WGS-Based Phenotyping and Molecular Characterization of the Resistome, Virulome and Plasmid Replicons in Klebsiella pneumoniae Isolates from Powdered Milk Produced in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Identification
2.2. Antibiotics Susceptibility Testing (AST)
2.3. WGS and In-Silico Detection of AMR Determinants, Virulome Genes and Plasmidome
2.4. Data Availability
3. Results
3.1. Whole Genome Sequencing Data and MLST Analysis
3.2. Phenotyping and AMR Determinants in K. pneumoniae Isolates
3.3. Characterization of Plasmid Replicons and Virulence-Associated Genes in K. pneumoniae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed. Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinyemi, K.O.; Abegunrin, R.O.; Iwalokun, B.A.; Fakorede, C.O.; Makarewicz, O.; Neubauer, H.; Pletz, M.W.; Wareth, G. The emergence of Klebsiella pneumoniae with reduced susceptibility against third-generation cephalosporins and carbapenems in Lagos hospitals, Nigeria. Antibiotics 2021, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Jindal, P.; Bedi, J.; Singh, R.; Aulakh, R.; Gill, J. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli and Klebsiella isolated from dairy farm milk, farm slurry, and water in Punjab, India. Environ. Sci. Pollut. Res. Int. 2021, 28, 28556–28570. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Sun, X.; Ma, X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 18. [Google Scholar] [CrossRef] [Green Version]
- Saishu, N.; Ozaki, H.; Murase, T. CTX-M-type extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated from cases of bovine mastitis in Japan. J. Vet. Med. Sci. 2014, 76, 1153–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grohn, Y.T.; Wilson, D.J.; Gonzalez, R.N.; Hertl, J.A.; Schulte, H.; Bennett, G.; Schukken, Y.H. Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. J. Dairy Sci. 2004, 87, 3358–3374. [Google Scholar] [CrossRef]
- Hertl, J.A.; Schukken, Y.H.; Welcome, F.L.; Tauer, L.W.; Grohn, Y.T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 2014, 97, 1465–1480. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Anes, J.; Devineau, S.; Fanning, S. Klebsiella pneumoniae: Prevalence, reservoirs, antimicrobial resistance, pathogenicity, and infection: A hitherto unrecognized zoonotic bacterium. Foodborne Pathog. Dis. 2021, 18, 63–84. [Google Scholar] [CrossRef]
- Ritter, E.; Bauernfeind, A.; Becker-Boost, E.; Fiehn, A.; Stocker, H.; Wirsing von Konig, C.H.; Finger, H. Outbreak of a nosocomial infection of SHV2-beta-lactamase-containing Klebsiella pneumonia strains in an operative intensive care unit. Immun. Infekt. 1992, 20, 3–6. [Google Scholar]
- Rodloff, A.C.; Dowzicky, M.J. Antimicrobial susceptibility among European Gram-negative and gram-positive isolates collected as part of the tigecycline evaluation and surveillance trial (2004–2014). Chemotherapy 2017, 62, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wareth, G.; Sprague, L.; Neubauer, H.; Pletz, M. Klebsiella pneumoniae in Germany: An overview on spatiotemporal distribution and resistance development in humans. Ger. J. Microbiol. 2021, 1, 16–25. [Google Scholar] [CrossRef]
- Zhou, X.; Garcia-Cobos, S.; Ruijs, G.; Kampinga, G.A.; Arends, J.P.; Borst, D.M.; Moller, L.V.; Holman, N.D.; Schuurs, T.A.; Bruijnesteijn van Coppenraet, L.E.; et al. Epidemiology of extended-spectrum beta-lactamase-producing E. coli and vancomycin-resistant Enterococci in the Northern Dutch-German cross-border region. Front. Microbiol. 2017, 8, 1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Both, A.; Büttner, H.; Huang, J.; Perbandt, M.; Belmar Campos, C.; Christner, M.; Maurer, F.P.; Kluge, S.; König, C.; Aepfelbacher, M.; et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 2017, 72, 2483–2488. [Google Scholar] [CrossRef] [Green Version]
- Kresken, M.; Körber-Irrgang, B.; Pfeifer, Y.; Werner, G. Activity of temocillin against CTX-M-producing Escherichia coli and Klebsiella pneumoniae from Germany. Int. J. Antimicrob. Agents 2018, 51, 159–160. [Google Scholar] [CrossRef]
