure culture microbial fermentation. Biotechnol. Bioeng. 2014, 111, 2139–2154. [Google Scholar] [CrossRef]
- Stams, A.J.M. Metabolic Interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 1994, 66, 271–294. [Google Scholar] [CrossRef]
- Agneessens, L.M.; Ottosen, L.D.M.; Andersen, M.; Berg Olesen, C.; Feilberg, A.; Kofoed, M.V.W. parameters affecting acetate concentrations during in-situ biological hydrogen methanation. Bioresour. Technol. 2018, 258, 33–40. [Google Scholar] [CrossRef]
- Agneessens, L.M.; Ottosen, L.D.M.; Voigt, N.V.; Nielsen, J.L.; de Jonge, N.; Fischer, C.H.; Kofoed, M.V.W. In-situ biogas upgrading with pulse H2 additions: The relevance of methanogen adaption and inorganic carbon level. Bioresour. Technol. 2017, 233, 256–263. [Google Scholar] [CrossRef]
- Liu, R.; Hao, X.; Wei, J. Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved. Chem. Eng. J. 2016, 284, 1196–1203. [Google Scholar] [CrossRef]
- Logroño, W.; Popp, D.; Kleinsteuber, S.; Sträuber, H.; Harms, H. Microbial resource management for ex situ biomethanation of hydrogen at alkaline pH. Microorganisms 2020, 8, 614. [Google Scholar] [CrossRef] [Green Version]
- Omar, B.; Abou-shanab, R.; El-gammal, M.; Fotidis, I.A.; Kougias, P.G.; Zhang, Y.; Angelidaki, I. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures. Water Res. 2018, 142, 86–95. [Google Scholar] [CrossRef]
- Schink, B.; Montag, D.; Keller, A.; Müller, N. Hydrogen or formate: Alternative key players in methanogenic degradation. Environ. Microbiol. Rep. 2017, 9, 189–202. [Google Scholar] [CrossRef]
- Peters, V.; Janssen, P.H.; Conrad, R. Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen. Curr. Microbiol. 1999, 38, 285–289. [Google Scholar] [CrossRef]
- Maeder, D.L.; Anderson, I.; Brettin, T.S.; Bruce, D.C.; Gilna, P.; Han, C.S.; Lapidus, A.; Metcalf, W.W.; Saunders, E.; Tapia, R.; et al. The Methanosarcina barkeri genome: Comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J. Bacteriol. 2006, 188, 7922–7931. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Ng, S.-K.; Jia, Y.; Cai, M.; Lee, P.K.H. Physiological and molecular characterizations of the interactions in two cellulose-to-methane cocultures. Biotechnol. Biofuels 2017, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, O.N.; Jespersen, M.; Wagner, T.; Scott, K. CO2 -Fixation strategies in energy extremophiles: What can we learn from acetogens? Front. Microbiol. 2020, 11, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuchmann, K.; Müller, V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 2013, 342, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Thiele, J.H.; Zeikus, J.G. Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 1988, 54, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boone, D.R.; Johnson, R.L.; Liu, Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 1989, 55, 1735–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. MMBR 1997, 61, 262–280. [Google Scholar] [PubMed]
- Conrad, R.; Klose, M. Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots. FEMS Microbiol. Ecol. 2000, 34, 27–34. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Wang, A.; Chen, J. Chemical inhibitors of methanogenesis and putative applications. Appl. Microbiol. Biotechnol. 2011, 89, 1333–1340. [Google Scholar] [CrossRef]
- Benstead, J.; Archer, D.B.; Lloyd, D. Formate utilization by members of the genus Methanobacterium. Arch. Microbiol. 1991, 156, 34–37. [Google Scholar] [CrossRef]
