A Descriptive Analysis of Urinary ESBL-Producing-Escherichia coli in Cerdanya Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Bacterial Isolates
2.2. Bacterial Culture, Antimicrobial Susceptibility Testing, and ESBL Detection
2.3. Whole-Genome Sequencing and Bioinformatic Analysis
2.4. Sequence Data Deposition
3. Results
3.1. Bacterial Isolates and Antimicrobial Susceptibility
3.2. Plasmid Typing
3.3. Virulence Factors
3.4. Molecular Epidemiology of the Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Paul, R. State of the globe: Rising antimicrobial resistance of pathogens in urinary tract infection. J. Glob. Infect. Dis. 2018, 10, 117–118. [Google Scholar] [CrossRef]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 2006, 59, 165–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzariol, A.; Bazaj, A.; Cornaglia, G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: A review. J. Chemother. 2017, 29, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteve-Palau, E.; Solande, G.; Sánchez, F.; Sorlí, L.; Montero, M.; Güerri, R.; Villar, J.; Grau, S.; Horcajada, J. Clinical and economic impact of urinary tract infections caused by ESBL-producing Escherichia coli requiring hospitalization: A matched cohort study. J. Infect. 2015, 71, 667–674. [Google Scholar] [CrossRef]
- Arana, D.M.; Sánchez, A.; Bautista, V.; Oteo-Iglesias, J.; Alós, J.I. ESBL-producing-multidrug resistant E. coli population from urinary tract infections is less diverse than non-ESBL-multidrug resistant population. Enferm. Infecc. Microbiol. Clin. 2019, 37, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Zowawi, H.M.; Harris, P.N.; Roberts, M.J.; Tambyah, P.A.; Schembri, M.A.; Pezzani, M.D.; Williamson, D.A.; Paterson, D.L. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 2015, 12, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Day, M.J.; Schink, A.-K.; Chattaway, M.A.; Donascimento, V.; Threlfall, J.; Rodríguez, I.; Van Essen-Zandbergen, A.; Dierikx, C.; Kadlec, K.; Wu, G.; et al. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J. Antimicrob. Chemother. 2016, 71, 1178–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flament-Simon, S.-C.; Nicolas-Chanoine, M.-H.; García, V.; Duprilot, M.; Mayer, N.; Alonso, M.P.; García-Meniño, I.; Blanco, J.E.; Blanco, M.; Blanco, J. Clonal Structure, Virulence Factor-encoding Genes and Antibiotic Resistance of Escherichia coli, Causing Urinary Tract Infections and Other Extraintestinal Infections in Humans in Spain and France during 2016. Antibiotics 2020, 9, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, C.; Baral, R.; Bartaula, B.; Shrestha, L.B. Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance. BMC Microbiol. 2019, 19, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arana, D.M.; Rubio, M.; Alós, J.I. Evolución de la multirresistencia a los antibióticos en Escherichia coli y Klebsiella pneumoniae aislados de infecciones del tracto urinario. Un análisis de 12 años (2003–2014). Enferm. Infecc. Microbiol. Clin. 2017, 35, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Loza, E.; Aznar, J.; Castillo, F.J.; Cercenado, E.; Fraile-Ribot, P.A.; González-Romo, F.; López-Hontangas, J.L.; Rodríguez-Lozano, J.; Suárez-Barrenechea, A.I.; et al. Monitoring the antimicrobial susceptibility of Gram-negative organisms involved in intraabdominal and urinary tract infections recovered during the SMART study (Spain, 2016 and 2017). Rev. Esp. Quimioter. Publ. Of. Soc. Esp. Quimioter. 2019, 32, 145–155. [Google Scholar]
