Genome Analysis of Celeribacter sp. PS-C1 Isolated from Sekinchan Beach in Selangor, Malaysia, Reveals Its β-Glucosidase and Licheninase Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sampling Site, Isolation, Taxonomy Identification, and Bacterial Characterisation
2.3. Genome Sequencing, Assembly, and Annotation
2.4. Analysis of CAZymes and Mining of GHs
2.5. Expression and Determination of BglPS-C1 and LicPS-C1 Activities
3. Results and Discussion
3.1. Sampling Site, Isolation, Taxonomy Identification, and Bacterial Characterisation
3.2. Genome Sequencing, Assembly, and Annotation
3.3. Analysis of CAZymes and Mining of GHs
3.4. Expression and Determination of BglPS-C1 and LicPS-C1 Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Jiang, L.; Chen, X.; Lv, K.; Basiony, M.; Zhu, G.; Karthik, L.; Ouyang, L.; Zhang, L.; Liu, X. Recent advances in biotechnology for marine enzymes and molecules. Curr. Opin. Biotechnol. 2021, 69, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Ameen, F.; AlNadhari, S.; Al-Homaidan, A.A. Marine microorganisms as an untapped source of bioactive compounds. Saudi J. Biol. Sci. 2021, 28, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.M.; Shahar, S.; Chan, K.-G.; Chong, C.S.; Amran, S.I.; Zakaria, M.H.S.I.I.; Kahar, U.M. Current status and potential applications of underexplored prokaryotes. Microorganisms 2019, 7, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barzkar, N.; Sohail, M. An overview on marine cellulolytic enzymes and their potential applications. Appl. Microbiol. Biotechnol. 2020, 104, 6873–6892. [Google Scholar] [CrossRef] [PubMed]
- Pohlner, M.; Dlugosch, L.; Wemheuer, B.; Mills, H.; Engelen, B.; Reese, B.K. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. 2019, 10, 659. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Yahaya, R.S.R.; Baharudin, M.M.A.-a.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef]
- Rashid, R.; Sohail, M. Xylanolytic Bacillus species for xylooligosaccharides production: A critical review. Bioresour. Bioprocess. 2021, 8, 16. [Google Scholar] [CrossRef]
- Goh, K.M.; Kahar, U.M.; Chai, Y.Y.; Chong, C.S.; Chai, K.P.; Ranjani, V.; Illias, R.M.; Chan, K.-G. Recent discoveries and applications of Anoxybacillus. Appl. Microbiol. Biotechnol. 2013, 97, 1475–1488. [Google Scholar] [CrossRef]
- Hazaimeh, M.D.; Ahmed, E.S. Bioremediation perspectives and progress in petroleum pollution in the marine environment: A review. Environ. Sci. Pollut. Res. 2021, 28, 54238–54259. [Google Scholar] [CrossRef]
- Wang, X.; Yu, M.; Wang, L.; Lin, H.; Li, B.; Xue, C.-X.; Sun, H.; Zhang, X.-H. Comparative genomic and metabolic analysis of manganese-oxidizing mechanisms in Celeribacter manganoxidans DY25T: Its adaptation to the environment of polymetallic nodules. Genomics 2020, 112, 2080–2091. [Google Scholar] [CrossRef] [PubMed]
- Zecher, K.; Hayes, K.R.; Philipp, B. Evidence of interdomain ammonium cross-feeding from methylamine and glycine betaine-degrading Rhodobacteraceae to diatoms as a widespread interaction in the marine phycosphere. Front. Microbiol. 2020, 11, 533894. [Google Scholar] [CrossRef]