- Schink, B. Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons. FEMS Microbiol. Lett. 1985, 31, 63–68. [Google Scholar] [CrossRef]
- Wang, L.; Trujillo, S.; Liu, H. Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells. Bioresour. Technol. 2019, 274, 557–560. [Google Scholar] [CrossRef]
- Baleeiro, F.C.F.; Kleinsteuber, S.; Sträuber, H. Hydrogen as a co-electron donor for chain elongation with complex communities. Front. Bioeng. Biotechnol. 2021, 9, 650631. [Google Scholar] [CrossRef]
- Bleicher, K.; Winter, J. Formate production and utilization by methanogens and by sewage sludge consortia—Interference with the concept of interspecies formate transfer. Appl. Microbiol. Biotechnol. 1994, 40, 910–915. [Google Scholar] [CrossRef]
- Sipma, J.; Meulepas, R.J.W.; Parshina, S.N.; Stams, A.J.M.; Lettinga, G.; Lens, P.N.L. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 °C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotechnol. 2004, 64, 421–428. [Google Scholar] [CrossRef]
- Szuhaj, M.; Ács, N.; Tengölics, R.; Bodor, A.; Rákhely, G.; Kovács, K.L.; Bagi, Z. Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: A novel route for the power-to-gas concept. Biotechnol. Biofuels 2016, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Jin, X.; Conrad, R.; Liu, H.; Liu, H. Competition between chemolithotrophic acetogenesis and hydrogenotrophic methanogenesis for exogenous H2/CO2 in anaerobically digested sludge: Impact of temperature. Front. Microbiol. 2019, 10, 2418. [Google Scholar] [CrossRef]
- Park, S.G.; Rhee, C.; Shin, S.G.; Shin, J.; Mohamed, H.O.; Choi, Y.J.; Chae, K.J. Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate. Environ. Int. 2019, 131, 105006. [Google Scholar] [CrossRef]
- Kadier, A.; Kalil, M.S.; Chandrasekhar, K.; Mohanakrishna, G.; Saratale, G.D.; Saratale, R.G.; Kumar, G.; Pugazhendhi, A.; Sivagurunathan, P. Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): Strategies for inhibiting growth of methanogens. Bioelectrochemistry 2018, 119, 211–219. [Google Scholar] [CrossRef]
- Chae, K.J.; Choi, M.J.; Kim, K.Y.; Ajayi, F.F.; Park, W.; Kim, C.W.; Kim, I.S. Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresour. Technol. 2010, 101, 5350–5357. [Google Scholar] [CrossRef]
- Szuhaj, M.; Wirth, R.; Bagi, Z.; Maróti, G.; Rákhely, G.; Kovács, K.L. Development of stable mixed microbiota for high yield power to methane conversion. Energies 2021, 14, 7336. [Google Scholar] [CrossRef]
- Ács, N.; Szuhaj, M.; Wirth, R.; Bagi, Z.; Maróti, G.; Rákhely, G.; Kovács, K.L. Microbial community rearrangements in power-to-biomethane reactors employing mesophilic biogas digestate. Front. Energy Res. 2019, 7, 132. [Google Scholar] [CrossRef]
- Mohd Yasin, N.H.; Maeda, T.; Hu, A.; Yu, C.P.; Wood, T.K. CO2 Sequestration by methanogens in activated sludge for methane production. Appl. Energy 2015, 142, 426–434. [Google Scholar] [CrossRef]
- Angelidaki, I.; Petersen, S.P.; Ahring, B.K. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl. Microbiol. Biotechnol. 1990, 33, 469–472. [Google Scholar] [CrossRef]
- Deutzmann, J.S.; Spormann, A.M. Enhanced microbial electrosynthesis by using defined co-cultures. ISME J. 2017, 11, 704–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logroño, W.; Popp, D.; Nikolausz, M.; Kluge, P.; Harms, H.; Kleinsteuber, S. Microbial communities in flexible biomethanation of hydrogen are functionally resilient upon starvation. Front. Microbiol. 2021, 12, 123. [Google Scholar] [CrossRef]