- Esteve-Palau, E.; Grau, S.; Herrera, S.; Sorlí, L.; Montero, M.; Segura, C.; Durán, X.; Horcajada, J.P. Impact of an antimicrobial stewardship program on urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Rev. Esp. Quimioter. 2018, 31, 110–117. [Google Scholar] [PubMed]
- Sanglas, A.; Albarral, V.; Farfán, M.; Lorén, J.G.; Fusté, M.C. Evolutionary Roots and Diversification of the Genus Aeromonas. Front. Microbiol. 2017, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://eucast.org/clinical_breakpoints/ (accessed on 26 September 2021).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Chopra, S.; Sheevani Mahajan, G. Modified double disc synergy test to detect ESBL production in urinary isolates of Escherichia coli and Klebsiella pneumoniae. J. Clin. Diagn. Res. 2013, 7, 229–233. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). In Horizontal Gene Transfer; Methods in Molecular Biology; Humana: New York, NY, USA, 2019; Volume 2075, pp. 285–294. [Google Scholar] [CrossRef]
- Joensen, K.G.; Tetzschner, A.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 2410–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spurbeck, R.R.; Dinh, P.C., Jr.; Walk, S.T.; Stapleton, A.E.; Hooton, T.M.; Nolan, L.K.; Kim, K.S.; Johnson, J.R.; Mobley, H.L.T. Escherichia coli Isolates That Carry vat, fyuA, chuA, and yfcV Efficiently Colonize the Urinary Tract. Infect. Immun. 2012, 80, 4115–4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roer, L.; Tchesnokova, V.; Allesøe, R.; Muradova, M.; Chattopadhyay, S.; Ahrenfeldt, J.; Thomsen, M.C.F.; Lund, O.; Hansen, F.; Hammerum, A.M.; et al. Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles. J. Clin. Microbiol. 2017, 55, 2538–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Alikhan, N.-F.; Mohamed, K.; Fan, Y.; Achtman, M.; the Agama Study Group; Brown, D.; Chattaway, M.; Dallman, T.; Delahay, R.; et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Alcalá, J.C.; Cisneros, J.M.; Grill, F.; Oliver, A.; Horcajada, J.P.; Tórtola, T.; Mirelis, B.; Navarro, G.; Cuenca, M.; et al. Community Infections Caused by Extended-Spectrum β-Lactamase–Producing Escherichia coli. Arch. Intern. Med. 2008, 168, 1897–1902. [Google Scholar] [CrossRef] [Green Version]
- Sonda, T.; Kumburu, H.; van Zwetselaar, M.; Alifrangis, M.; Mmbaga, B.T.; Aarestrup, F.M.; Kibiki, G.; Lund, O. Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania. Antimicrob. Resist. Infect. Control 2018, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Oteo, J.; Campos, J.; Baquero, F. Antibiotic resistance in 1962 invasive isolates of Escherichia coli in 27 Spanish hospitals participating in the European Antimicrobial Resistance Surveillance System (2001). J. Antimicrob. Chemother. 