- Leprich, D.J.; Flood, B.E.; Schroedl, P.R.; Ricci, E.; Marlow, J.J.; Girguis, P.R.; Bailey, J.V. Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. ISME J. 2021, 15, 2043–2056. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Cui, X.; Shao, M.; Wang, Y.; Yang, Q.; Yang, G.; Zheng, L. Microbial origin of bioflocculation components within a promising natural bioflocculant resource of Ruditapes philippinarum conglutination mud from an aquaculture farm in Zhoushan, China. PLoS ONE 2019, 14, e0217679. [Google Scholar] [CrossRef] [PubMed]
- Decleyre, H.; Heylen, K.; Colen, C.V.; Willems, A. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: Small scale heterogeneity and novel nitrate-to-ammonium reducers. Front. Microbiol. 2015, 6, 1124. [Google Scholar] [CrossRef]
- Chhalodia, A.K.; Rinkel, J.; Konvalinkova, D.; Petersen, J.; Dickschat, J.S. Identification of volatiles from six marine Celeribacter strains. Beilstein J. Org. Chem. 2021, 17, 420–430. [Google Scholar] [CrossRef]
- Cao, J.; Lai, Q.; Yuan, J.; Shao, Z. Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73T. Sci. Rep. 2015, 5, 7741. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhong, R.; Shan, D.; Shao, Z. Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow sea, China. Appl. Microbiol. Biotechnol. 2014, 98, 7253–7269. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Lai, Q.; Yuan, J.; Shao, Z. The phenanthrene degradation mechanism of deep sea bacterium Celeribacter indicus P73T. Chin. J. Appl. Environ. Biol. 2016, 22, 703–707. [Google Scholar] [CrossRef]
- Ivanova, E.P.; Webb, H.; Christen, R.; Zhukova, N.V.; Kurilenko, V.V.; Kalinovskaya, N.I.; Crawford, R.J. Celeribacter neptunius gen. nov., sp. nov., a new member of the class Alphaproteobacteria. Int. J. Syst. Evol. Microbiol. 2010, 60, 1620–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Liu, Y.; Wang, Y.; Dai, X.; Zhang, X.-H. Celeribacter manganoxidans sp. nov., a manganese-oxidizing bacterium isolated from deep-sea sediment of a polymetallic nodule province. Int. J. Syst. Evol. Microbiol. 2015, 65, 4180–4185. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.T.; Avedoza, C.; Lee, S.-S.; Jeong, S.E.; Jia, B.; Jeon, C.O. Celeribacter naphthalenivorans sp. nov., a naphthalene-degrading bacterium from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 2015, 65, 3073–3078. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Yan, S.; Qi, Z.; Yu, Y.; Zhang, X.-H. Huaishuia halophila gen. nov., sp. nov., isolated from coastal seawater. Int. J. Syst. Evol. Microbiol. 2012, 62, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Park, S.; Oh, T.-K.; Yoon, J.-H. Celeribacter baekdonensis sp. nov., isolated from seawater, and emended description of the genus Celeribacter Ivanova et al. 2010. Int. J. Syst. Evol. Microbiol. 2012, 62, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Cao, J.; Yuan, J.; Li, F.; Shao, Z. Celeribacter indicus sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huaishuia halophila as Celeribacter halophilus comb. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 4160–4167. [Google Scholar] [CrossRef] [Green Version]
- Baek, K.; Choi, A.; Kang, I.; Cho, J.-C. Celeribacter marinus sp. nov., isolated from coastal seawater. Int. J. Syst. Evol. Microbiol. 2014, 64, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Jami, M.; Lai, Q.; Ghanbari, M.; Moghadam, M.S.; Kneifel, W.; Domig, K.J. Celeribacter persicus sp. nov., a polycyclicaromatic-hydrocarbon-degrading bacterium isolated from mangrove soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 1875–1880. [Google Scholar] [CrossRef] [Green Version]