- Gürntke, S.; Kohler, C.; Steinmetz, I.; Pfeifer, Y.; Eller, C.; Gastmeier, P.; Schwab, F.; Leistner, R. Molecular epidemiology of extended-spectrum beta-lactamase (ESBL)-positive Klebsiella pneumoniae from bloodstream infections and risk factors for mortality. J. Infect. Chemother. 2014, 20, 817–819. [Google Scholar] [CrossRef]
- Klaper, K.; Wendt, S.; Lübbert, C.; Lippmann, N.; Pfeifer, Y.; Werner, G. Hypervirulent Klebsiella pneumoniae of lineage ST66-K2 caused tonsillopharyngitis in a German patient. Microorganisms 2021, 9, 133. [Google Scholar] [CrossRef]
- Heiden, S.E.; Hübner, N.O.; Bohnert, J.A.; Heidecke, C.D.; Kramer, A.; Balau, V.; Gierer, W.; Schaefer, S.; Eckmanns, T.; Gatermann, S.; et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med. 2020, 12, 113. [Google Scholar] [CrossRef]
- Wareth, G.; Neubauer, H. The animal-foods-environment interface of Klebsiella pneumoniae in Germany: An observational study on pathogenicity, resistance development, and the current situation. Vet. Res. 2021, 52, 16. [Google Scholar] [CrossRef]
- Brisse, S.; Grimont, F.; Grimont, P.A.D. The genus Klebsiella. In The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 159–196. [Google Scholar] [CrossRef]
- Jacobs, C.; Braun, P.; Hammer, P. Reservoir and routes of transmission of Enterobacter sakazakii (Cronobacter spp.) in a milk powder-producing plant. J. Dairy Sci. 2011, 94, 3801–3810. [Google Scholar] [CrossRef]
- Khater, D.F.; Lela, R.A.; El-Diasty, M.; Moustafa, S.A.; Wareth, G. Detection of harmful foodborne pathogens in food samples at the points of sale by MALDT-TOF MS in Egypt. BMC Res. Notes 2021, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wareth, G.; Linde, J.; Hammer, P.; Nguyen, N.H.; Nguyen, T.N.M.; Splettstoesser, W.D.; Makarewicz, O.; Neubauer, H.; Sprague, L.D.; Pletz, M.W. Phenotypic and WGS-derived antimicrobial resistance profiles of clinical and non-clinical Acinetobacter baumannii isolates from Germany and Vietnam. Int. J. Antimicrob. Agents 2020, 56, 106127. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2020. [Google Scholar]
- Linde, J.; Homeier-Bachmann, T.; Dangel, A.; Riehm, J.M.; Sundell, D.; Öhrman, C.; Forsman, M.; Tomaso, H. Genotyping of Francisella tularensis subsp. holarctica from Hares in Germany. Microorganisms 2020, 8, 1932. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 28 February 2022).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kananizadeh, P.; Oshiro, S.; Watanabe, S.; Iwata, S.; Kuwahara-Arai, K.; Shimojima, M.; Ogawa, M.; Tada, T.; Kirikae, T. Emergence of carbapenem-resistant and colistin-susceptible Enterobacter cloacae complex co-harboring bla(IMP-1) and mcr-9 in Japan. BMC Infect. Dis. 2020, 20, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Ferrer, S.; Peñaloza, H.F.; Budnick, J.A.; Bain, W.G.; Nordstrom, H.R.; Lee, J.S.; Van Tyne, D. Finding order in the chaos: Outstanding questions in Klebsiella pneumoniae pathogenesis. Infect. Immun. 2021, 89, e00693-20. [Google Scholar] [CrossRef] [PubMed]
- Paulin-Curlee, G.G.; Sreevatsan, S.; Singer, R.S.; Isaacson, R.; Reneau, J.; Bey, R.; Foster, D. Molecular subtyping of mastitis-associated Klebsiella pneumoniae isolates shows high levels of diversity within and between dairy herds. J. Dairy Sci. 2008, 91, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Muytjens, H.L.; Roelofs-Willemse, H.; Jaspar, G.H. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 1988, 26, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Diaz, D.E.A.M.E.; Leon Duarte, A.B.; Montes De Oca Canastillo, F. Incidence of multiple antibiotic resistant organisms isolated from retail milk products in Hermosillo, Mexico. J. Food Prot. 1992, 55, 370–373. [Google Scholar] [CrossRef]
- Diriba, K.; Awulachew, E., 2nd; Tekele, L.; Ashuro, Z. Fecal carriage rate of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae among apparently health food handlers in Dilla University student cafeteria. Infect. Drug Resist. 2020, 13, 3791–3800. [Google Scholar] [CrossRef]
