Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions
Abstract
:1. Introduction
2. Where and When Is Adhesion Important in Mycobacterial Pathogenesis?
2.1. Tuberculosis and Leprosy
2.2. Zoonotic and Opportunistic Infections and Emerging Mycobacterial Pathogens
2.3. Adhesive Interactions in Mycobacterial Biofilms
3. Non-Specific Adhesion: The Hydrophobic Mycobacterial Surface
4. Controlling Host Cell Adhesion: Molecules That Bind to Cells and Tissues
4.1. Interactions with Immune Cell Receptors: Ligands and Surface Distribution
4.2. Multifunctional Mycobacterial Adhesins
4.3. Appendages and Lectins
5. Mycobacterial Adhesion under Mechanical Stress
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berne, C.; Ellison, C.K.; Ducret, A.; Brun, Y.V. Bacterial Adhesion at the Single-Cell Level. Nat. Rev. Microbiol. 2018, 16, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial Biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berne, C.; Ducret, A.; Hardy, G.G.; Brun, Y.V. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizarro-Cerdá, J.; Cossart, P. Bacterial Adhesion and Entry into Host Cells. Cell 2006, 124, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Stones, D.H.; Krachler, A.M. Against the Tide: The Role of Bacterial Adhesion in Host Colonization. Biochem. Soc. Trans. 2016, 44, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Busscher, H.J.; Weerkamp, A.H. Specific and Non-Specific Interactions in Bacterial Adhesion to Solid Substrata. FEMS Microbiol. Lett. 1987, 46, 165–173. [Google Scholar] [CrossRef]
- Craig, L.; Pique, M.E.; Tainer, J.A. Type IV Pilus Structure and Bacterial Pathogenicity. Nat. Rev. Microbiol. 2004, 2, 363–378. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Viljoen, A. Binding Strength of Gram-Positive Bacterial Adhesins. Front. Microbiol. 2020, 11, 1457. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Persat, A. Mechanomicrobiology: How Bacteria Sense and Respond to Forces. Nat. Rev. Microbiol. 2020, 18, 227–240. [Google Scholar] [CrossRef]
- Cambier, C.J.; Falkow, S.; Ramakrishnan, L. Host Evasion and Exploitation Schemes of Mycobacterium tuberculosis. Cell 2014, 159, 1497–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, D.G. Who Puts the Tubercle in Tuberculosis? Nat. Rev. Microbiol. 2007, 5, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, E.; Mori, D.; Yamasaki, S. Recognition of Mycobacterial Lipids by Immune Receptors. Trends Immunol. 2017, 38, 66–76. [Google Scholar] [CrossRef]
- Neyrolles, O.; Guilhot, C. Recent Advances in Deciphering the Contribution of Mycobacterium tuberculosis Lipids to Pathogenesis. Tuberculosis 2011, 91, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Pethe, K.; Alonso, S.; Biet, F.; Delogu, G.; Brennan, M.J.; Locht, C.; Menozzi, F.D. The Heparin-Binding Haemagglutinin of M. tuberculosis Is Required for Extrapulmonary Dissemination. Nature 2001, 412, 190–194. [Google Scholar] [CrossRef]
- Nguyen, L.; Pieters, J. The Trojan Horse: Survival Tactics of Pathogenic Mycobacteria in Macrophages. Trends in Cell Biol. 2005, 15, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Grosset, J. Mycobacterium Tuberculosis in the Extracellular Compartment: An Underestimated Adversary. Antimicrob. Agents Chemother. 2003, 47, 833–836. [Google Scholar] [CrossRef] [Green Version]
- Vidal Pessolani, M.C.; de Marques, M.A.M.; Reddy, V.M.; Locht, C.; Menozzi, F.D. Systemic Dissemination in Tuberculosis and Leprosy: Do Mycobacterial Adhesins Play a Role? Microbes Infect. 2003, 5, 677–684. [Google Scholar] [CrossRef]
- Job, C.K.; Jayakumar, J.; Kearney, M.; Gillis, T.P. Transmission of Leprosy: A Study of Skin and Nasal Secretions of Household Contacts of Leprosy Patients Using PCR. Am. J. Trop. Med. Hyg. 2008, 78, 518–521. [Google Scholar] [CrossRef]
- Silva, C.A.M.; Danelishvili, L.; McNamara, M.; Berredo-Pinho, M.; Bildfell, R.; Biet, F.; Rodrigues, L.S.; Oliveira, A.V.; Bermudez, L.E.; Pessolani, M.C.V. Interaction of Mycobacterium leprae with Human Airway Epithelial Cells: Adherence, Entry, Survival, and Identification of Potential Adhesins by Surface Proteome Analysis. Infect. Immun. 2013, 81, 2645–2659. [Google Scholar] [CrossRef] [Green Version]
- Rambukkana, A.; Salzer, J.L.; Yurchenco, P.D.; Tuomanen, E.I. Neural Targeting of Mycobacterium leprae Mediated by the G Domain of the Laminin-A2 Chain. Cell 1997, 88, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Johansen, M.D.; Herrmann, J.-L.; Kremer, L. Non-Tuberculous Mycobacteria and the Rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 18, 392–407. [Google Scholar] [CrossRef] [PubMed]
- Thornton, C.S.; Mellett, M.; Jarand, J.; Barss, L.; Field, S.K.; Fisher, D.A. The Respiratory Microbiome and Nontuberculous Mycobacteria: An Emerging Concern in Human Health. Eur. Respir. Rev. 2021, 30. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Bastos, M.; Menzies, D. Treatment of Human Disease Due to Mycobacterium bovis: A Systematic Review. Eur. Respir. J. 2016, 48, 1500–1503. [Google Scholar] [CrossRef] [Green Version]
- Garvey, M. Mycobacterium avium Subspecies Paratuberculosis: A Possible Causative Agent in Human Morbidity and Risk to Public Health Safety. Open Vet. J. 2018, 8, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Secott, T.E.; Lin, T.L.; Wu, C.C. Fibronectin Attachment Protein Is Necessary for Efficient Attachment and Invasion of Epithelial Cells by Mycobacterium avium Subsp. Paratuberculosis. Infect. Immun. 2002, 70, 2670–2675. [Google Scholar] [CrossRef] [Green Version]
- Secott, T.E.; Lin, T.L.; Wu, C.C. Fibronectin Attachment Protein Homologue Mediates Fibronectin Binding by Mycobacterium avium Subsp. Paratuberculosis. Infect. Immun. 2001, 69, 2075–2082. [Google Scholar] [CrossRef] [Green Version]
- Secott, T.E.; Lin, T.L.; Wu, C.C. Mycobacterium avium subsp. Paratuberculosis Fibronectin Attachment Protein Facilitates M-Cell Targeting and Invasion through a Fibronectin Bridge with Host Integrins. Infect. Immun. 2004, 72, 3724–3732. [Google Scholar] [CrossRef] [Green Version]
- Williamson, H.R.; Mosi, L.; Donnell, R.; Aqqad, M.; Merritt, R.W.; Small, P.L.C. Mycobacterium ulcerans Fails to Infect through Skin Abrasions in a Guinea Pig Infection Model: Implications for Transmission. PLoS Negl. Trop. Dis. 2014, 8, e2770. [Google Scholar] [CrossRef]
