Biodegradation of Tetracycline Antibiotics by the Yeast Strain Cutaneotrichosporon dermatis M503
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Medium
2.2. Enrichment and Isolation of TC-Degrading Strains
2.3. Identification of Strain M503
2.4. Optimization of Cultural Conditions for C. dermatis M503
- (1)
- Six different carbon sources (potassium acetate, glucose, sucrose, maltose, and peptone, all at 5 g/L) at 30 °C and initial pH of 7.0;
- (2)
- Five concentrations of potassium acetate (1, 2.5, 5, 10, and 15 g/L) at 30 °C and initial pH of 7.0;
- (3)
- Five incubation temperatures (20 °C, 25 °C, 30 °C, 35 °C, and 40 °C) at initial pH of 7.0;
- (4)
- Five initial pH (6, 7, 8, 9, and 10) at 30 °C;
- (5)
- Five initial TC concentrations (50, 100, 150, 200, and 300 mg/L) at 30 °C and pH of 7.0.
2.5. Experiments on Biodegradation Property of Strain M503
2.5.1. Response Surface Methodology for Optimal TC Degradation Rate
2.5.2. Identification of TC Degradation Products of Strain M503
2.5.3. Quantification of TC, DC, and CTC
2.6. Antibacterial Potency of the Degradation Products of TC, DC, and CTC
3. Results
3.1. Isolation and Identification of Strain M503
3.2. Effects of Different Carbon Sources and Potassium Acetate Concentrations
3.3. Effects of Temperature, pH, and Initial TC Concentration
3.4. RSM Analysis of TC Degradation by Strain M503
− 8.02X1X3 − 8.48X2X3 − 7.27X12 − 8.47X22 + 1.60X32,
3.5. TC Degradation Products
3.6. Degradation of TC, DC, and CTC by Strain M503 and the Antibacterial Potency of Degradation Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. Clean Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, J.L. Occurrence and Behavior of Antibiotics in Water and Sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing Antimicrobial Use in Food Animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Ding, Y.; Li, H.; Xagoraraki, I. Occurrence of Pharmaceuticals in a Municipal Wastewater Treatment Plant: Mass Balance and Removal Processes. Chemosphere 2012, 88, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of Antibiotic Resistance in China and Its Environment. Environ. Int. 2018, 110, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Wang, C.; Mao, D.; Luo, Y. The Occurrence and Fate of Tetracyclines in Two Pharmaceutical Wastewater Treatment Plants of Northern China. Environ. Sci. Pollut. Res. 2016, 23, 1722–1731. [Google Scholar] [CrossRef]
- Sun, Q.; Li, M.; Ma, C.; Chen, X.; Xie, X.; Yu, C.P. Seasonal and Spatial Variations of PPCP Occurrence, Removal and Mass Loading in Three Wastewater Treatment Plants Located in Different Urbanization Areas in Xiamen, China. Environ. Pollut. 2016, 208, 371–381. [Google Scholar] [CrossRef]
- Bai, X.; Acharya, K. Algae-Mediated Removal of Selected Pharmaceutical and Personal Care Products (PPCPs) from Lake Mead Water. Sci. Total Environ. 2017, 581, 734–740. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zhao, J.L.; Liu, Y.S.; Liu, W.R.; Zhang, Q.Q.; Yao, L.; Hu, L.X.; Zhang, J.N.; Jiang, Y.X.; Ying, G.G. Pharmaceuticals and Personal Care Products (PPCPs) and Artificial Sweeteners (ASs) in Surface and Ground Waters and Their Application as Indication of Wastewater Contamination. Sci. Total Environ. 2018, 616, 816–823. [Google Scholar] [CrossRef]