2002, 50, 945–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-García, M.; García-Fernández, S.; García-Castillo, M.; Bou, G.; Cercenado, E.; Delgado-Valverde, M.; Mulet, X.; Pitart, C.; Rodríguez-Lozano, J.; Tormo, N.; et al. WGS characterization of MDR Enterobacterales with different ceftolozane/tazobactam susceptibility profiles during the SUPERIOR surveillance study in Spain. JAC-Antimicrob. Resist. 2020, 2, dlaa084. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Zhu, Y.; Li, X.; Kudinha, T.; Yang, Y.; Zhang, G.; Zhang, J.; Xu, Y.; Yang, Q. High Prevalence of Extended-Spectrum Beta-Lactamases in Escherichia coli Strains Collected From Strictly Defined Community-Acquired Urinary Tract Infections in Adults in China: A Multicenter Prospective Clinical Microbiological and Molecular Study. Front. Microbiol. 2021, 12, 663033. [Google Scholar] [CrossRef]
- Carvalho, I.; Carvalho, J.A.; Martínez-Álvarez, S.; Sadi, M.; Capita, R.; Alonso-Calleja, C.; Rabbi, F.; Dapkevicius, M.D.L.N.E.; Igrejas, G.; Torres, C.; et al. Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity. Microorganisms 2021, 9, 1914. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.G.; Novais, Â.; Machado, E.; Peixe, L. Acquired AmpC β-Lactamases among Enterobacteriaceae from Healthy Humans and Animals, Food, Aquatic and Trout Aquaculture Environments in Portugal. Pathogens 2020, 9, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, T.; Novais, Â.; Rodrigues, C.; Nascimento, R.; Freitas, F.; Machado, E.; Peixe, L. Dynamics of clonal and plasmid backgrounds of Enterobacteriaceae producing acquired AmpC in Portuguese clinical settings over time. Int. J. Antimicrob. Agents 2019, 53, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Navarro, J.; Miró, E.; Brown-Jaque, M.; Hurtado, J.C.; Moreno, A.; Muniesa, M.; González-López, J.J.; Vila, J.; Espinal, P.; Navarro, F. Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Castanheira, M.; Doyle, T.B.; Mendes, R.E.; Sader, H.S. Comparative activities of ceftazidime-avibactam and ceftolozanetazobactam against Enterobacteriaceae isolates producing extended-spectrum β-lactamases from U.S. hospitals. Antimicrob. Agents Chemother. 2019, 63, e00160-19. [Google Scholar] [CrossRef] [Green Version]
- Birgy, A.; Madhi, F.; Jung, C.; Levy, C.; Cointe, A.; Bidet, P.; Hobson, C.A.; Bechet, S.; Sobral, E.; Vuthien, H.; et al. Diversity and trends in population structure of ESBL-producing Enterobacteriaceae in febrile urinary tract infections in children in France from 2014 to 2017. J. Antimicrob. Chemother. 2019, 75, 96–105. [Google Scholar] [CrossRef]
- Matsumura, Y.; Johnson, J.R.; Yamamoto, M.; Nagao, M.; Tanaka, M.; Takakura, S.; Ichiyama, S.; Kyoto-Shiga Clinical Microbiology Study Group; Fujita, N.; Komori, T.; et al. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J. Antimicrob. Chemother. 2015, 70, 1639–1649. [Google Scholar] [CrossRef] [Green Version]