- Franco-Paredes, C.; Marcos, L.A.; Henao-Martínez, A.F.; Rodríguez-Morales, A.J.; Villamil-Gómez, W.E.; Gotuzzo, E.; Bonifaz, A. Cutaneous Mycobacterial Infections. Clin. Microbiol. Rev. 2018, 32, e00069-18. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.S.; von Reyn, C.F. Nosocomial Infections Due to Nontuberculous Mycobacteria. Clin. Infect. Dis. 2001, 33, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Zamora, N.; Esteban, J.; Kinnari, T.J.; Celdrán, A.; Granizo, J.J.; Zafra, C. In-Vitro Evaluation of the Adhesion to Polypropylene Sutures of Non-Pigmented, Rapidly Growing Mycobacteria. Clin. Microbiol. Infect. 2007, 13, 902–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malcolm, K.C.; Caceres, S.M.; Honda, J.R.; Davidson, R.M.; Epperson, L.E.; Strong, M.; Chan, E.D.; Nick, J.A. Mycobacterium Abscessus Displays Fitness for Fomite Transmission. Appl. Environ. Microbiol. 2017, 83, e00562-17. [Google Scholar] [CrossRef] [Green Version]
- van Dorn, A. Multidrug-Resistant Mycobacterium Abscessus Threatens Patients with Cystic Fibrosis. Lancet Respir. Med. 2017, 5, 15. [Google Scholar] [CrossRef]
- Bryant, J.M.; Grogono, D.M.; Rodriguez-Rincon, D.; Everall, I.; Brown, K.P.; Moreno, P.; Verma, D.; Hill, E.; Drijkoningen, J.; Gilligan, P.; et al. Emergence and Spread of a Human-Transmissible Multidrug-Resistant Nontuberculous Mycobacterium. Science 2016, 354, 751–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischeder, R.; Schulze-Röbbecke, R.; Weber, A. Occurrence of Mycobacteria in Drinking Water Samples. Zent. Hyg. Umweltmed. 1991, 192, 154–158. [Google Scholar]
- Schulze-Röbbecke, R.; Fischeder, R. Mycobacteria in Biofilms. Zent. Hyg. Umweltmed. 1989, 188, 385–390. [Google Scholar]
- Schulze-Röbbecke, R.; Janning, B.; Fischeder, R. Occurrence of Mycobacteria in Biofilm Samples. Tuber. Lung Dis. 1992, 73, 141–144. [Google Scholar] [CrossRef]
- Schulze-Röbbecke, R.; Feldmann, C.; Fischeder, R.; Janning, B.; Exner, M.; Wahl, G. Dental Units: An Environmental Study of Sources of Potentially Pathogenic Mycobacteria. Tuber. Lung Dis. 1995, 76, 318–323. [Google Scholar] [CrossRef]
- Falkinham, J.O. Hospital Water Filters as a Source of Mycobacterium avium Complex. J. Med. Microbiol. 2010, 59, 1198–1202. [Google Scholar] [CrossRef]
- Falkinham, J.O. Surrounded by Mycobacteria: Nontuberculous Mycobacteria in the Human Environment. J. Appl. Microbiol. 2009, 107, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Faria, S.; Joao, I.; Jordao, L. General Overview on Nontuberculous Mycobacteria, Biofilms, and Human Infection. J. Pathog. 2015, 2015, 809014. [Google Scholar] [CrossRef] [Green Version]
- Marsollier, L.; Brodin, P.; Jackson, M.; Korduláková, J.; Tafelmeyer, P.; Carbonnelle, E.; Aubry, J.; Milon, G.; Legras, P.; André, J.-P.S.; et al. Impact of Mycobacterium ulcerans Biofilm on Transmissibility to Ecological Niches and Buruli Ulcer Pathogenesis. PLoS Pathog. 2007, 3, e62. [Google Scholar] [CrossRef] [PubMed]
- Qvist, T.; Eickhardt, S.; Kragh, K.N.; Andersen, C.B.; Iversen, M.; Høiby, N.; Bjarnsholt, T. Chronic Pulmonary Disease with Mycobacterium abscessus Complex Is a Biofilm Infection. Eur. Respir. J. 2015, 46, 1823–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niño-Padilla, E.I.; Velazquez, C.; Garibay-Escobar, A. Mycobacterial Biofilms as Players in Human Infections: A Review. Biofouling 2021, 37, 410–432. [Google Scholar] [CrossRef]
- Hoff, D.R.; Ryan, G.J.; Driver, E.R.; Ssemakulu, C.C.; De Groote, M.A.; Basaraba, R.J.; Lenaerts, A.J. Location of Intra- and Extracellular M. tuberculosis Populations in Lungs of Mice and Guinea Pigs during Disease Progression and after Drug Treatment. PLoS ONE 2011, 6, e17550. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Bajeli, S.; Kaushal, D.; Radotra, B.D.; Kumar, A. Biofilm Formation in the Lung Contributes to Virulence and Drug Tolerance of Mycobacterium tuberculosis. Nat. Commun. 2021, 12, 1606. [Google Scholar] [CrossRef]
- Tsuneda, S.; Aikawa, H.; Hayashi, H.; Yuasa, A.; Hirata, A. Extracellular Polymeric Substances Responsible for Bacterial Adhesion onto Solid Surface. FEMS Microbiol. Lett. 2003, 223, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.J.; Babrak, L.M.; Bermudez, L.E. Mycobacterium avium Possesses Extracellular DNA That Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics. PLoS ONE 2015, 10, e0128772. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.J.; Bermudez, L.E. Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms. MBio 2016, 7, e01597-16. [Google Scholar] [CrossRef] [Green Version]
- Ackart, D.F.; Hascall-Dove, L.; Caceres, S.M.; Kirk, N.M.; Podell, B.K.; Melander, C.; Orme, I.M.; Leid, J.G.; Nick, J.A.; Basaraba, R.J. Expression of Antimicrobial Drug Tolerance by Attached Communities of Mycobacterium tuberculosis. Pathog. Dis. 2014, 70, 359–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojha, A.; Anand, M.; Bhatt, A.; Kremer, L.; Jacobs, W.R.; Hatfull, G.F. GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria. Cell 2005, 123, 861–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojha, A.K.; Trivelli, X.; Guerardel, Y.; Kremer, L.; Hatfull, G.F. Enzymatic Hydrolysis of Trehalose Dimycolate Releases Free Mycolic Acids during Mycobacterial Growth in Biofilms. J. Biol. Chem. 2010, 285, 17380–17389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, S.A.; Hsu, F.-F.; Powers, K.M.; Purdy, G.E. MmpL11 Protein Transports Mycolic Acid-Containing Lipids to the Mycobacterial Cell Wall and Contributes to Biofilm Formation in Mycobacterium smegmatis. J. Biol. Chem. 2013, 288, 24213–24222. [Google Scholar] [CrossRef] [Green Version]
- Purdy, G.E.; Pacheco, S.; Turk, J.; Hsu, F.-F. Characterization of Mycobacterial Triacylglycerols and Monomeromycolyl Diacylglycerols from Mycobacterium smegmatis Biofilm by Electrospray Ionization Multiple-Stage and High-Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 7415–7426. [Google Scholar] [CrossRef] [Green Version]
- Mohandas, P.; Budell, W.C.; Mueller, E.; Au, A.; Bythrow, G.V.; Quadri, L.E.N. Pleiotropic Consequences of Gene Knockouts in the Phthiocerol Dimycocerosate and Phenolic Glycolipid Biosynthetic Gene Cluster of the Opportunistic Human Pathogen Mycobacterium marinum. FEMS Microbiol. Lett. 2016, 363, fnw016. [Google Scholar] [CrossRef] [Green Version]
- Sambandan, D.; Dao, D.N.; Weinrick, B.C.; Vilchèze, C.; Gurcha, S.S.; Ojha, A.; Kremer, L.; Besra, G.S.; Hatfull, G.F.; Jacobs, W.R. Keto-Mycolic Acid-Dependent Pellicle Formation Confers Tolerance to Drug-Sensitive Mycobacterium tuberculosis. MBio 2013, 4, e00222-13. [Google Scholar] [CrossRef] [Green Version]
- Recht, J.; Martínez, A.; Torello, S.; Kolter, R. Genetic Analysis of Sliding Motility in Mycobacterium smegmatis. J. Bacteriol. 2000, 182, 4348–4351. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Kumar, A. The Extracellular Matrix of Mycobacterial Biofilms: Could We Shorten the Treatment of Mycobacterial Infections? Microb. Cell 2019, 6, 105–122. [Google Scholar] [CrossRef]