- Sanganyado, E.; Gwenzi, W. Antibiotic Resistance in Drinking Water Systems: Occurrence, Removal, and Human Health Risks. Sci. Total Environ. 2019, 669, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.H.; Ye, J.; Chen, D.H.; Lu, X.X.; Lu, H.D.; Liu, C.N.; Wang, L.M. Physiological Effects of Tetracycline Antibiotic Pollutants on Non-Target Aquatic Microcystis Aeruginosa. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2015, 50, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Straub, J.O. Aquatic Environmental Risk Assessment for Human Use of the Old Antibiotic Sulfamethoxazole in Europe. Environ. Toxicol. Chem. 2016, 35, 767–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, S.; Roy, K. Risk Assessment for Ecotoxicity of Pharmaceuticals an Emerging Issue. Expert Opin. Drug Saf. 2012, 11, 235–274. [Google Scholar] [CrossRef]
- Kumar, M.; Jaiswal, S.; Sodhi, K.K.; Shree, P.; Singh, D.K.; Agrawal, P.K.; Shukla, P. Antibiotics Bioremediation: Perspectives on Its Ecotoxicity and Resistance. Environ. Int. 2019, 124, 448–461. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Jeong, J.; Song, W.; Cooper, W.J.; Jung, J.; Greaves, J. Degradation of Tetracycline Antibiotics: Mechanisms and Kinetic Studies for Advanced Oxidation/Reduction Processes. Chemosphere 2010, 78, 533–540. [Google Scholar] [CrossRef]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Kemper, N. Veterinary Antibiotics in the Aquatic and Terrestrial Environment. Ecol. Indic. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, M.C.; Shuang, C.D.; Li, Z.Q.; Li, A.M. Preparation of a Novel Magnetic Powder Resin for the Rapid Removal of Tetracycline in the Aquatic Environment. Chin. Chem. Lett. 2012, 23, 745–748. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhang, F.F.; Liu, X.M.; Wang, Y.J.; Zou, S.W.; He, X.S. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots. Plant Nutr. Fert. Sci. 2005, 11, 822–829. (In Chinese) [Google Scholar]
- Pan, X.; Qiang, Z.; Ben, W.; Chen, M. Residual Veterinary Antibiotics in Swine Manure from Concentrated Animal Feeding Operations in Shandong Province, China. Chemosphere 2011, 84, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Bin Ho, Y.; Zakaria, M.P.; Latif, P.A.; Saari, N. Occurrence of Veterinary Antibiotics and Progesterone in Broiler Manure and Agricultural Soil in Malaysia. Sci. Total Environ. 2014, 488, 261–267. [Google Scholar] [CrossRef]
- Bao, Y.; Zhou, Q.; Guan, L.; Wang, Y. Depletion of Chlortetracycline during Composting of Aged and Spiked Manures. Waste Manag. 2009, 29, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Spongberg, A.L.; Witter, J.D. Pharmaceutical Compounds in the Wastewater Process Stream in Northwest Ohio. Sci. Total Environ. 2008, 397, 148–157. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, Z.; Yin, X.A.; Zhu, Y. Impacts of Biochars on Bacterial Community Shifts and Biodegradation of Antibiotics in an Agricultural Soil during Short-Term Incubation. Sci. Total Environ. 2021, 771, 144751. [Google Scholar] [CrossRef]
- Kryuchkova, M.; Batasheva, S.; Akhatova, F.; Babaev, V.; Buzyurova, D.; Vikulina, A.; Volodkin, D.; Fakhrullin, R.; Rozhina, E. Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. Int. J. Mol. Sci. 2021, 22, 9670. [Google Scholar] [CrossRef]
- Han, Y.; Yang, L.; Chen, X.; Cai, Y.; Zhang, X.; Qian, M.; Chen, X.; Zhao, H.; Sheng, M.; Cao, G.; et al. Removal of Veterinary Antibiotics from Swine Wastewater Using Anaerobic and Aerobic Biodegradation. Sci. Total Environ. 2020, 709, 136094. [Google Scholar] [CrossRef]