- Jian, S.-L.; Wu, Y.-H.; Maripatay; Tothy, D.; Oren, A.; Xu, X.-W. Celeribacter ethanolicus sp. nov., isolated from seawater of the South China Sea. Microbiol. China 2016, 43, 907–916. [Google Scholar] [CrossRef]
- Romanenko, L.A.; Tanaka, N.; Svetashev, V.I.; Mikhailov, V.V. Vadicella arenosi gen. nov., sp. nov., a novel member of the class Alphaproteobacteria isolated from sandy sediments from the Sea of Japan seashore. Curr. Microbiol. 2011, 62, 795–801. [Google Scholar] [CrossRef]
- Hördt, A.; López, M.G.; Meier-Kolthoff, J.P.; Schleuning, M.; Weinhold, L.-M.; Tindall, B.J.; Gronow, S.; Kyrpides, N.C.; Woyke, T.; Göker, M. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front. Microbiol. 2020, 11, 468. [Google Scholar] [CrossRef]
- Kim, H.-S.; Cha, S.H.; Suk, H.Y.; Kwon, T.-H.; Woo, J.-H. Complete genome sequence of indigo-producing bacterium Celeribacter sp. strain TSPH2. Genome Announc. 2017, 5, e01124-17. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-A.; Kang, I.; Moon, M.; Ryu, U.-C.; Kwon, K.K.; Cho, J.-C.; Oh, H.-M. Complete genome sequence of Celeribacter marinus IMCC12053T, the host strain of marine bacteriophage P12053L. Mar. Genomics 2016, 26, 5–7. [Google Scholar] [CrossRef]
- Flood, B.E.; Leprich, D.; Bailey, J.V. Complete genome sequence of Celeribacter baekdonensis strain LH4, a thiosulfate-oxidizing alphaproteobacterial isolate from gulf of Mexico continental slope sediments. Genome Announc. 2018, 6, e00434-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashokkumar, V.; Venkatkarthick, R.; Jayashree, S.; Chuetor, S.; Dharmaraj, S.; Kumar, G.; Chen, W.-H.; Ngamcharussrivichai, C. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts—A critical review. Bioresour. Technol. 2022, 344, 126195. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, A.S.; Abbasi, S.A.; Hashmi, Z.; Shah, A.K.; Alam, M.S.; Bhatti, Z.A.; Maitlo, G.; Hussain, S.; Khandro, G.A.; Usto, M.A.; et al. Recent trends and future perspectives of lignocellulose biomass for biofuel production: A comprehensive review. Biomass Convers. Biorefin. 2021. In press. [Google Scholar] [CrossRef]
- Goldenkova-Pavlova, I.V.; Tyurin, A.A.; Mustafaev, O.N. The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications. Appl. Microbiol. Biotechnol. 2018, 102, 3951–3965. [Google Scholar] [CrossRef] [PubMed]
- Bulmer, G.S.; Andrade, P.d.; Field, R.A.; Munster, J.M.v. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydr. Res. 2021, 508, 108411. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.-L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef]
- Malgas, S.; Dyk, J.S.v.; Pletschke, B.I. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J. Microbiol. Biotechnol. 2015, 31, 1167–1175. [Google Scholar] [CrossRef]
- Akram, F.; Haq, I.u.; Imran, W.; Mukhtar, H. Insight perspectives of thermostable endoglucanases for bioethanol production: A review. Renew. Energy 2018, 122, 225–238. [Google Scholar] [CrossRef]
- Silva, J.P.; Ticona, A.R.P.; Hamann, P.R.V.; Quirino, B.F.; Noronha, E.F. Deconstruction of lignin: From enzymes to microorganisms. Molecules 2021, 26, 2299. [Google Scholar] [CrossRef]