- Zayed, A.; Mansour, M.K.; Sedeek, M.S.; Habib, M.H.; Ulber, R.; Farag, M.A. Rediscovering Bacterial Exopolysaccharides of Terrestrial and Marine Origins: Novel Insights on Their Distribution, Biosynthesis, Biotechnological Production, and Future Perspectives. Crit. Rev. Biotechnol. 2021, 1–21. [Google Scholar] [CrossRef]
- Bhagat, N.; Raghav, M.; Dubey, S.; Bedi, N. Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance. J. Microbiol. Biotechnol. 2021, 31, 1045–1059. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, J.; Zhou, X.; Li, Y. Inhibition of Streptococcus mutans Biofilm Formation by Strategies Targeting the Metabolism of Exopolysaccharides. Crit. Rev. Biotechnol. 2021, 47, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Heredia-Ponce, Z.; de Vicente, A.; Cazorla, F.M.; Gutiérrez-Barranquero, J.A. Beyond the Wall: Exopolysaccharides in the Biofilm Lifestyle of Pathogenic and Beneficial Plant-Associated Pseudomonas. Microorganisms 2021, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The Staphylococcal Exopolysaccharide PIA—Biosynthesis and Role in Biofilm Formation, Colonization, and Infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334. [Google Scholar] [CrossRef]
- Trivedi, A.; Mavi, P.S.; Bhatt, D.; Kumar, A. Thiol Reductive Stress Induces Cellulose-Anchored Biofilm Formation in Mycobacterium tuberculosis. Nat. Commun. 2016, 7, 11392. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, N.; Navarro, D.; Blaise, M.; Berrin, J.-G.; Henrissat, B.; Drancourt, M.; Kremer, L. Characterization of a Mycobacterial Cellulase and Its Impact on Biofilm- and Drug-Induced Cellulose Production. Glycobiology 2017, 27, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Bharti, S.; Maurya, R.K.; Venugopal, U.; Singh, R.; Akhtar, M.S.; Krishnan, M.Y. Rv1717 Is a Cell Wall—Associated β-Galactosidase of Mycobacterium tuberculosis That Is Involved in Biofilm Dispersion. Front. Microbiol. 2020, 11, 611122. [Google Scholar] [CrossRef]
- Guo, S.; Vance, T.D.R.; Zahiri, H.; Eves, R.; Stevens, C.; Hehemann, J.-H.; Vidal-Melgosa, S.; Davies, P.L. Structural Basis of Ligand Selectivity by a Bacterial Adhesin Lectin Involved in Multispecies Biofilm Formation. MBio 2021, 12, e00130-21. [Google Scholar] [CrossRef]
- Reichhardt, C.; Wong, C.; da Silva, D.P.; Wozniak, D.J.; Parsek, M.R. CdrA Interactions within the Pseudomonas aeruginosa Biofilm Matrix Safeguard It from Proteolysis and Promote Cellular Packing. MBio 2018, 9, e01376-18. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Almuhanna, Y.; Alshahrani, M.Y.; Lowman, D.W.; Rice, P.J.; Gell, C.; Ma, Z.; Graves, B.; Jackson, D.; Lee, K.; et al. Carbohydrates from Pseudomonas aeruginosa Biofilms Interact with Immune C-Type Lectins and Interfere with Their Receptor Function. npj Biofilms Microbiomes 2021, 7, 1–14. [Google Scholar] [CrossRef]
- Reichhardt, C.; Jacobs, H.M.; Matwichuk, M.; Wong, C.; Wozniak, D.J.; Parsek, M.R. The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions. J. Bacteriol. 2020, 202, e00216-20. [Google Scholar] [CrossRef] [PubMed]
- Abdian, P.L.; Caramelo, J.J.; Ausmees, N.; Zorreguieta, A. RapA2 Is a Calcium-Binding Lectin Composed of Two Highly Conserved Cadherin-like Domains That Specifically Recognize Rhizobium Leguminosarum Acidic Exopolysaccharides. J. Biol. Chem. 2013, 288, 2893–2904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, P.; Rosconi, F.; Franco Fraguas, L.; Castro-Sowinski, S. Azospirillum Brasilense Sp7 Produces an Outer-Membrane Lectin That Specifically Binds to Surface-Exposed Extracellular Polysaccharide Produced by the Bacterium. Arch. Microbiol. 2008, 189, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Passos da Silva, D.; Matwichuk, M.L.; Townsend, D.O.; Reichhardt, C.; Lamba, D.; Wozniak, D.J.; Parsek, M.R. The Pseudomonas aeruginosa Lectin LecB Binds to the Exopolysaccharide Psl and Stabilizes the Biofilm Matrix. Nat. Commun. 2019, 10, 2183. [Google Scholar] [CrossRef]
- Jankute, M.; Nataraj, V.; Lee, O.Y.-C.; Wu, H.H.T.; Ridell, M.; Garton, N.J.; Barer, M.R.; Minnikin, D.E.; Bhatt, A.; Besra, G.S. The Role of Hydrophobicity in Tuberculosis Evolution and Pathogenicity. Sci. Rep. 2017, 7, 1315. [Google Scholar] [CrossRef] [Green Version]
- Minnikin, D.E.; Lee, O.Y.-C.; Wu, H.H.T.; Besra, G.S.; Bhatt, A.; Nataraj, V.; Rothschild, B.M.; Spigelman, M.; Donoghue, H.D. Ancient Mycobacterial Lipids: Key Reference Biomarkers in Charting the Evolution of Tuberculosis. Tuberculosis 2015, 95 (Suppl. 1), S133–S139. [Google Scholar] [CrossRef] [Green Version]
- Minnikin, D. Cell Surface Lipid Composition and Hydrophobicity Governs Tuberculosis Evolution and Pathogenicity. Access Microbiol. 2020, 2, 331. [Google Scholar] [CrossRef]
- Donoghue, H.D.; Taylor, G.M.; Stewart, G.R.; Lee, O.Y.-C.; Wu, H.H.T.; Besra, G.S.; Minnikin, D.E. Positive Diagnosis of Ancient Leprosy and Tuberculosis Using Ancient DNA and Lipid Biomarkers. Diversity 2017, 9, 46. [Google Scholar] [CrossRef]
- Bryant, J.M.; Brown, K.P.; Burbaud, S.; Everall, I.; Belardinelli, J.M.; Rodriguez-Rincon, D.; Grogono, D.M.; Peterson, C.M.; Verma, D.; Evans, I.E.; et al. Stepwise Pathogenic Evolution of Mycobacterium abscessus. Science 2021, 372, eabb8699. [Google Scholar] [CrossRef]
- Brugha, R.; Spencer, H. Mycobacterium abscessus in Cystic Fibrosis. Science 2021, 372, 465–466. [Google Scholar] [CrossRef]
- Viljoen, A.; Viela, F.; Kremer, L.; Dufrêne, Y.F. Fast Chemical Force Microscopy Demonstrates That Glycopeptidolipids Define Nanodomains of Varying Hydrophobicity on Mycobacteria. Nanoscale Horiz. 2020, 5, 944–953. [Google Scholar] [CrossRef]
- Dague, E.; Alsteens, D.; Latgé, J.-P.; Verbelen, C.; Raze, D.; Baulard, A.R.; Dufrêne, Y.F. Chemical Force Microscopy of Single Live Cells. Nano Lett. 2007, 7, 3026–3030. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, A.; Gutiérrez, A.V.; Dupont, C.; Ghigo, E.; Kremer, L. A Simple and Rapid Gene Disruption Strategy in Mycobacterium abscessus: On the Design and Application of Glycopeptidolipid Mutants. Front. Cell. Infect. Microbiol. 2018, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Llorens-Fons, M.; Pérez-Trujillo, M.; Julián, E.; Brambilla, C.; Alcaide, F.; Byrd, T.F.; Luquin, M. Trehalose Polyphleates, External Cell Wall Lipids in Mycobacterium abscessus, Are Associated with the Formation of Clumps with Cording Morphology, Which Have Been Associated with Virulence. Front. Microbiol. 2017, 8, 1402. [Google Scholar] [CrossRef]
- Bloch, H.; Sorkin, E.; Erlenmeyer, H. A Toxic Lipid Component of the Tubercle Bacillus (Cord Factor). I. Isolation from Petroleum Ether Extracts of Young Bacterial Cultures. Am. Rev. Tuberc. 1953, 67, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Halloum, I.; Viljoen, A.; Khanna, V.; Craig, D.; Bouchier, C.; Brosch, R.; Coxon, G.; Kremer, L. Resistance to Thiacetazone Derivatives Active against Mycobacterium abscessus Involves Mutations in the MmpL5 Transcriptional Repressor MAB_4384. Antimicrob. Agents Chemother. 2017, 61, e02509-16. [Google Scholar] [CrossRef] [Green Version]