- Wen, X.; Jia, Y.; Li, J. Degradation of Tetracycline and Oxytetracycline by Crude Lignin Peroxidase Prepared from Phanerochaete chrysosporium—A White Rot Fungus. Chemosphere 2009, 75, 1003–1007. [Google Scholar] [CrossRef]
- Wen, X.; Jia, Y.; Li, J. Enzymatic Degradation of Tetracycline and Oxytetracycline by Crude Manganese Peroxidase Prepared from Phanerochaete chrysosporium. J. Hazard. Mater. 2010, 177, 924–928. [Google Scholar] [CrossRef]
- Tian, Q.; Dou, X.; Huang, L.; Wang, L.; Meng, D.; Zhai, L.; Shen, Y.; You, C.; Guan, Z.; Liao, X. Characterization of a Robust Cold-Adapted and Thermostable Laccase from Pycnoporus Sp. SYBC-L10 with a Strong Ability for the Degradation of Tetracycline and Oxytetracycline by Laccase-Mediated Oxidation. J. Hazard. Mater. 2020, 382, 121084. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.; Varela Della Giustina, S.; Rodriguez-Mozaz, S.; Schoevaart, R.; Barceló, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; de Gunzburg, J.; Couillerot, O.; et al. Removal of Antibiotics in Wastewater by Enzymatic Treatment with Fungal Laccase–Degradation of Compounds Does Not Always Eliminate Toxicity. Bioresour. Technol. 2016, 219, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, X.; Feng, F.; Xu, X. Biodegradation of Tetracycline by the Yeast Strain Trichosporon Mycotoxinivorans XPY-10. Prep. Biochem. Biotechnol. 2016, 46, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Bao, J.; Chang, G.; Zheng, H.; Li, X.; Du, J.; Snow, D.; Li, X. Biotransformation of Tetracycline by a Novel Bacterial Strain Stenotrophomonas maltophilia DT1. J. Hazard. Mater. 2016, 318, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, T.; Bao, J.; Leng, Y.; Snow, D.; Kong, S.; Wang, T.; Li, X. Biotransformation of Doxycycline by Brevundimonas Naejangsanensis and Sphingobacterium Mizutaii Strains. J. Hazard. Mater. 2021, 411, 125126. [Google Scholar] [CrossRef]
- Song, J.; Han, G.; Wang, Y.; Jiang, X.; Zhao, D.; Li, M.; Yang, Z.; Ma, Q.; Parales, R.E.; Ruan, Z.; et al. Pathway and Kinetics of Malachite Green Biodegradation by Pseudomonas veronii. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Montoya, A.M.; Luna-Rodríguez, C.E.; Bonifaz, A.; Treviño-Rangel, R.d.J.; Rojas, O.C.; González, G.M. Physiological Characterization and Molecular Identification of Some Rare Yeast Species Causing Onychomycosis. J. Med. Mycol. 2021, 31, 101121. [Google Scholar] [CrossRef]
- Song, J.; Gu, J.; Zhai, Y.; Wu, W.; Wang, H.; Ruan, Z.; Shi, Y.; Yan, Y. Biodegradation of Nicosulfuron by a Talaromyces Flavus LZM1. Bioresour. Technol. 2013, 140, 243–248. [Google Scholar] [CrossRef]
- Ruan, Z.; Zhou, S.; Jiang, S.; Sun, L.; Zhai, Y.; Wang, Y.; Chen, C.; Zhao, B. Isolation and Characterization of a Novel Cinosulfuron Degrading Kurthia Sp. from a Methanogenic Microbial Consortium. Bioresour. Technol. 2013, 147, 477–483. [Google Scholar] [CrossRef]
- Pan, M.; Lyu, T.; Zhan, L.; Matamoros, V.; Angelidaki, I.; Cooper, M.; Pan, G. Mitigating Antibiotic Pollution Using Cyanobacteria: Removal Efficiency, Pathways and Metabolism. Water Res. 2021, 190, 116735. [Google Scholar] [CrossRef]