- Radzlin, N.; Omar, S.M.; Liew, K.J.; Goh, K.M.; Zakaria, I.I.; Kahar, U.M. Draft genome sequence of Roseovarius sp. PS-C2, isolated from Sekinchan beach in Selangor, Malaysia. Microbiol. Resour. Announc. 2021, 10, e00673-21. [Google Scholar] [CrossRef]
- Radzlin, N.; Low, K.O.; Liew, K.J.; Goh, K.M.; Zakaria, I.I.; Kahar, U.M. Draft genome sequence of Cellulomonas sp. PS-H5, isolated from Sekinchan Beach in Selangor, Malaysia. Microbiol. Resour. Announc. 2021, 10, e00956-21. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Lee, C.-C.; Lin, Y.-L.; Yin, K.-M.; Ho, C.-L.; Liu, T. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinform. 2015, 16, S13. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Yang, P.; Teo, W.-K.; Ting, Y.-P. Design and performance study of a novel immobilized hollow fiber membrane bioreactor. Bioresour. Technol. 2006, 97, 39–46. [Google Scholar] [CrossRef]
- Stankus, T. Microbiology and biotechnology. Ser. Libr. Print. Page Digit. Age 1996, 27, 133–142. [Google Scholar] [CrossRef]
- Beveridge, T.J.; Lawrence, J.R.; Murray, R.G.E. Chapter 2. Sampling and staining for light microscopy. In Methods for General and Molecular Microbiology, 3rd ed.; Reddy, C.A., Beveridge, T.J., Breznak, J.A., Marzluf, G., Schmidt, T.M., Snyder, L.R., Eds.; American Society for Microbiology: Washington, DC, USA, 2007; pp. 19–33. [Google Scholar] [CrossRef]
- Willis, A.T. Chapter 1. Methods of growing anaerobes. In Anaerobic Bacteriology: Clinical and Laboratory Practice, 3rd ed.; Willis, A.T., Ed.; Butterworth-Heinemann: Oxford, UK, 1977; pp. 1–33. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 2015, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auch, A.F.; Jan, M.v.; Klenk, H.-P.; Göker, M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2010, 2, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-H.; Ha, S.-m.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.; Busk, P.K.; Xu, Y.; Yin, Y. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018, 46, W95–W101. [Google Scholar] [CrossRef] [Green Version]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef]
- Chan, C.S.; Sin, L.L.; Chan, K.-G.; Shamsir, M.S.; Manan, F.A.; Sani, R.K.; Goh, K.M. Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1. Biotechnol. Biofuels 2016, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Arahal, D.R.; Pujalte, M.J.; Rodrigo-Tor, L. Draft genomic sequence of Nereida ignava CECT 5292T, a marine bacterium of the family Rhodobacteraceae. Stand. Genomic Sci. 2016, 11, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Klenk, H.-P.; Göker, M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int. J. Syst. Evol. Microbiol. 2014, 64, 352–356. [Google Scholar] [CrossRef] [PubMed]
- van der Maarel, M.; van der Veen, B.; Uitdehaag, J.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 2002, 94, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, N.; Kumar, B.; Agrawal, K.; Verma, P. Current perspective on production and applications of microbial cellulases: A review. Bioresour. Bioprocess. 2021, 8, 95. [Google Scholar] [CrossRef]