- Catherinot, E.; Roux, A.-L.; Macheras, E.; Hubert, D.; Matmar, M.; Dannhoffer, L.; Chinet, T.; Morand, P.; Poyart, C.; Heym, B.; et al. Acute Respiratory Failure Involving an R Variant of Mycobacterium abscessus. J. Clin. Microbiol. 2009, 47, 271–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catherinot, E.; Clarissou, J.; Etienne, G.; Ripoll, F.; Emile, J.-F.; Daffé, M.; Perronne, C.; Soudais, C.; Gaillard, J.-L.; Rottman, M. Hypervirulence of a Rough Variant of the Mycobacterium abscessus Type Strain. Infect. Immun. 2007, 75, 1055–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernut, A.; Herrmann, J.-L.; Kissa, K.; Dubremetz, J.-F.; Gaillard, J.-L.; Lutfalla, G.; Kremer, L. Mycobacterium abscessus Cording Prevents Phagocytosis and Promotes Abscess Formation. Proc. Natl. Acad. Sci. USA 2014, 111, E943–E952. [Google Scholar] [CrossRef] [Green Version]
- Halloum, I.; Carrère-Kremer, S.; Blaise, M.; Viljoen, A.; Bernut, A.; Le Moigne, V.; Vilchèze, C.; Guérardel, Y.; Lutfalla, G.; Herrmann, J.-L.; et al. Deletion of a Dehydratase Important for Intracellular Growth and Cording Renders Rough Mycobacterium abscessus Avirulent. Proc. Natl. Acad. Sci. USA 2016, 113, E4228–E4237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanduč, M.; Netz, R.R. From Hydration Repulsion to Dry Adhesion between Asymmetric Hydrophilic and Hydrophobic Surfaces. Proc. Natl. Acad. Sci. USA 2015, 112, 12338–12343. [Google Scholar] [CrossRef] [Green Version]
- Doyle, R.J. Contribution of the Hydrophobic Effect to Microbial Infection. Microbes Infect. 2000, 2, 391–400. [Google Scholar] [CrossRef]
- Absolom, D.R. The Role of Bacterial Hydrophobicity in Infection: Bacterial Adhesion and Phagocytic Ingestion. Can. J. Microbiol. 1988, 34, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Bendinger, B.; Rijnaarts, H.H.; Altendorf, K.; Zehnder, A.J. Physicochemical Cell Surface and Adhesive Properties of Coryneform Bacteria Related to the Presence and Chain Length of Mycolic Acids. Appl. Environ. Microbiol. 1993, 59, 3973–3977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonekawa, A.; Saijo, S.; Hoshino, Y.; Miyake, Y.; Ishikawa, E.; Suzukawa, M.; Inoue, H.; Tanaka, M.; Yoneyama, M.; Oh-Hora, M.; et al. Dectin-2 Is a Direct Receptor for Mannose-Capped Lipoarabinomannan of Mycobacteria. Immunity 2014, 41, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Decout, A.; Silva-Gomes, S.; Drocourt, D.; Blattes, E.; Rivière, M.; Prandi, J.; Larrouy-Maumus, G.; Caminade, A.-M.; Hamasur, B.; Källenius, G.; et al. Deciphering the Molecular Basis of Mycobacteria and Lipoglycan Recognition by the C-Type Lectin Dectin-2. Sci. Rep. 2018, 8, 16840. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, L.S.; Hull, S.R.; Kaufman, T.M. Binding of the Terminal Mannosyl Units of Lipoarabinomannan from a Virulent Strain of Mycobacterium tuberculosis to Human Macrophages. J. Immunol. 1994, 152, 4070–4079. [Google Scholar]
- Maeda, N.; Nigou, J.; Herrmann, J.-L.; Jackson, M.; Amara, A.; Lagrange, P.H.; Puzo, G.; Gicquel, B.; Neyrolles, O. The Cell Surface Receptor DC-SIGN Discriminates between Mycobacterium Species through Selective Recognition of the Mannose Caps on Lipoarabinomannan. J. Biol. Chem. 2003, 278, 5513–5516. [Google Scholar] [CrossRef] [Green Version]
- Geurtsen, J.; Chedammi, S.; Mesters, J.; Cot, M.; Driessen, N.; Sambou, T.; Kakutani, R.; Ummels, R.; Maaskant, J.; Takata, H.; et al. Identification of Mycobacterial Alpha-Glucan as a Novel Ligand for DC-SIGN: Involvement of Mycobacterial Capsular Polysaccharides in Host Immune Modulation. J. Immunol. 2009, 183, 5221–5231. [Google Scholar] [CrossRef] [Green Version]
- Delogu, G.; Brennan, M.J. Functional Domains Present in the Mycobacterial Hemagglutinin, HBHA. J. Bacteriol. 1999, 181, 7464–7469. [Google Scholar] [CrossRef] [Green Version]
- Pethe, K.; Aumercier, M.; Fort, E.; Gatot, C.; Locht, C.; Menozzi, F.D. Characterization of the Heparin-Binding Site of the Mycobacterial Heparin-Binding Hemagglutinin Adhesin. J. Biol. Chem. 2000, 275, 14273–14280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menozzi, F.D.; Rouse, J.H.; Alavi, M.; Laude-Sharp, M.; Muller, J.; Bischoff, R.; Brennan, M.J.; Locht, C. Identification of a Heparin-Binding Hemagglutinin Present in Mycobacteria. J. Exp. Med. 1996, 184, 993–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schorey, J.S.; Holsti, M.A.; Ratliff, T.L.; Allen, P.M.; Brown, E.J. Characterization of the Fibronectin-Attachment Protein of Mycobacterium avium Reveals a Fibronectin-Binding Motif Conserved among Mycobacteria. Mol. Microbiol. 1996, 21, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Schorey, J.S.; Li, Q.; McCourt, D.W.; Bong-Mastek, M.; Clark-Curtiss, J.E.; Ratliff, T.L.; Brown, E.J. A Mycobacterium leprae Gene Encoding a Fibronectin Binding Protein Is Used for Efficient Invasion of Epithelial Cells and Schwann Cells. Infect. Immun. 1995, 63, 2652–2657. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Schorey, J.S.; Groger, R.; Allen, P.M.; Brown, E.J.; Ratliff, T.L. Characterization of the Fibronectin Binding Motif for a Unique Mycobacterial Fibronectin Attachment Protein, FAP. J. Biol. Chem. 1999, 274, 4521–4526. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-J.; Bell, H.; Hsieh, C.-L.; Ptak, C.P.; Chang, Y.-F. Novel Mycobacteria Antigen 85 Complex Binding Motif on Fibronectin. J. Biol. Chem. 2012, 287, 1892–1902. [Google Scholar] [CrossRef] [Green Version]
- Naito, M.; Ohara, N.; Matsumoto, S.; Yamada, T. The Novel Fibronectin-Binding Motif and Key Residues of Mycobacteria. J. Biol. Chem. 1998, 273, 2905–2909. [Google Scholar] [CrossRef] [Green Version]
- Patra, D.; Mishra, P.; Surolia, A.; Vijayan, M. Structure, Interactions and Evolutionary Implications of a Domain-Swapped Lectin Dimer from Mycobacterium smegmatis. Glycobiology 2014, 24, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Patra, D.; Srikalaivani, R.; Misra, A.; Singh, D.D.; Selvaraj, M.; Vijayan, M. Cloning, Expression, Purification, Crystallization and Preliminary X-ray Studies of a Secreted Lectin (Rv1419) from Mycobacterium tuberculosis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 1662–1665. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, L.; Cardoso, F.C.; Mattos, A.M.; Bordignon, J.; Figueiredo, C.P.; Dahlstrom, P.; Frota, C.C.; Duarte dos Santos, C.N.; Chalhoub, M.; Cavada, B.S.; et al. Mycobacterium tuberculosis Rv1419 Encodes a Secreted 13 KDa Lectin with Immunological Reactivity during Human Tuberculosis. Eur. J. Immunol. 2010, 40, 744–753. [Google Scholar] [CrossRef]