- Colmenarejo, C.; Hernández-García, M.; Muñoz-Rodríguez, J.R.; Huertas, N.; Navarro, F.J.; Mateo, A.B.; Pellejero, E.M.; Illescas, S.; Vidal, M.D.; Del Campo, R. Prevalence and risks factors associated with ESBL-producing faecal carriage in a single long-term-care facility in Spain: Emergence of CTX-M-24- and CTX-M-27-producing Escherichia coli ST131-H30R. J. Antimicrob. Chemother. 2020, 75, 2480–2484. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.T.; Kim, S.W.; Kim, J.W.; Park, H.S.; Moon, D.G.; Oh, M.M. Does urinary tract infection caused by extended-spectrum β-lactamase-producing Escherichia coli show same antibiotic resistance when it recurs? J. Infect. Chemother. 2019, 25, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.; Mora, A.; Mamani, R.; López, C.; González-López, J.J.; Larrosa, M.N.; Quintero-Zarate, J.N.; Dahbi, G.; Herrera, A.; Blanco, J.E.; et al. Spread of Escherichia coli O25b:H4-B2-ST131 producing CTX-M-15 and SHV-12 with high virulence gene content in Barcelona (Spain). J. Antimicrob. Chemother. 2010, 66, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.; Fatima, S.; Muhammad, I.N.; Jamil, S.; Khan, M.N.; Khan, S.I. Incidence of multidrug resistance and extended-spectrum beta-lactamase expression in community-acquired urinary tract infection among different age groups of patients. Indian J. Pharmacol. 2018, 50, 69–74. [Google Scholar] [CrossRef]
- Yasir, M.; Farman, M.; Shah, M.W.; Jiman-Fatani, A.A.; Othman, N.A.; Almasaudi, S.B.; Alawi, M.; Shakil, S.; Al-Abdullah, N.; Ismaeel, N.A.; et al. Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of Escherichia coli at a health care facility in Jeddah. J. Infect. Public Health 2020, 13, 94–100. [Google Scholar] [CrossRef]
- Oteo, J.; Lázaro, E.; De Abajo, F.J.; Baquero, F.; Campos, J.; Earss, S.M.O. Antimicrobial-resistant Invasive Escherichia coli, Spain. Emerg. Infect. Dis. 2005, 11, 546–553. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Ben Zakour, N.L.; Roberts, L.W.; Wailan, A.M.; Zowawi, H.M.; A Tambyah, P.; Lye, D.; Jureen, R.; Lee, T.H.; Yin, M.; et al. Whole genome analysis of cephalosporin-resistant Escherichia coli from bloodstream infections in Australia, New Zealand and Singapore: High prevalence of CMY-2 producers and ST131 carrying blaCTX-M-15 and blaCTX-M-27. J. Antimicrob. Chemother. 2018, 73, 634–642. [Google Scholar] [CrossRef]
- Marcadé, G.; Deschamps, C.; Boyd, A.; Gautier, V.; Picard, B.; Branger, C.; Denamur, E.; Arlet, G. Replicon typing of plasmids in Escherichia coli producing extended-spectrum β-lactamases. J. Antimicrob. Chemother. 2009, 63, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Merida-Vieyra, J.; De Colsa-Ranero, A.; Calderón-Castañeda, Y.; Aquino-Andrade, A. Detection of CMY-type beta-lactamases in Escherichia coli isolates from paediatric patients in a tertiary care hospital in Mexico. Antimicrob. Resist. Infect. Control 2020, 9, 168. [Google Scholar] [CrossRef]
- Oteo, J.; Diestra, K.; Juan, C.; Bautista, V.; Novais, Â.; Perez-Vazquez, M.; Moyá, B.; Miro, E.; Coque, T.M.; Oliver, A.; et al. Extended-spectrum β-lactamase-producing Escherichia coli in Spain belong to a large variety of multilocus sequence typing types, including ST10 complex/A, ST23 complex/A and ST131/B2. Int. J. Antimicrob. Agents 2009, 34, 173–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belas, A.; Marques, C.; Aboim, C.; Pomba, C. Emergence of Escherichia coli ST131 H30/H30-Rx subclones in companion animals. J. Antimicrob. Chemother. 