- de Souza, T.S.P.; Kawaguti, H.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry. Food Bioproc. Tech. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Dong, Z.; Tang, C.; Lu, Y.; Yao, L.; Kan, Y. Microbial oligo-α-1,6-glucosidase: Current developments and future perspectives. Starch/Stärke 2020, 72, 1900172. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ali, S.; Hassan, A.; Tahir, H.M.; Mumtaz, S.; Mumtaz, S. Biosynthesis and industrial applications of α-amylase: A review. Arch. Microbiol. 2021, 203, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Graebin, N.G.; Schöffer, J.D.N.; Andrades, D.D.; Hertz, P.F.; Ayub, M.A.Z.; Rodrigues, R.C. Immobilization of glycoside hydrolase families GH1, GH13, and GH70: State of the art and perspectives. Molecules 2016, 21, 1074. [Google Scholar] [CrossRef] [PubMed]
- Busto, M.D.; Ortega, N.; Perez-Mateos, M. Studies on microbial β-D-glucosidase immobilized in alginate gel beads. Process Biochem. 1905, 30, 421–426. [Google Scholar] [CrossRef]
- Park, S.-Y.; Bae, E.-A.; Sung, J.H.; Lee, S.-K.; Kim, D.-H. Purification and characterization of ginsenoside Rb1-metabolizing β-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci. Biotechnol. Biochem. 2001, 65, 1163–1169. [Google Scholar] [CrossRef]
- Freudl, R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact. 2018, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Viborg, A.H.; Terrapon, N.; Lombard, V.; Michel, G.; Czjzek, M.; Henrissat, B.; Brumer, H. A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J. Biol. Chem. 2019, 294, 15973–15986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuuki, T.; Tezuka, H.; Yabuuchi, S. Purification and some properties of two enzymes from a β-glucanase hyperproducing strain, Bacillus subtilis HL-25. Agric. Biol. Chem. 1989, 53, 2341–2346. [Google Scholar] [CrossRef]
- Apiraksakorn, J.; Nitisinprasert, S.; Levin, R.E. Grass degrading beta-1,3-1,4-D-glucanases from Bacillus subtilis GN156: Purification and characterization of glucanase J1 and pJ2 possessing extremely acidic pI. Appl. Biochem. Biotechnol. 2008, 149, 53–66. [Google Scholar] [CrossRef] [PubMed]
Characteristic | PS-C1 a | EMB201T | ZXM137T | NH195T | DSM100434T | DSM26471T | P73T | DSM27375T | DY2-5T | KMM9024T | IMCC12053 T |
---|---|---|---|---|---|---|---|---|---|---|---|
Cell property | |||||||||||
Cell size (width × length, µm) | 0.18–1.2 × 1.2–3.4 | 0.8–1.2 × 1.2–3.4 | 0.3 × 0.8 | 0.5–1.0 × 1.0–2.0 | 0.4–0.5 × 0.8–0.9 | 0.4–0.9 × 0.8–1.8 | 0.6–0.7 × 1.2–1.3 | 0.6–1.0 × 1.0–3.0 | 0.5–0.8 × 1.2–2.1 | 0.6–0.8 × 2.5–4.5 | 0.6–0.7 × 1.4–2.3 |
Catalase | + | + | + | + | + | + | + | + | + | + | + |
Oxidase | + | + | + | + | + | − | + | + | ND | + | + |
Motility | − | − | − | − | ND | − | − | − | − | − | − |
Growth condition | |||||||||||
Temperature range (optimum) (°C) | 30–40 (30) | 10–37 (30) | 4–45 (28) | 20–40 (37) | 10–45 (28) | 5–35 (25) | 10–41 (28) | 4–37 (30) | 0–37 (28) | 4–37 (25–30) | 4–37 (30) |
pH range (optimum) | 5.5–10.0 (6.5) | 5.0–9.5 (7.0–7.5) | 6.0–9.0 (7.0) | 5.0–9.0 (7.5) | 5.0–9.0 (6.0) | 7.5–8.0 (7.5–8.0) | 2.0–12.0 (ND) | 7.5–8.0 (5.0) | 6.5–9.0 (7.0–7.5) | 5.5–9.5 (7.9–8.0) | 6.0–9.0 (8.0) |
NaCl range (optimum) (% w/v) | 1.0–8.0 (2.0–7.0) | 1.0–7.0 (2.0–3.0) | 0.5–11.0 (ND) | 0.5–10.0 (1.0–3.0) | 0–18.0 (3) | 1.0–8.0 (ND) | 0.5–12.0 (3.0) | 0–13.0 (2.0) | 11.0 (3.0–4.0) | 1.0–7.0 (3.0–4.0) | 0.5–5.0 (2.5–3.0) |