- Alteri, C.J.; Xicohténcatl-Cortes, J.; Hess, S.; Caballero-Olín, G.; Girón, J.A.; Friedman, R.L. Mycobacterium tuberculosis Produces Pili during Human Infection. Proc. Natl. Acad. Sci. USA 2007, 104, 5145–5150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubé, J.-Y.; Fava, V.M.; Schurr, E.; Behr, M.A. Underwhelming or Misunderstood? Genetic Variability of Pattern Recognition Receptors in Immune Responses and Resistance to Mycobacterium tuberculosis. Front. Immunol. 2021, 12, 714808. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Akira, S. C-Type Lectins in Immune Homeostasis; Current Topics in Microbiology and Immunology; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-62237-4. [Google Scholar]
- Turner, J.; Torrelles, J.B. Mannose-Capped Lipoarabinomannan in Mycobacterium tuberculosis Pathogenesis. Pathog. Dis. 2018, 76, fty026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.D.; Willment, J.A.; Whitehead, L. C-Type Lectins in Immunity and Homeostasis. Nat. Rev. Immunol. 2018, 18, 374–389. [Google Scholar] [CrossRef]
- Ray, A.; Cot, M.; Puzo, G.; Gilleron, M.; Nigou, J. Bacterial Cell Wall Macroamphiphiles: Pathogen-/Microbe-Associated Molecular Patterns Detected by Mammalian Innate Immune System. Biochimie 2013, 95, 33–42. [Google Scholar] [CrossRef]
- Vergne, I.; Gilleron, M.; Nigou, J. Manipulation of the Endocytic Pathway and Phagocyte Functions by Mycobacterium tuberculosis Lipoarabinomannan. Front. Cell. Infect. Microbiol. 2014, 4, 187. [Google Scholar] [CrossRef] [Green Version]
- Daffé, M.; Marrakchi, H. Unraveling the Structure of the Mycobacterial Envelope. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Kalscheuer, R.; Palacios, A.; Anso, I.; Cifuente, J.; Anguita, J.; Jacobs, W.R.; Guerin, M.E.; Prados-Rosales, R. The Mycobacterium tuberculosis Capsule: A Cell Structure with Key Implications in Pathogenesis. Biochem. J. 2019, 476, 1995–2016. [Google Scholar] [CrossRef]
- Reed, M.B.; Domenech, P.; Manca, C.; Su, H.; Barczak, A.K.; Kreiswirth, B.N.; Kaplan, G.; Barry, C.E. A Glycolipid of Hypervirulent Tuberculosis Strains That Inhibits the Innate Immune Response. Nature 2004, 431, 84–87. [Google Scholar] [CrossRef]
- Cambier, C.J.; Takaki, K.K.; Larson, R.P.; Hernandez, R.E.; Tobin, D.M.; Urdahl, K.B.; Cosma, C.L.; Ramakrishnan, L. Mycobacteria Manipulate Macrophage Recruitment through Coordinated Use of Membrane Lipids. Nature 2014, 505, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, E.R.; Archambault, A.S.; Greendyke, R.; Hsu, F.-F.; Streeter, C.; Byrd, T.F. Mycobacterium abscessus Glycopeptidolipids Mask Underlying Cell Wall Phosphatidyl-Myo-Inositol Mannosides Blocking Induction of Human Macrophage TNF-α by Preventing Interaction with TLR2. J. Immunol. 2009, 183, 1997–2007. [Google Scholar] [CrossRef] [Green Version]
- Roux, A.-L.; Ray, A.; Pawlik, A.; Medjahed, H.; Etienne, G.; Rottman, M.; Catherinot, E.; Coppée, J.-Y.; Chaoui, K.; Monsarrat, B.; et al. Overexpression of Proinflammatory TLR-2-Signalling Lipoproteins in Hypervirulent Mycobacterial Variants. Cell. Microbiol. 2011, 13, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Sweet, L.; Schorey, J.S. Glycopeptidolipids from Mycobacterium avium Promote Macrophage Activation in a TLR2- and MyD88-Dependent Manner. J. Leukoc. Biol. 2006, 80, 415–423. [Google Scholar] [CrossRef]
- Blanc, L.; Gilleron, M.; Prandi, J.; Song, O.-R.; Jang, M.-S.; Gicquel, B.; Drocourt, D.; Neyrolles, O.; Brodin, P.; Tiraby, G.; et al. Mycobacterium tuberculosis Inhibits Human Innate Immune Responses via the Production of TLR2 Antagonist Glycolipids. Proc. Natl. Acad. Sci. USA 2017, 114, 11205–11210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.Y.; Lee, J.-O. Structural Biology of the Toll-Like Receptor Family. Annu. Rev. Biochem. 2011, 80, 917–941. [Google Scholar] [CrossRef] [PubMed]
- Gioannini, T.L.; Weiss, J.P. Regulation of Interactions of Gram-Negative Bacterial Endotoxins with Mammalian Cells. Immunol. Res. 2007, 39, 249–260. [Google Scholar] [CrossRef]
- Jimenez-Dalmaroni, M.J.; Xiao, N.; Corper, A.L.; Verdino, P.; Ainge, G.D.; Larsen, D.S.; Painter, G.F.; Rudd, P.M.; Dwek, R.A.; Hoebe, K.; et al. Soluble CD36 Ectodomain Binds Negatively Charged Diacylglycerol Ligands and Acts as a Co-Receptor for TLR2. PLoS ONE 2009, 4, e7411. [Google Scholar] [CrossRef]
- Elass, E.; Aubry, L.; Masson, M.; Denys, A.; Guérardel, Y.; Maes, E.; Legrand, D.; Mazurier, J.; Kremer, L. Mycobacterial Lipomannan Induces Matrix Metalloproteinase-9 Expression in Human Macrophagic Cells through a Toll-like Receptor 1 (TLR1)/TLR2- and CD14-Dependent Mechanism. Infect. Immun. 2005, 73, 7064–7068. [Google Scholar] [CrossRef] [Green Version]
- Nigou, J.; Vasselon, T.; Ray, A.; Constant, P.; Gilleron, M.; Besra, G.S.; Sutcliffe, I.; Tiraby, G.; Puzo, G. Mannan Chain Length Controls Lipoglycans Signaling via and Binding to TLR2. J. Immunol. 2008, 180, 6696–6702. [Google Scholar] [CrossRef] [Green Version]
- Pitarque, S.; Herrmann, J.-L.; Duteyrat, J.-L.; Jackson, M.; Stewart, G.R.; Lecointe, F.; Payre, B.; Schwartz, O.; Young, D.B.; Marchal, G.; et al. Deciphering the Molecular Bases of Mycobacterium tuberculosis Binding to the Lectin DC-SIGN Reveals an Underestimated Complexity. Biochem. J. 2005, 392, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.; Ray, A.; Dubey, S.K.; Larrouy-Maumus, G.; Chalut, C.; Castanier, R.; Noguera, A.; Gilleron, M.; Puzo, G.; Vercellone, A.; et al. Lipoglycans Contribute to Innate Immune Detection of Mycobacteria. PLoS ONE 2011, 6, e28476. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.K.; Torrelles, J.B.; Schlesinger, L.S. Mutation in the DC-SIGN Cytoplasmic Triacidic Cluster Motif Markedly Attenuates Receptor Activity for Phagocytosis and Endocytosis of Mannose-Containing Ligands by Human Myeloid Cells. J. Leukoc. Biol. 2008, 84, 1594–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tailleux, L.; Schwartz, O.; Herrmann, J.-L.; Pivert, E.; Jackson, M.; Amara, A.; Legres, L.; Dreher, D.; Nicod, L.P.; Gluckman, J.C.; et al. DC-SIGN Is the Major Mycobacterium tuberculosis Receptor on Human Dendritic Cells. J. Exp. Med. 2003, 197, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.K.; Schlesinger, L.S. Characterization of Mannose Receptor-Dependent Phagocytosis Mediated by Mycobacterium tuberculosis Lipoarabinomannan. Infect. Immun. 1998, 66, 2769–2777. [Google Scholar] [CrossRef] [Green Version]