- Wareth, G.; Brandt, C.; Sprague, L.D.; Neubauer, H.; Pletz, M.W. Spatio-temporal distribution of Acinetobacter baumannii in Germany—A comprehensive systematic review of studies on resistance development in humans (2000–2018). Microorganisms 2020, 8, 375. [Google Scholar] [CrossRef] [Green Version]
- Becker, L.; Kaase, M.; Pfeifer, Y.; Fuchs, S.; Reuss, A.; von Laer, A.; Sin, M.A.; Korte-Berwanger, M.; Gatermann, S.; Werner, G. Genome-based analysis of Carbapenemase-producing Klebsiella pneumoniae isolates from German hospital patients, 2008–2014. Antimicrob. Resist. Infect. Control 2018, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Falgenhauer, L.; Schwengers, O.; Schmiedel, J.; Baars, C.; Lambrecht, O.; Heß, S.; Berendonk, T.U.; Falgenhauer, J.; Chakraborty, T.; Imirzalioglu, C. Multidrug-resistant and clinically relevant Gram-negative bacteria are present in German surface waters. Front. Microbiol. 2019, 10, 2779. [Google Scholar] [CrossRef] [PubMed]
- Pichler, C.; Büchsel, M.; Rossen, J.W.; Vavra, M.; Reuter, S.; Kern, W.V.; Thimme, R.; Mischnik, A. First report of invasive liver abscess syndrome with endophthalmitis caused by a K2 serotype ST2398 hypervirulent Klebsiella pneumoniae in Germany, 2016. New Microbes New Infect. 2017, 17, 77–80. [Google Scholar] [CrossRef]
- Loncaric, I.; Beiglbock, C.; Fessler, A.T.; Posautz, A.; Rosengarten, R.; Walzer, C.; Ehricht, R.; Monecke, S.; Schwarz, S.; Spergser, J.; et al. Characterization of ESBL- and AmpC-producing and fluoroquinolone-resistant Enterobacteriaceae isolated from Mouflons (Ovis orientalis musimon) in Austria and Germany. PLoS ONE 2016, 11, e0155786. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, T.; Finstermeier, K.; Hantzsch, M.; Faucheux, S.; Kaase, M.; Eckmanns, T.; Bercker, S.; Kaisers, U.X.; Lippmann, N.; Rodloff, A.C.; et al. Stalking a lethal superbug by whole-genome sequencing and phylogenetics: Influence on unraveling a major hospital outbreak of carbapenem-resistant Klebsiella pneumoniae. Am. J. Infect. Control 2017, 46, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Ducomble, T.; Faucheux, S.; Helbig, U.; Kaisers, U.X.; Konig, B.; Knaust, A.; Lubbert, C.; Moller, I.; Rodloff, A.C.; Schweickert, B.; et al. Large hospital outbreak of KPC-2-producing Klebsiella pneumoniae: Investigating mortality and the impact of screening for KPC-2 with polymerase chain reaction. J. Hosp. Infect. 2015, 89, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Tietgen, M.; Semmler, T.; Riedel-Christ, S.; Kempf, V.A.J.; Molinaro, A.; Ewers, C.; Gottig, S. Impact of the colistin resistance gene mcr-1 on bacterial fitness. Int. J. Antimicrob. Agents 2017, 51, 554–561. [Google Scholar] [CrossRef]
- Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E.T.; Schwartz, T. Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Front. Microbiol. 2017, 8, 1282. [Google Scholar] [CrossRef]
- Bauernfeind, A.; Rosenthal, E.; Eberlein, E.; Holley, M.; Schweighart, S. Spread of Klebsiella pneumoniae producing SHV-5 beta-lactamase among hospitalized patients. Infection 1993, 21, 18–22. [Google Scholar] [CrossRef]
- Ewers, C.; Stamm, I.; Pfeifer, Y.; Wieler, L.H.; Kopp, P.A.; Schonning, K.; Prenger-Berninghoff, E.; Scheufen, S.; Stolle, I.; Gunther, S.; et al. Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. J. Antimicrob. Chemother. 2014, 69, 2676–2680. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Cobos, S.; Kock, R.; Mellmann, A.; Frenzel, J.; Friedrich, A.W.; Rossen, J.W. Molecular typing of Enterobacteriaceae from pig holdings in North-Western Germany reveals extended-spectrum and AmpC beta-lactamases producing but no carbapenem-resistant ones. PLoS ONE 2015, 10, e0134533. [Google Scholar] [CrossRef] [PubMed]
- Borgmann, S.; Pfeifer, Y.; Becker, L.; Rieß, B.; Siegmund, R.; Sagel, U. Findings from an outbreak of carbapenem-resistant Klebsiella pneumoniae emphasize the role of antibiotic treatment for cross transmission. Infection 2018, 46, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum beta-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolle, I.; Prenger-Berninghoff, E.; Stamm, I.; Scheufen, S.; Hassdenteufel, E.; Guenther, S.; Bethe, A.; Pfeifer, Y.; Ewers, C. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J. Antimicrob. Chemother. 2013, 68, 2802–2808. [Google Scholar] [CrossRef] [Green Version]