- Shao, S.; Hu, Y.; Cheng, C.; Cheng, J.; Chen, Y. Simultaneous Degradation of Tetracycline and Denitrification by a Novel Bacterium, Klebsiella Sp. SQY5. Chemosphere 2018, 209, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Fassihi, R. Stability of Metronidazole, Tetracycline HCl and Famotidine Alone and in Combination. Int. J. Pharm. 2005, 290, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Xuan, R.; Arisi, L.; Wang, Q.; Yates, S.R.; Biswas, K.C. Hydrolysis and Photolysis of Oxytetracycline in Aqueous Solution. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2010, 45, 73–81. [Google Scholar] [CrossRef]
- Franje, C.A.; Chang, S.K.; Shyu, C.L.; Davis, J.L.; Lee, Y.W.; Lee, R.J.; Chang, C.C.; Chou, C.C. Differential Heat Stability of Amphenicols Characterized by Structural Degradation, Mass Spectrometry and Antimicrobial Activity. J. Pharm. Biomed. Anal. 2010, 53, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the Aquatic Environment—A Review-Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, J.; Liu, Y.; Chen, L.; Xu, Y.; Zou, Y.; Li, Y.; Gong, B. The Survival and Removal Mechanism of Sphingobacterium changzhouense TC931 under Tetracycline Stress and Its’ Ecological Safety after Application. Bioresour. Technol. 2021, 333, 125067. [Google Scholar] [CrossRef]
- Qi, W.; Long, J.; Feng, C.; Feng, Y.; Cheng, D.; Liu, Y.; Xue, J.; Li, Z. Fe3+ Enhanced Degradation of Oxytetracycline in Water by Pseudomonas. Water Res. 2019, 160, 361–370. [Google Scholar] [CrossRef]
- Li, X.; Zhao, X.; Chen, Z.; Shen, J.; Jiang, F.; Wang, X.; Kang, J. Isolation of Oxytetracycline-Degrading Bacteria and Its Application in Improving the Removal Performance of Aerobic Granular Sludge. J. Environ. Manag. 2020, 272, 111115. [Google Scholar] [CrossRef]
- Shi, Y.; Lin, H.; Ma, J.; Zhu, R.; Sun, W.; Lin, X.; Zhang, J.; Zheng, H.; Zhang, X. Degradation of Tetracycline Antibiotics by Arthrobacter Nicotianae OTC-16. J. Hazard. Mater. 2021, 403, 123996. [Google Scholar] [CrossRef]
- Rana, R.S.; Singh, P.; Kandari, V.; Singh, R.; Dobhal, R.; Gupta, S. A Review on Characterization and Bioremediation of Pharmaceutical Industries’ Wastewater: An Indian Perspective. Appl. Water Sci. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Hu, Y.; Cheng, J.; Chen, Y. Biodegradation Mechanism of Tetracycline (TEC) by Strain Klebsiella Sp. SQY5 as Revealed through Products Analysis and Genomics. Ecotoxicol. Environ. Saf. 2019, 185, 109676. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.; Kong, D.; Ma, Q.; Li, Q.; Zhou, Y.; Jiang, X.; Wang, Z.; Parales, R.E.; Ruan, Z. Biodegradation of Tetracycline Antibiotics by the Yeast Strain Cutaneotrichosporon dermatis M503. Microorganisms 2022, 10, 565. https://doi.org/10.3390/microorganisms10030565
Tan H, Kong D, Ma Q, Li Q, Zhou Y, Jiang X, Wang Z, Parales RE, Ruan Z. Biodegradation of Tetracycline Antibiotics by the Yeast Strain Cutaneotrichosporon dermatis M503. Microorganisms. 2022; 10(3):565. https://doi.org/10.3390/microorganisms10030565
Chicago/Turabian StyleTan, Hao, Delong Kong, Qingyun Ma, Qingqing Li, Yiqing Zhou, Xu Jiang, Zhiye Wang, Rebecca E. Parales, and Zhiyong Ruan. 2022. "Biodegradation of Tetracycline Antibiotics by the Yeast Strain Cutaneotrichosporon dermatis M503" Microorganisms 10, no. 3: 565. https://doi.org/10.3390/microorganisms10030565
APA StyleTan, H., Kong, D., Ma, Q., Li, Q., Zhou, Y., Jiang, X., Wang, Z., Parales, R. E., & Ruan, Z. (2022). Biodegradation of Tetracycline Antibiotics by the Yeast Strain Cutaneotrichosporon dermatis M503. Microorganisms, 10(3), 565. https://doi.org/10.3390/microorganisms10030565