- Driessen, N.N.; Ummels, R.; Maaskant, J.J.; Gurcha, S.S.; Besra, G.S.; Ainge, G.D.; Larsen, D.S.; Painter, G.F.; Vandenbroucke-Grauls, C.M.J.E.; Geurtsen, J.; et al. Role of Phosphatidylinositol Mannosides in the Interaction between Mycobacteria and DC-SIGN. Infect. Immun. 2009, 77, 4538. [Google Scholar] [CrossRef] [Green Version]
- Daher, W.; Leclercq, L.-D.; Viljoen, A.; Karam, J.; Dufrêne, Y.F.; Guérardel, Y.; Kremer, L. O-Methylation of the Glycopeptidolipid Acyl Chain Defines Surface Hydrophobicity of Mycobacterium abscessus and Macrophage Invasion. ACS Infect. Dis. 2020, 6, 2756–2770. [Google Scholar] [CrossRef]
- Veyron-Churlet, R.; Dupres, V.; Saliou, J.-M.; Lafont, F.; Raze, D.; Locht, C. Rv0613c/MSMEG_1285 Interacts with HBHA and Mediates Its Proper Cell-Surface Exposure in Mycobacteria. Int. J. Mol. Sci. 2018, 19, 1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupres, V.; Menozzi, F.D.; Locht, C.; Clare, B.H.; Abbott, N.L.; Cuenot, S.; Bompard, C.; Raze, D.; Dufrêne, Y.F. Nanoscale Mapping and Functional Analysis of Individual Adhesins on Living Bacteria. Nat. Methods 2005, 2, 515–520. [Google Scholar] [CrossRef]
- Dupres, V.; Verbelen, C.; Raze, D.; Lafont, F.; Dufrêne, Y.F. Force Spectroscopy of the Interaction between Mycobacterial Adhesins and Heparan Sulphate Proteoglycan Receptors. Chemphyschem 2009, 10, 1672–1675. [Google Scholar] [CrossRef]
- Viljoen, A.; Mignolet, J.; Viela, F.; Mathelié-Guinlet, M.; Dufrêne, Y.F. How Microbes Use Force To Control Adhesion. J. Bacteriol. 2020, 202, e00125-20. [Google Scholar] [CrossRef]
- Verbelen, C.; Raze, D.; Dewitte, F.; Locht, C.; Dufrêne, Y.F. Single-Molecule Force Spectroscopy of Mycobacterial Adhesin-Adhesin Interactions. J. Bacteriol. 2007, 189, 8801–8806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raze, D.; Verwaerde, C.; Deloison, G.; Werkmeister, E.; Coupin, B.; Loyens, M.; Brodin, P.; Rouanet, C.; Locht, C. Heparin-Binding Hemagglutinin Adhesin (HBHA) Is Involved in Intracytosolic Lipid Inclusions Formation in Mycobacteria. Front. Microbiol. 2018, 9, 2258. [Google Scholar] [CrossRef]
- Menozzi, F.D.; Reddy, V.M.; Cayet, D.; Raze, D.; Debrie, A.-S.; Dehouck, M.-P.; Cecchelli, R.; Locht, C. Mycobacterium tuberculosis Heparin-Binding Haemagglutinin Adhesin (HBHA) Triggers Receptor-Mediated Transcytosis without Altering the Integrity of Tight Junctions. Microbes Infect. 2006, 8, 1–9. [Google Scholar] [CrossRef]
- Verbelen, C.; Dupres, V.; Raze, D.; Bompard, C.; Locht, C.; Dufrêne, Y.F. Interaction of the Mycobacterial Heparin-Binding Hemagglutinin with Actin, as Evidenced by Single-Molecule Force Spectroscopy. J. Bacteriol. 2008, 190, 7614–7620. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-A.; Lim, Y.-J.; Cho, S.-N.; Lee, J.-H.; Jeong, J.A.; Kim, E.J.; Park, J.B.; Kim, S.H.; Park, H.S.; Kim, H.-J.; et al. Mycobacterial HBHA Induces Endoplasmic Reticulum Stress-Mediated Apoptosis through the Generation of Reactive Oxygen Species and Cytosolic Ca2+ in Murine Macrophage RAW 264.7 Cells. Cell Death Dis. 2013, 4, e957. [Google Scholar] [CrossRef] [Green Version]
- Sohn, H.; Kim, J.-S.; Shin, S.J.; Kim, K.; Won, C.-J.; Kim, W.S.; Min, K.-N.; Choi, H.-G.; Lee, J.C.; Park, J.-K.; et al. Targeting of Mycobacterium tuberculosis Heparin-Binding Hemagglutinin to Mitochondria in Macrophages. PLOS Pathog. 2011, 7, e1002435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Schorey, J.S.; Bong-Mastek, M.; Ritchey, J.; Brown, E.J.; Ratliff, T.L. Role of a Bacillus Calmette-Guérin Fibronectin Attachment Protein in BCG-Induced Antitumor Activity. Int. J. Cancer 2000, 86, 83–88. [Google Scholar] [CrossRef]
- Sinn, H.W.; Elzey, B.D.; Jensen, R.J.; Zhao, X.; Zhao, W.; Ratliff, T.L. The Fibronectin Attachment Protein of Bacillus Calmette-Guerin (BCG) Mediates Antitumor Activity. Cancer Immunol. Immunother. 2008, 57, 573–579. [Google Scholar] [CrossRef]
- Coon, B.G.; Crist, S.; González-Bonet, A.M.; Kim, H.-K.; Sowa, J.; Thompson, D.H.; Ratliff, T.L.; Aguilar, R.C. Fibronectin Attachment Protein from Bacillus Calmette-Guerin as Targeting Agent for Bladder Tumor Cells. Int. J. Cancer 2012, 131, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Middleton, A.M.; Chadwick, M.V.; Nicholson, A.G.; Dewar, A.; Groger, R.K.; Brown, E.J.; Wilson, R. The Role of Mycobacterium avium Complex Fibronectin Attachment Protein in Adherence to the Human Respiratory Mucosa. Mol. Microbiol. 2000, 38, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Schleig, P.M.; Buergelt, C.D.; Davis, J.K.; Williams, E.; Monif, G.R.G.; Davidson, M.K. Attachment of Mycobacterium avium Subspecies Paratuberculosis to Bovine Intestinal Organ Cultures: Method Development and Strain Differences. Vet. Microbiol. 2005, 108, 271–279. [Google Scholar] [CrossRef]
- Middleton, A.M.; Chadwick, M.V.; Nicholson, A.G.; Dewar, A.; Groger, R.K.; Brown, E.J.; Ratliff, T.L.; Wilson, R. Interaction of Mycobacterium tuberculosis with Human Respiratory Mucosa. Tuberculosis 2002, 82, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Middleton, A.M.; Chadwick, M.V.; Nicholson, A.G.; Dewar, A.; Groger, R.K.; Brown, E.J.; Ratliff, T.L.; Wilson, R. Inhibition of Adherence of Mycobacterium avium Complex and Mycobacterium tuberculosis to Fibronectin on the Respiratory Mucosa. Respir. Med. 2004, 98, 1203–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Shin, S.J.; Collins, M.T.; Jung, I.D.; Jeong, Y.-I.; Lee, C.-M.; Shin, Y.K.; Kim, D.; Park, Y.-M. Mycobacterium avium subsp. Paratuberculosis Fibronectin Attachment Protein Activates Dendritic Cells and Induces a Th1 Polarization. Infect. Immun. 2009, 77, 2979–2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belisle, J.T.; Vissa, V.D.; Sievert, T.; Takayama, K.; Brennan, P.J.; Besra, G.S. Role of the Major Antigen of Mycobacterium Tuberculosis in Cell Wall Biogenesis. Science 1997, 276, 1420–1422. [Google Scholar] [CrossRef] [PubMed]
- Kremer, L.; Maughan, W.N.; Wilson, R.A.; Dover, L.G.; Besra, G.S. The M. tuberculosis Antigen 85 Complex and Mycolyltransferase Activity. Lett. Appl. Microbiol. 2002, 34, 233–237. [Google Scholar] [CrossRef]
- Wilson, R.A.; Maughan, W.N.; Kremer, L.; Besra, G.S.; Fütterer, K. The Structure of Mycobacterium tuberculosis MPT51 (FbpC1) Defines a New Family of Non-Catalytic Alpha/Beta Hydrolases. J. Mol. Biol. 2004, 335, 519–530. [Google Scholar] [CrossRef]