2018, 74, 266–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Foxman, B.; Marrs, C. Both Urinary and Rectal Escherichia coli Isolates Are Dominated by Strains of Phylogenetic Group B2. J. Clin. Microbiol. 2002, 40, 3951–3955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, S.J.; Montealegre, M.C.; Ruiz-Garbajosa, P.; Correa, A.; Briceño, D.F.; Martinez, E.; Rosso, F.; Muñoz, M.; Quinn, J.P.; Cantón, R.; et al. First Characterization of CTX-M-15-Producing Escherichia coli ST131 and ST405 Clones Causing Community-Onset Infections in South America. J. Clin. Microbiol. 2011, 49, 1993–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coque, T.M.; Novais, Â.; Carattoli, A.; Poirel, L.; Pitout, J.; Peixe, L.; Baquero, F.; Cantón, R.; Nordmann, P. Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15. Emerg. Infect. Dis. 2008, 14, 195–200. [Google Scholar] [CrossRef]
- Rogers, B.A.; Sidjabat, H.E.; Paterson, D.L. Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain. J. Antimicrob. Chemother. 2010, 66, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Kim, D.H.; Ko, K.S. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J. Infect. 2011, 63, 39–47. [Google Scholar] [CrossRef]
- Mihaila, L.; Wyplosz, B.; Clermont, O.; Garry, L.; Hipeaux, M.C.; Vittecoq, D.; Dussaix, E.; Denamur, E.; Branger, C. Probable intrafamily transmission of a highly virulent CTX-M-3-producing Escherichia coli belonging to the emerging phylogenetic subgroup D2 O102-ST405 clone. J. Antimicrob. Chemother. 2010, 65, 1537–1539. [Google Scholar] [CrossRef]
Isolate | ST | CC | Serotype | Phylogroup | ESBL Genes | Other β-Lactamase Genes | Other ARG | QRDR Mutations | Plasmid Replicons | VFs | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ParC | GyrA | ParE | ||||||||||
6184 | 3944 | 10 | O101:H9 | A | blaCTX-M-14 | aac(3)-IIa, sul3, dfrA14 | S80I, A56T | S83L, D87N | S458A | IncFI, IncFII, IncI1 I | fimH54, papC, gad, terC, cvaC,iroN, iss, ompT, sitA, cma, astA | |
8248 | 1284 | 10 | O101:H21 | A | blaCTX-M-15 | blaOXA-1, blaTEM-1B | aac(3)-IIa, aadA5 sul1, dfrA17, aac(6′)-Ib-cr | S80I | S83L, D87N | S458A | IncFIA, IncFIB, IncFII | gad, terC,iroN, iss, iucC, iutA, sitA, traT, astA |
8669 | 10 | 10 | O101:H10 | A | blaCTX-M-14 | S80I, E84V | S83L, D87N | S458A | IncX1 | fimH54, cea, gad, terC | ||
8686 | 10 | 10 | O9:H9 | A | blaCTX-M-182 | blaTEM-1B | aadA5 sul2, dfrA17 | S80I | S83L, D87N | S458A | IncFIB, IncFIC(FII) | fimH54, gad, terC, cvaC, etsC, fyua, hlyF,iroN, irp2, iss, iucC, iutA, mchF, ompT, sitA, traT |
13,239 | 44 | 10 | O101:H4 | A | blaCTX-M-15 | blaOXA-1, blaTEM-1B | aac(3)-IIa, aadA2b, aadA5, sul1, sul3, dfrA17, aac(6′)-Ib-cr | E84K | S83L, D87N | S458T | IncFII, IncX1 | fimH54, cea, gad, terC, iucC, iutA, sitA, traT |
13,478 (a) | 44 | 10 | O101:H4 | A | blaCTX-M-15 | blaOXA-1, blaTEM-1B | aac(3)-IIa, aadA2b, aadA5, sul1, sul3, dfrA17, aac(6′)-Ib-cr | E84K | S83L, D87N | S458T | IncFII, IncX1 | fimH54, cea, gad, terC, iucC, iutA, sitA, traT |
13,816 (a) | 44 | 10 | O101:H4 | A | blaCTX-M-15 | blaOXA-1, blaTEM-1B | aac(3)-IIa, aadA2b, aadA5, sul1, sul3, dfrA17, aac(6′)-Ib-cr | IncFII, IncX1 | fimH54, cea, gad, terC, iucC, iutA, sitA, traT | |||