- Carbonero, F.; Oakley, B.B.; Purdy, K.J. Improving the isolation of anaerobes on solid media: The example of the fastidious Methanosaeta. J. Microbiol. Methods 2010, 80, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Selective enrichment and purification of cultures of Methanosaeta spp. J. Microbiol. Methods 2003, 52, 239–244. [Google Scholar] [CrossRef]
- Sanz, J.L.; Rodríguez, N.; Amils, R. The action of antibiotics on the anaerobic digestion process. Appl. Microbiol. Biotechnol. 1996, 46, 587–592. [Google Scholar] [CrossRef]
- De Graeve, K.G.; Grivet, J.P.; Durand, M.; Beaumatin, P.; Cordelet, C.; Hannequart, G.; Demeyer, D. Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora. J. Appl. Bacteriol. 1994, 76, 55–61. [Google Scholar] [CrossRef]
- Palacios, P.A.; Snoeyenbos-West, O.; Löscher, C.R.; Thamdrup, B.; Rotaru, A.E. Baltic sea methanogens compete with acetogens for electrons from metallic iron. ISME J. 2019, 13, 3011–3023. [Google Scholar] [CrossRef] [Green Version]
- Rusmanis, D.; O’Shea, R.; Wall, D.M.; Murphy, J.D. Biological hydrogen methanation systems—An overview of design and efficiency. Bioengineered 2019, 10, 604–634. [Google Scholar] [CrossRef] [Green Version]
- Rago, L.; Guerrero, J.; Baeza, J.A.; Guisasola, A. 2-Bromoethanesulfonate degradation in bioelectrochemical systems. Bioelectrochemistry 2015, 105, 44–49. [Google Scholar] [CrossRef]
- Salvador, A.F.; Cavaleiro, A.J.; Paulo, A.M.S.; Silva, S.A.; Guedes, A.P.; Pereira, M.A.; Stams, A.J.M.; Sousa, D.Z.; Alves, M.M. Inhibition Studies with 2-Bromoethanesulfonate reveal a novel syntrophic relationship in anaerobic oleate degradation. Appl. Environ. Microbiol. 2019, 85, e01733-18. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.M.; Hickey, R.F.; Jain, M.K.; Zeikus, J.G. Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum. Arch. Microbiol. 1993, 159, 57–65. [Google Scholar] [CrossRef]
- Lohner, S.T.; Deutzmann, J.S.; Logan, B.E.; Leigh, J.; Spormann, A.M. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 2014, 8, 1673–1681. [Google Scholar] [CrossRef] [Green Version]
- Liew, F.M.; Martin, M.E.; Tappel, R.C.; Heijstra, B.D.; Mihalcea, C.; Köpke, M. Gas fermentation—A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 2016, 7, 694. [Google Scholar] [CrossRef]
- Moreira, J.P.C.; Diender, M.; Arantes, A.L.; Boeren, S.; Stams, A.J.M.; Alves, M.M.; Alves, J.I.; Sousa, D.Z. Propionate production from carbon monoxide by synthetic cocultures of Acetobacterium wieringae and propionigenic bacteria. Appl. Environ. Microbiol. 2021, 87, e02839-20. [Google Scholar] [CrossRef]
- Angenent, L.T.; Richter, H.; Buckel, W.; Spirito, C.M.; Steinbusch, K.J.J.; Plugge, C.M.; Strik, D.P.B.T.B.; Grootscholten, T.I.M.; Buisman, C.J.N.; Hamelers, V.M. Chain elongation with reactor microbiomes: Open-culture biotechnology to produce biochemicals. Environ. Sci. Technol. 2016, 50, 2796–2810. [Google Scholar] [CrossRef]
- Lindahl, P.A. The ni-containing carbon monoxide dehydrogenase family: Light at the end of the tunnel? Biochemistry 2002, 41, 2097–2105. [Google Scholar] [CrossRef] [Green Version]
- Jeoung, J.-H.; Martins, B.M.; Dobbek, H. Carbon monoxide dehydrogenases. In Metalloproteins: Methods and Protocols; Hu, Y., Ed.; Springer: New York, NY, USA, 2019; pp. 37–54. ISBN 978-1-4939-8864-8. [Google Scholar]