Anaerobic growth | + | − | − | − | − | + | + | − | ND | − | − |
Antibiotic susceptibility | |||||||||||
Ampicillin (50 µg/mL) | + | nd | + | + | nd | nd | + | + | nd | + | nd |
Penicillin G (50 µg/mL) | + | nd | + | nd | nd | nd | nd | + | nd | + | nd |
Tetracycline hydrochloride (100 µg/mL) | + | nd | + | + | nd | + | + | nd | nd | + | nd |
Kanamycin sulphate (100 µg/mL) | + | nd | + | + | nd | nd | + | + | nd | + | + |
Chloramphenicol (100 µg/mL) | + | nd | nd | + | nd | + | nd | + | nd | + | + |
API result (20NE, 20E, 50CH, and ZYM) | |||||||||||
Nitrate reduction | + | − | − | − | + | + | − | − | − | + | − |
Citrate utilization | + | − | + | − | − | − | − | + | − | − | nd |
Indole production | − | − | − | − | nd | − | − | − | − | − | − |
Urease degradation | + | − | + | + | + | + | + | + | + | − | − |
D-lactose degradation | − | nd | − | − | − | + | nd | + | − | − | − |
Lipase activity | − | − | + | − | + | − | + | − | − | − | − |
α-glucosidase activity | + | + | + | + | + | + | − | + | nd | + | + |
β-glucosidase activity | + | + | + | + | + | + | + | + | − | nd | + |
16S rRNA analysis against strain PS-C1 | |||||||||||
NCBI GenBank accession number | MW785752 | KP272156 | FJ436725 | KT852989 | KR349442 | FJ535354 | EU440950 | HM997022 | KF356415 | AB564595 | KF146343 |
NCBI Blastn (%) | 100.00 | 99.38 | 99.04 | 98.36 | 97.01 | 96.94 | 96.72 | 96.37 | 95.10 | 94.46 | 94.27 |
EzBioCloud pairwise alignment (%) b | 100.00 | 98.92 | 99.06 | 98.41 | 96.83 | 96.89 | 96.61 | 96.54 | 95.38 | 94.59 | 94.66 |
Reference | This study | [21] | [22,24] | [27] | [26] | [19] | [24] | [23] | [20] | [28,29] | [25] |
Attribute | Description |
---|---|
Genome assembly statistics | |
Sequencing platform | Illumina NovaSeq |
Assembly | SOAPdenovo v2.04 |
Finishing strategy | High-quality draft |
Genome coverage | 357 × |
Genome quality | No contamination |
Relevance | Industrial |
Genome metrics | |
Genome size (bp) | 3,866,278 |
G+C content (%) | 59.10% |
Number of contigs | 40 |
Longest contig length (bp) | 499,873 |
N50 value | 302,457 |
N90 value | 80,703 |
L50 value | 5 |
Total genes | 3818 |
Pseudogenes | 25 |
Noncoding RNA genes | 54 |
tRNA | 48 |
ncRNA | 3 |
5S rRNA | 1 |
16S rRNA | 1 |
23S rRNA | 1 |
Protein-coding sequences | 3739 |
With Pfam | 2657 |
With signal peptide | 496 |
With COGs | 3702 |
Connected to KEGG pathways | 2218 |
Putative hypothetical proteins | 462 |
NCBI accession number | |
GenBank | JAHXRW000000000 |
BioProject | PRJNA716474 |
BioSample | SAMN18354561 |
Locus Tag | J5Y17 |
GenBank | JAHXRW000000000 |
dDDH | Strain | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANI | PS-C1 | EaN35-2 | HF31 | NH195T | TSPH2 | ZXM137T | G3M19 | DSM100434T | DSM26471T | ASW11-22 | P73T | B30 | DSM27375T | LH4 | IMCC12053T | |
Strain | PS-C1 | 100.00 | 37.50 | 34.60 | 23.80 | 23.70 | 22.60 | 22.60 | 22.50 | 22.40 | 21.10 | 19.80 | 19.70 | 19.50 | 19.40 | 18.20 |
EaN35-2 | 89.28 | 100.00 | 41.10 | 24.90 | 24.40 | 23.10 | 23.00 | 22.80 | 23.00 | 20.90 | 20.30 | 19.90 | 19.70 | 19.80 | 18.90 | |
HF31 | 88.12 | 90.42 | 100.00 | 24.30 | 24.30 | 23.00 | 23.10 | 22.70 | 22.80 | 20.70 | 20.10 | 19.90 | 19.80 | 19.70 | 18.90 | |