7987 | 131 | 131 | O25:O4 | B2 | blaCTX-M-15 | blaOXA-1, blaTEM-1B | aac(6′)-Ib-cr | S80I, E84V | S83L, D87N | I529L | IncFIA, IncFIB, IncFII | fimH30, iha, yfcV, papC,gad, terC, fyuA,irp2, iss, iucC, iutA, ompT, sitA, traT, chuA, kpsE, kpsMII_K5, usp, papA_F43, sat, hra, cnf1 |
13,012 | 131 | 131 | O25:O4 | B2 | blaCTX-M-15 | blaOXA-1 | aac(3)-IIa, aadA5, sul1, dfrA17, aac(6′)-Ib-cr | S80I, E84V | S83L, D87N | I529L | IncFIA, IncFIB, IncFII, Col156 | fimH30, iha, yfcV, papC, cea, gad, terC,irp2, iss, iucC, iutA, ompT, sitA, traT, chuA, kpsE, kpsMII_K5, usp, papA_F43, senB, sat, hra, cnf1 |
14,307 | 131 | 131 | O25:O4 | B2 | blaCTX-M-14 | blaTEM-1C | S83L | S458A, I529L | IncFIB, IncFII, IncI1 I | fimH161, yfcV, papC, cea, gad, terC, cvaC, etsC, fyuA, hlyF, iroN,irp2, iss, iucC, iutA, ompT, sitA, traT, chuA, kpsE, kpsMII_K5, usp, papA_F1, papA_F14, hra, cnf1, ibeA, mchF, cia | ||
6935 | 88 | 23 | O8:H7 | B1 | bla-SHV-12 | aadA1, ant(2”)-Ia, sul1, sul2, dfrA36 | S80I | S83L, D87N | S458A | IncFIB, Inc FIC(FII), Col440II | fimH39, lpfA, papC, afaD, afaA, afaB, afaC, afaE8, gad, terC, cvaC, etsC, fyuA, hlyF, iroN, irp2, iss, iucC, iutA, mchF, ompT, sitA, traT, hra, mcmA | |
7655 | 88 | 23 | O9:H17 | B1 | bla-SHV-12 | aadA1, ant(2”)-Ia, sul1, sul2, dfrA36 | S80I, E62K | S83L, D87N | S458A | IncFIB, Inc FIC(FII), IncI1 I | fimH39, lpfA, papC, afaD, afaA, afaB, afaC, afaE8, gad, terC, cvaC, etsC, fyuA, hlyF, iroN, irp2, iss, iucC, iutA, mchF, ompT, sitA, traT, papA_F11 (1), hra, mcmA | |
12,089 (b) | 405 | 405 | O102:H6 | Unknown | blaCTX-M-3 | blaTEM-1B | aph(3”)-Ib, aadA5, aph(6)-Idsul1, sul2, dfrA17 | S80I | S83L, D87N | IncFIA, IncFIB, IncFII | fimH27, eilA, air, afaD, afaA, afaB, afaC, afaE, gad, terC, fyuA, irp2, traT, chuA, kpsE, kpsMII | |
8255 (b) | 405 | 405 | O102:H6 | Unknown | blaCTX-M-3 | blaTEM-1B | aph(3”)-Ib, aadA5, aph(6)-Idsul1, sul2, dfrA17 | S80I | S83L, D87N | IncFIA, IncFIB, IncFII | fimH27, eilA, air, afaD, afaA, afaB, afaC, afaE, gad, terC, fyuA, irp2, traT, chuA, kpsE, kpsMII |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaviria, L.P.; Montsant, L.; Azuaje, C.; González-Díaz, A.; Horcajada, J.P.; Limón, E.; Viñas, M.; Espinal, P.; Fusté, E. A Descriptive Analysis of Urinary ESBL-Producing-Escherichia coli in Cerdanya Hospital. Microorganisms 2022, 10, 488. https://doi.org/10.3390/microorganisms10030488
Gaviria LP, Montsant L, Azuaje C, González-Díaz A, Horcajada JP, Limón E, Viñas M, Espinal P, Fusté E. A Descriptive Analysis of Urinary ESBL-Producing-Escherichia coli in Cerdanya Hospital. Microorganisms. 2022; 10(3):488. https://doi.org/10.3390/microorganisms10030488
Chicago/Turabian StyleGaviria, Lorena Patrícia, Lourdes Montsant, Carlos Azuaje, Aida González-Díaz, Juan P. Horcajada, Enric Limón, Miguel Viñas, Paula Espinal, and Ester Fusté. 2022. "A Descriptive Analysis of Urinary ESBL-Producing-Escherichia coli in Cerdanya Hospital" Microorganisms 10, no. 3: 488. https://doi.org/10.3390/microorganisms10030488
APA StyleGaviria, L. P., Montsant, L., Azuaje, C., González-Díaz, A., Horcajada, J. P., Limón, E., Viñas, M., Espinal, P., & Fusté, E. (2022). A Descriptive Analysis of Urinary ESBL-Producing-Escherichia coli in Cerdanya Hospital. Microorganisms, 10(3), 488. https://doi.org/10.3390/microorganisms10030488