- Favrot, L.; Grzegorzewicz, A.E.; Lajiness, D.H.; Marvin, R.K.; Boucau, J.; Isailovic, D.; Jackson, M.; Ronning, D.R. Mechanism of Inhibition of Mycobacterium tuberculosis Antigen 85 by Ebselen. Nat. Commun. 2013, 4, 2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favrot, L.; Lajiness, D.H.; Ronning, D.R. Inactivation of the Mycobacterium tuberculosis Antigen 85 Complex by Covalent, Allosteric Inhibitors. J. Biol. Chem. 2014, 289, 25031–25040. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, A.; Richard, M.; Nguyen, P.C.; Fourquet, P.; Camoin, L.; Paudal, R.R.; Gnawali, G.R.; Spilling, C.D.; Cavalier, J.-F.; Canaan, S.; et al. Cyclipostins and Cyclophostin Analogs Inhibit the Antigen 85C from Mycobacterium tuberculosis Both In Vitro and In Vivo. J. Biol. Chem. 2018, 293, 2755–2769. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.C.; Delorme, V.; Bénarouche, A.; Martin, B.P.; Paudel, R.; Gnawali, G.R.; Madani, A.; Puppo, R.; Landry, V.; Kremer, L.; et al. Cyclipostins and Cyclophostin Analogs as Promising Compounds in the Fight against Tuberculosis. Sci. Rep. 2017, 7, 11751. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.C.; Madani, A.; Santucci, P.; Martin, B.P.; Paudel, R.R.; Delattre, S.; Herrmann, J.-L.; Spilling, C.D.; Kremer, L.; Canaan, S.; et al. Cyclophostin and Cyclipostins Analogues, New Promising Molecules to Treat Mycobacterial-Related Diseases. Int. J. Antimicrob. Agents 2018, 51, 651–654. [Google Scholar] [CrossRef]
- Madani, A.; Ridenour, J.N.; Martin, B.P.; Paudel, R.R.; Abdul Basir, A.; Le Moigne, V.; Herrmann, J.-L.; Audebert, S.; Camoin, L.; Kremer, L.; et al. Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of Mycobacterium abscessus. ACS Infect. Dis. 2019, 5, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-J.; Ptak, C.P.; Hsieh, C.-L.; Akey, B.L.; Chang, Y.-F. Elastin, a Novel Extracellular Matrix Protein Adhering to Mycobacterial Antigen 85 Complex. J. Biol. Chem. 2013, 288, 3886–3896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Puniya, B.L.; Parween, S.; Nahar, P.; Ramachandran, S. Identification of Novel Adhesins of M. tuberculosis H37Rv Using Integrated Approach of Multiple Computational Algorithms and Experimental Analysis. PLoS ONE 2013, 8, e69790. [Google Scholar] [CrossRef] [Green Version]
- Govender, V.S.; Ramsugit, S.; Pillay, M. Mycobacterium tuberculosis Adhesins: Potential Biomarkers as Anti-Tuberculosis Therapeutic and Diagnostic Targets. Microbiology 2014, 160, 1821–1831. [Google Scholar] [CrossRef] [Green Version]
- Vinod, V.; Vijayrajratnam, S.; Vasudevan, A.K.; Biswas, R. The Cell Surface Adhesins of Mycobacterium tuberculosis. Microbiol. Res. 2020, 232, 126392. [Google Scholar] [CrossRef]
- Ramsugit, S.; Pillay, M. Identification of Mycobacterium tuberculosis Adherence-Mediating Components: A Review of Key Methods to Confirm Adhesin Function. Iran. J. Basic Med. Sci. 2016, 19, 579–584. [Google Scholar]
- Squeglia, F.; Ruggiero, A.; De Simone, A.; Berisio, R. A Structural Overview of Mycobacterial Adhesins: Key Biomarkers for Diagnostics and Therapeutics. Protein Sci. 2018, 27, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Espitia, C.; Laclette, J.P.; Mondragón-Palomino, M.; Amador, A.; Campuzano, J.; Martens, A.; Singh, M.; Cicero, R.; Zhang, Y.; Moreno, C. The PE-PGRS Glycine-Rich Proteins of Mycobacterium tuberculosis: A New Family of Fibronectin-Binding Proteins? Microbiology 1999, 145, 3487–3495. [Google Scholar] [CrossRef] [Green Version]
- Kinhikar, A.G.; Vargas, D.; Li, H.; Mahaffey, S.B.; Hinds, L.; Belisle, J.T.; Laal, S. Mycobacterium tuberculosis Malate Synthase Is a Laminin-Binding Adhesin. Mol. Microbiol. 2006, 60, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Gani, Z.; Boradia, V.M.; Kumar, A.; Patidar, A.; Talukdar, S.; Choudhary, E.; Singh, R.; Agarwal, N.; Raje, M.; Iyengar Raje, C. Mycobacterium tuberculosis Glyceraldehyde-3-Phosphate Dehydrogenase Plays a Dual Role—As an Adhesin and as a Receptor for Plasmin(Ogen). Cell. Microbiol. 2021, 23, e13311. [Google Scholar] [CrossRef] [PubMed]
- Alteri, C. Novel Pili of Mycobacterium Tuberculosis; The University of Arizona: Tucson, AZ, USA, 2005. [Google Scholar]
- Mann, K.M.; Pride, A.C.; Flentie, K.; Kimmey, J.M.; Weiss, L.A.; Stallings, C.L. Analysis of the Contribution of MTP and the Predicted Flp Pilus Genes to Mycobacterium tuberculosis Pathogenesis. Microbiology 2016, 162, 1784–1796. [Google Scholar] [CrossRef] [PubMed]
- Ramsugit, S.; Guma, S.; Pillay, B.; Jain, P.; Larsen, M.H.; Danaviah, S.; Pillay, M. Pili Contribute to Biofilm Formation in Vitro in Mycobacterium tuberculosis. Antonie Leeuwenhoek 2013, 104, 725–735. [Google Scholar] [CrossRef]
- Velayati, A.A.; Farnia, P.; Masjedi, M.R. Pili in Totally Drug Resistant Mycobacterium Tuberculosis (TDR-TB). Int. J. Mycobacteriol. 2012, 1, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, H.; Fooladi, A.A.I.; Arjomandzadegan, M.; Emami, N.; Bornasi, H. Genetics Study and Transmission Electron Microscopy of Pili in Susceptible and Resistant Clinical Isolates of Mycobacterium tuberculosis. Asian Pac. J. Trop. Med. 2014, 7S1, S199–S203. [Google Scholar] [CrossRef]
- Ramsugit, S.; Pillay, B.; Pillay, M. Evaluation of the Role of Mycobacterium tuberculosis Pili (MTP) as an Adhesin, Invasin, and Cytokine Inducer of Epithelial Cells. Braz. J. Infect. Dis. 2016, 20, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Ramsugit, S.; Pillay, M. Mycobacterium tuberculosis Pili Promote Adhesion to and Invasion of THP-1 Macrophages. Jpn. J. Infect. Dis. 2014, 67, 476–478. [Google Scholar] [CrossRef] [Green Version]
- Ashokcoomar, S.; Reedoy, K.S.; Senzani, S.; Loots, D.T.; Beukes, D.; van Reenen, M.; Pillay, B.; Pillay, M. Mycobacterium tuberculosis Curli Pili (MTP) Deficiency Is Associated with Alterations in Cell Wall Biogenesis, Fatty Acid Metabolism and Amino Acid Synthesis. Metabolomics 2020, 16, 97. [Google Scholar] [CrossRef]
- Ashokcoomar, S.; Loots, D.T.; Beukes, D.; van Reenen, M.; Pillay, B.; Pillay, M. M. tuberculosis Curli Pili (MTP) Is Associated with Alterations in Carbon, Fatty Acid and Amino Acid Metabolism in a THP-1 Macrophage Infection Model. Microb. Pathog. 2021, 154, 104806. [Google Scholar] [CrossRef]
- Reedoy, K.S.; Loots, D.T.; Beukes, D.; van Reenen, M.; Pillay, B.; Pillay, M. Mycobacterium tuberculosis Curli Pili (MTP) Is Associated with Significant Host Metabolic Pathways in an A549 Epithelial Cell Infection Model and Contributes to the Pathogenicity of Mycobacterium tuberculosis. Metabolomics 2020, 16, 116. [Google Scholar] [CrossRef]
- Naidoo, N.; Ramsugit, S.; Pillay, M. Mycobacterium tuberculosis Pili (MTP), a Putative Biomarker for a Tuberculosis Diagnostic Test. Tuberculosis 2014, 94, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Moonens, K.; Remaut, H. Evolution and Structural Dynamics of Bacterial Glycan Binding Adhesins. Curr. Opin. Struct. Biol. 2017, 44, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Tielker, D.; Hacker, S.; Loris, R.; Strathmann, M.; Wingender, J.; Wilhelm, S.; Rosenau, F.; Jaeger, K.-E. Pseudomonas aeruginosa Lectin LecB Is Located in the Outer Membrane and Is Involved in Biofilm Formation. Microbiology 2005, 151, 1313–1323. [Google Scholar] [CrossRef]