- Ungerfeld, E.M.; Rust, S.R.; Boone, D.R.; Liu, Y. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 2004, 97, 520–526. [Google Scholar] [CrossRef]
- Smith, M.R. Reversal of 2-Bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp. J. Bacteriol. 1983, 156, 516–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Liu, H.; Chen, J. Effect of Classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion. Bioresour. Technol. 2010, 101, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Bonk, F.; Popp, D.; Weinrich, S.; Strauber, H.; Becker, D.; Kleinsteuber, S.; Harms, H.; Centler, S. Determination of Microbial Maintenance in Acetogenesis and Methanogenesis by Experimental and Modeling Techniques. Front. Microbiol. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Omar, B.; Abou-shanab, R.; El-gammal, M.; Fotidis, I.A.; Kougias, P.G.; Zhang, Y.; Angelidaki, I. Simultaneous Biogas Upgrading and Biochemicals Production Using Anaerobic Bacterial Mixed Cultures. Water Research 2018, 142, 86–95. [Google Scholar] [CrossRef]
- Deutzmann, J.S.; Spormann,, A.M. Enhanced Microbial Electrosynthesis by Using Defined Co-Cultures. ISME J. 2017, 11, 704–714. [Google Scholar] [CrossRef] [Green Version]
Type of Medium | Remarks | Anaerobic Granules | Hydrogenotrophic Enrichment Culture | Methanogenic Pure Cultures |
---|---|---|---|---|
Medium A |
| |||
5 | 3 | |||
3 | 3 | |||
Medium A1 |
| |||
4 | ||||
4 | ||||
Medium A2 |
| |||
3 | ||||
Medium B |
| |||
5 | ||||
3 | ||||
Medium C |
| |||
4 a and 5 b | ||||
4 a and 5 b |
Culture Type | BES (50 mM) | H2 (mmol h−1) | CO2 (mmol h−1) | CH4 (mmol h−1) |
---|---|---|---|---|
Crushed anaerobic granules in medium A | Free 3 | 0.51 ± 0.0006 | 0.11 ± 0.0009 | 0.14 ± 0.0010 |
Added 5 | 0.08 ± 0.0023 | 0.05 ± 0.0057 | 0.04 ± 0.0004 | |
Crushed anaerobic granules in medium B | Free 3 | 0.51 ± 0.0014 | 0.11 ± 0.0003 | 0.14 ± 0.0008 |
Added 5 | 0.06 ± 0.0020 | 0.04 ± 0.0104 | 0.05 ± 0.0009 | |
Hydrogenotrophic enrichment culture in medium A | Free 3 | 0.44 ± 0.0040 | 0.10 ± 0.0017 | 0.11± 0.0011 |
Added 3 | 0.02 ± 0.0022 | 0.01± 0.0023 | - | |
Hydrogenotrophic enrichment culture in medium A1 | Free 4 | 0.19 ± 0.0035 | 0.04 ± 0.0008 | 0.05 ± 0.0016 |
Added 4 | 0.004 ± 0.0005 | 0.001 ± 0.0002 | - | |
M. maripaludis in medium C | Free 4 | 0.09 ± 0.001 | 0.02 ± 0.0004 | 0.05 ± 0.001 |
Added 4 | 0.01 ± 0.001 | 0.002 ± 0.0004 | - | |
M. formicicum in medium C | Free 5 | 0.08 ± 0.0012 | 0.02 ± 0.0007 | 0.02 ± 0.0003 |
Added 5 | 0.02 ± 0.0004 | 0.01 ± 0.0004 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logroño, W.; Nikolausz, M.; Harms, H.; Kleinsteuber, S. Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures. Microorganisms 2022, 10, 355. https://doi.org/10.3390/microorganisms10020355
Logroño W, Nikolausz M, Harms H, Kleinsteuber S. Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures. Microorganisms. 2022; 10(2):355. https://doi.org/10.3390/microorganisms10020355
Chicago/Turabian StyleLogroño, Washington, Marcell Nikolausz, Hauke Harms, and Sabine Kleinsteuber. 2022. "Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures" Microorganisms 10, no. 2: 355. https://doi.org/10.3390/microorganisms10020355
APA StyleLogroño, W., Nikolausz, M., Harms, H., & Kleinsteuber, S. (2022). Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures. Microorganisms, 10(2), 355. https://doi.org/10.3390/microorganisms10020355