NH195T | 81.39 | 82.05 | 81.67 | 100.00 | 82.10 | 22.00 | 21.80 | 30.50 | 24.10 | 21.00 | 21.10 | 20.60 | 20.60 | 19.50 | 18.70 | |
TSPH2 | 81.10 | 81.73 | 81.60 | 98.07 | 100.00 | 21.90 | 21.90 | 29.80 | 23.00 | 20.70 | 22.00 | 19.70 | 19.90 | 19.40 | 19.00 | |
ZXM137T | 80.31 | 80.37 | 80.55 | 86.07 | 85.62 | 100.00 | 61.30 | 21.70 | 22.00 | 20.20 | 19.90 | 19.40 | 19.60 | 19.70 | 19.00 | |
G3M19 | 80.18 | 80.43 | 80.44 | 79.25 | 79.23 | 79.04 | 100.00 | 21.60 | 22.00 | 20.20 | 19.80 | 19.40 | 19.40 | 19.40 | 18.70 | |
DSM100434T | 79.95 | 80.33 | 80.45 | 79.06 | 78.97 | 78.98 | 95.22 | 100.00 | 23.50 | 20.30 | 21.20 | 20.70 | 21.00 | 19.20 | 18.30 | |
DSM26471T | 79.73 | 80.36 | 80.04 | 80.81 | 80.18 | 80.44 | 78.68 | 78.68 | 100.00 | 20.80 | 21.10 | 21.50 | 21.20 | 19.70 | 18.90 | |
ASW11-22 | 77.70 | 77.64 | 77.11 | 77.44 | 77.29 | 77.14 | 76.23 | 76.37 | 77.11 | 100.00 | 19.30 | 18.70 | 18.40 | 18.60 | 18.20 | |
P73T | 76.46 | 76.73 | 76.67 | 76.94 | 76.82 | 77.32 | 75.94 | 76.02 | 77.44 | 74.25 | 100.00 | 19.00 | 18.70 | 18.50 | 18.20 | |
B30 | 76.41 | 76.80 | 76.77 | 76.94 | 76.53 | 77.18 | 75.82 | 75.89 | 77.44 | 74.51 | 93.67 | 100.00 | 53.90 | 40.80 | 18.70 | |
DSM27375T | 76.30 | 76.68 | 76.37 | 76.24 | 76.32 | 75.94 | 75.98 | 75.97 | 76.18 | 74.35 | 89.78 | 90.28 | 100.00 | 39.00 | 18.60 | |
LH4 | 76.23 | 76.91 | 76.99 | 77.90 | 78.92 | 78.27 | 75.99 | 75.93 | 77.48 | 75.43 | 74.53 | 74.90 | 74.60 | 100.00 | 72.10 | |
IMCC12053T | 72.51 | 72.78 | 72.83 | 72.48 | 72.56 | 72.45 | 72.71 | 72.63 | 72.51 | 72.27 | 72.91 | 72.99 | 73.12 | 72.09 | 100.00 |
COG Class | COG Functional Categories | Strain PS-C1 | |
---|---|---|---|
Gene Count | Percentage (%) | ||
Metabolism | |||
C | Energy production and conversion | 254 | 6.79 |
E | Amino acid transport and metabolism | 324 | 8.67 |
F | Nucleotide transport and metabolism | 86 | 2.30 |
G | Carbohydrate transport and metabolism | 219 | 5.86 |
H | Coenzyme transport and metabolism | 126 | 3.37 |
I | Lipid transport and metabolism | 125 | 3.34 |
P | Inorganic ion transport and metabolism | 253 | 6.77 |
Q | Secondary metabolites, biosynthesis, transport, and catabolism | 118 | 3.16 |
Cellular processes and signalling | |||
D | Cell cycle control, cell division, and mitosis | 37 | 0.99 |
M | Cell wall/membrane/envelope biogenesis | 339 | 9.07 |
N | Cell motility | 7 | 0.19 |
O | Post-translational modification, protein turnover, chaperone functions | 117 | 3.13 |
T | Signal transduction mechanisms | 119 | 3.18 |
U | Intracellular trafficking, secretion, and vesicular transport | 65 | 1.74 |
Information storage and processing | |||
J | Translation, ribosomal structure, and biogenesis | 187 | 5.00 |
K | Transcription | 240 | 6.42 |
L | Replication, recombination, and repair | 2 | 0.05 |
V | Defense mechanisms | 34 | 0.91 |
Z | Cytoskeleton | 1 | 0.03 |
Poorly characterized | |||
R | General function prediction only | 0 | 0.00 |
S | Function unknown | 619 | 16.56 |
Total | 3702 | 87.51 |
Category (CAZy GH Family) | Predicted function (EC Number) | Identity within Celeribacter Genome (%) a | Identity to Other Genera (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PS-C1 | P73T | TSPH2 | IMCC12053T | LH4 | DSM27375T | DSM26471T | DSM100434T | NH195T | ZXM137T | G3M19 | ASW11-22 | EaN35-2 | B30 | HF31 | |||