- Wurpel, D.J.; Beatson, S.A.; Totsika, M.; Petty, N.K.; Schembri, M.A. Chaperone-Usher Fimbriae of Escherichia Coli. PLoS ONE 2013, 8, e52835. [Google Scholar] [CrossRef] [Green Version]
- Ilver, D.; Arnqvist, A.; Ögren, J.; Frick, I.-M.; Kersulyte, D.; Incecik, E.T.; Berg, D.E.; Covacci, A.; Engstrand, L.; Borén, T. Helicobacter Pylori Adhesin Binding Fucosylated Histo-Blood Group Antigens Revealed by Retagging. Science 1998, 279, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Han, X.; De Masi, L.; Zhu, C.; Ma, X.; Zhang, J.; Wu, R.; Schmieder, R.; Kaushik, R.S.; Fraser, G.P.; et al. Allelic Variation Contributes to Bacterial Host Specificity. Nat. Commun. 2015, 6, 8754. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, K.; Veleti, S.K.; Reiling, N.; Lindhorst, T.K. Lectins of Mycobacterium tuberculosis—Rarely Studied Proteins. Beilstein J. Org. Chem. 2019, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.D.; Chandran, D.; Jeyakani, J.; Chandra, N. Scanning the Genome of Mycobacterium tuberculosis to Identify Potential Lectins. Protein Pept. Lett. 2007, 14, 683–691. [Google Scholar] [CrossRef]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan Sulfate Proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef] [Green Version]
- Kundu, M.; Basu, J.; Chakrabarti, P. Purification and Characterization of an Extracellular Lectin from Mycobacterium smegmatis. FEBS Lett. 1989, 256, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Goswami, S.; Sarkar, S.; Basu, J.; Kundu, M.; Chakrabarti, P. Mycotin: A Lectin Involved in the Adherence of Mycobacteria to Macrophages. FEBS Lett. 1994, 355, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Hall-Stoodley, L.; Watts, G.; Crowther, J.E.; Balagopal, A.; Torrelles, J.B.; Robison-Cox, J.; Bargatze, R.F.; Harmsen, A.G.; Crouch, E.C.; Schlesinger, L.S. Mycobacterium tuberculosis Binding to Human Surfactant Proteins A and D, Fibronectin, and Small Airway Epithelial Cells under Shear Conditions. Infect. Immun. 2006, 74, 3587–3596. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, A.; Alsteens, D.; Dufrêne, Y. Mechanical Forces between Mycobacterial Antigen 85 Complex and Fibronectin. Cells 2020, 9, 716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantraine, C.; Mathelié-Guinlet, M.; Pietrocola, G.; Speziale, P.; Dufrêne, Y.F. AFM Identifies a Protein Complex Involved in Pathogen Adhesion Which Ruptures at Three Nanonewtons. Nano Lett. 2021, 21, 7595–7601. [Google Scholar] [CrossRef]
- Herman, P.; El-Kirat-Chatel, S.; Beaussart, A.; Geoghegan, J.A.; Foster, T.J.; Dufrêne, Y.F. The Binding Force of the Staphylococcal Adhesin SdrG Is Remarkably Strong. Mol. Microbiol. 2014, 93, 356–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milles, L.F.; Schulten, K.; Gaub, H.E.; Bernardi, R.C. Molecular Mechanism of Extreme Mechanostability in a Pathogen Adhesin. Science 2018, 359, 1527–1533. [Google Scholar] [CrossRef] [Green Version]
- Milles, L.F.; Unterauer, E.M.; Nicolaus, T.; Gaub, H.E. Calcium Stabilizes the Strongest Protein Fold. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Verbelen, C.; Dufrêne, Y.F. Direct Measurement of Mycobacterium-Fibronectin Interactions. Integr. Biol. 2009, 1, 296–300. [Google Scholar] [CrossRef]
- Zhao, D.; Lin, D.; Xu, C. A Protein Fragment of Rv3194c Located on Mycobacterial Cell Surface Efficiently Prevents Adhesion of Recombinant Mycobacterium smegmatis, and Promises a New Anti-Adhesive Drug. Microb. Pathog. 2020, 149, 104498. [Google Scholar] [CrossRef]
- Dubé, J.-Y.; McIntosh, F.; Zarruk, J.G.; David, S.; Nigou, J.; Behr, M.A. Synthetic Mycobacterial Molecular Patterns Partially Complete Freund’s Adjuvant. Sci. Rep. 2020, 10, 5874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decout, A.; Silva-Gomes, S.; Drocourt, D.; Barbe, S.; André, I.; Cueto, F.J.; Lioux, T.; Sancho, D.; Pérouzel, E.; Vercellone, A.; et al. Rational Design of Adjuvants Targeting the C-Type Lectin Mincle. Proc. Natl. Acad. Sci. USA 2017, 114, 2675–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blattes, E.; Vercellone, A.; Eutamène, H.; Turrin, C.-O.; Théodorou, V.; Majoral, J.-P.; Caminade, A.-M.; Prandi, J.; Nigou, J.; Puzo, G. Mannodendrimers Prevent Acute Lung Inflammation by Inhibiting Neutrophil Recruitment. Proc. Natl. Acad. Sci. USA 2013, 110, 8795–8800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiaradia, L.; Lefebvre, C.; Parra, J.; Marcoux, J.; Burlet-Schiltz, O.; Etienne, G.; Tropis, M.; Daffé, M. Dissecting the Mycobacterial Cell Envelope and Defining the Composition of the Native Mycomembrane. Sci. Rep. 2017, 7, 12807. [Google Scholar] [CrossRef] [Green Version]
- Dufrêne, Y.F. Microbial Nanoscopy: Breakthroughs, Challenges, and Opportunities. ACS Nano 2017, 11, 19–22. [Google Scholar] [CrossRef]
- Xiao, J.; Dufrêne, Y.F. Optical and Force Nanoscopy in Microbiology. Nat. Microbiol. 2016, 1, 16186. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, A.; Mathelié-Guinlet, M.; Ray, A.; Strohmeyer, N.; Oh, Y.J.; Hinterdorfer, P.; Müller, D.J.; Alsteens, D.; Dufrêne, Y.F. Force Spectroscopy of Single Cells Using Atomic Force Microscopy. Nat. Rev. Methods Primers 2021, 1, 1–24. [Google Scholar] [CrossRef]
Molecule Class (Examples) | Host Factor(s) | Key References |
---|---|---|
Lipids/glycoconjugates: | ||
mannose-capped lipoarabinomannan (ManLAM) | Pattern recognition receptors/C-type lectins (Mannose receptor, DC-SIGN, Dectin-2) | [95,96,97,98] |
α-glucan | DC-SIGN | [99] |
Adhesins: | ||
heparin-binding haemagglutinin adhesin (HBHA) | heparan sulfate | [15,100,101,102] |
fibronectin attachment protein (Fap) | fibronectin | [103,104,105] |
antigen 85 (Ag85) complex | fibronectin | [106,107] |
Lectin adhesins: | ||
β-prism II fold lectin | Unknown | [108,109] |
13 kDa ricin-like lectin (sMTL-13) | Unknown | [110] |
Appendages: | ||
M. tuberculosis pilus (Mtp) | lamanin | [111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viljoen, A.; Dufrêne, Y.F.; Nigou, J. Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022, 10, 454. https://doi.org/10.3390/microorganisms10020454
Viljoen A, Dufrêne YF, Nigou J. Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms. 2022; 10(2):454. https://doi.org/10.3390/microorganisms10020454
Chicago/Turabian StyleViljoen, Albertus, Yves F. Dufrêne, and Jérôme Nigou. 2022. "Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions" Microorganisms 10, no. 2: 454. https://doi.org/10.3390/microorganisms10020454
APA StyleViljoen, A., Dufrêne, Y. F., & Nigou, J. (2022). Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms, 10(2), 454. https://doi.org/10.3390/microorganisms10020454