Cellulose-Degrading Enzyme | |||||||||||||||||
(GH1) | β-glucosidase (3.2.1.21) | 73.53 | 100 | 73.76 | 75.28 | 75.57 | 75.79 | 71.69 | 74.89 | 73.76 | 75.11 | 75.11 | 71.72 | 74.66 | 76.47 | 74.66 | Acetivibrio thermocellus (41.91) |
Β-glucan-Degrading Enzyme | |||||||||||||||||
(GH8) | Endo-1,3(4)-β-glucanase (3.2.1.6) | − | − | − | − | − | − | − | − | − | − | − | − | − | − | 100 | Bacillus circulans (36.90) |
(GH16) | Licheninase (3.2.1.73) | 53.00 | 100 | − | − | − | − | − | − | − | − | 58.25 | − | 53.00 | − | 56.30 | Paenibacillus polymyxa (42.71) |
(GH26) | Endo-β-1,3-1,4- glucanase (3.2.1.73) | − | − | 100 | − | 74.58 | − | 72.58 | 96.03 | 99.67 | − | − | − | − | − | - | Profundibacter amoris (76.62) |
Hemicellulose-Degrading Enzyme | |||||||||||||||||
(GH2) | β-mannosidase (3.2.1.25) | − | − | 100 | − | 66.75 | 68.99 | − | 81.65 | 97.13 | − | − | − | − | 68.86 | − | Pacifibacter marinus (55.67) |
(GH26) | β-1,3-xylanase (3.2.1.32) | 100 | − | − | − | − | − | − | − | − | − | − | − | − | − | 92.25 | Vibrio sp. AX-4 (29.50) |
(GH36) | α-galactosidase (3.2.1.22) | − | − | − | − | − | − | − | − | − | 100 | 94.49 | − | − | − | − | Escherichia coli (38.80) |
(GH43) | β-xylosidase (3.2.1.37) | − | − | − | 100 | − | − | − | − | − | − | − | − | − | − | − | Bacillus subtilis (44.60) |
(GH51) | α-L-arabinofuranosidase (3.2.1.55) | − | − | − | − | − | − | − | − | − | − | − | − | 100 | − | − | Geobacillus stearothermophilus (54.30) |
Starch-degrading enzyme | |||||||||||||||||
(GH13) | α-amylase (3.2.1.1) | − | − | − | − | − | − | − | − | − | 100 | 98.97 | − | − | 24.15 | − | Spirochaeta thermophila (40.90) |
(GH13) | Oligo-1,6-glucosidase (3.2.1.10) | − | − | − | − | − | − | − | − | − | − | − | − | − | 100 | − | Bacillus halodurans (51.70) |
(GH13) | α-glucosidase (3.2.1.20) | 30.97 | 100 | 31.06 | 30.77 | 29.87 | 30.42 | 30.76 | 31.67 | 31.23 | 31.19 | 31.36 | 31.03 | 31.29 | 30.00 | 30.62 | Bacillus halodurans (48.60) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzlin, N.; Yaakop, A.S.; Goh, K.M.; Liew, K.J.; Zakaria, I.I.; Kahar, U.M. Genome Analysis of Celeribacter sp. PS-C1 Isolated from Sekinchan Beach in Selangor, Malaysia, Reveals Its β-Glucosidase and Licheninase Activities. Microorganisms 2022, 10, 410. https://doi.org/10.3390/microorganisms10020410
Radzlin N, Yaakop AS, Goh KM, Liew KJ, Zakaria II, Kahar UM. Genome Analysis of Celeribacter sp. PS-C1 Isolated from Sekinchan Beach in Selangor, Malaysia, Reveals Its β-Glucosidase and Licheninase Activities. Microorganisms. 2022; 10(2):410. https://doi.org/10.3390/microorganisms10020410
Chicago/Turabian StyleRadzlin, Nurfatini, Amira Suriaty Yaakop, Kian Mau Goh, Kok Jun Liew, Iffah Izzati Zakaria, and Ummirul Mukminin Kahar. 2022. "Genome Analysis of Celeribacter sp. PS-C1 Isolated from Sekinchan Beach in Selangor, Malaysia, Reveals Its β-Glucosidase and Licheninase Activities" Microorganisms 10, no. 2: 410. https://doi.org/10.3390/microorganisms10020410
APA StyleRadzlin, N., Yaakop, A. S., Goh, K. M., Liew, K. J., Zakaria, I. I., & Kahar, U. M. (2022). Genome Analysis of Celeribacter sp. PS-C1 Isolated from Sekinchan Beach in Selangor, Malaysia, Reveals Its β-Glucosidase and Licheninase Activities. Microorganisms, 10(2), 410. https://doi.org/10.3390/microorganisms10020410