- Carroll, L.M.; Gaballa, A.; Guldimann, C.; Sullivan, G.; Henderson, L.O.; Wiedmann, M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype typhimurium isolate. mBio 2019, 10, e00853-19. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.; Yin, W.; Shen, Z.; Wang, Y.; Shen, J.; Walsh, T.R. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J. Antimicrob. Chemother. 2020, 75, 3087–3095. [Google Scholar] [CrossRef]
- Ito, R.; Mustapha, M.M.; Tomich, A.D.; Callaghan, J.D.; McElheny, C.L.; Mettus, R.T.; Shanks, R.M.Q.; Sluis-Cremer, N.; Doi, Y. Widespread fosfomycin resistance in Gram-negative bacteria attributable to the chromosomal fosA Gene. mBio 2017, 8, e00749-17. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.; Wong, D.; Malhotra, S. Intravenous fosfomycin as salvage therapy for osteomyelitis caused by multidrug-resistant Pseudomonas aeruginosa. Am. J. Health Syst. Pharm. 2021, 78, 2209–2215. [Google Scholar] [CrossRef]
- Giurazza, R.; Mazza, M.C.; Andini, R.; Sansone, P.; Pace, M.C.; Durante-Mangoni, E. Emerging treatment options for multi-drug-resistant bacterial infections. Life 2021, 11, 519. [Google Scholar] [CrossRef]
- Ito, R.; Tomich, A.D.; McElheny, C.L.; Mettus, R.T.; Sluis-Cremer, N.; Doi, Y. Inhibition of fosfomycin resistance protein FosA by phosphonoformate (foscarnet) in multidrug-resistant Gram-negative pathogens. Antimicrob. Agents Chemother. 2017, 61, e01424-17. [Google Scholar] [CrossRef] [Green Version]
- Tomich, A.D.; Klontz, E.H.; Deredge, D.; Barnard, J.P.; McElheny, C.L.; Eshbach, M.L.; Weisz, O.A.; Wintrode, P.; Doi, Y.; Sundberg, E.J.; et al. Small-molecule inhibitor of fosA expands fosfomycin activity to multidrug-resistant Gram-negative pathogens. Antimicrob. Agents Chemother. 2019, 63, e01524-18. [Google Scholar] [CrossRef] [Green Version]
- Rendón, M.A.; Saldaña, Z.; Erdem, A.L.; Monteiro-Neto, V.; Vázquez, A.; Kaper, J.B.; Puente, J.L.; Girón, J.A. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc. Natl. Acad. Sci. USA 2007, 104, 10637–10642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachman, M.A.; Lenio, S.; Schmidt, L.; Oyler, J.E.; Weiser, J.N. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. mBio 2012, 3, e00224-11. [Google Scholar] [CrossRef] [Green Version]
- Russo, T.A.; Olson, R.; MacDonald, U.; Beanan, J.; Davidson, B.A. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect. Immun. 2015, 83, 3325–3333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochan, T.J.; Ozer, E.A.; Pincus, N.B.; Fitzpatrick, M.A.; Hauser, A.R. Complete genome sequence of Klebsiella pneumoniae strain TK421, a conjugative hypervirulent isolate. Microbiol. Resour. Announc. 2020, 9, e01408-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajand, O.; Darabi, N.; Arab, M.; Ghorbani, R.; Bameri, Z.; Ebrahimi, A.; Hojabri, Z. The emergence of the hypervirulent Klebsiella pneumoniae (hvKp) strains among circulating clonal complex 147 (CC147) harbouring bla(NDM/OXA-48) carbapenemases in a tertiary care center of Iran. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lin, D.; Chan, E.W.; Gu, D.; Chen, G.X.; Chen, S. Emergence of carbapenem-resistant serotype K1 hypervirulent Klebsiella pneumoniae strains in China. Antimicrob. Agents Chemother. 2016, 60, 709–711. [Google Scholar] [CrossRef] [Green Version]
- Catalán-Nájera, J.C.; Garza-Ramos, U.; Barrios-Camacho, H. Hypervirulence and hypermucoviscosity: Two different but complementary Klebsiella spp. phenotypes? Virulence 2017, 8, 1111–1123. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.R.; Lin, T.L.; Chen, Y.C.; Chou, H.C.; Wang, J.T. The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology 2011, 157, 3446–3457. [Google Scholar] [CrossRef]
- Russo, T.A.; Gulick, A.M. Aerobactin synthesis proteins as antivirulence targets in hypervirulent Klebsiella pneumoniae. ACS Infect. Dis. 2019, 5, 1052–1054. [Google Scholar] [CrossRef]
- Russo, T.A.; Olson, R.; Macdonald, U.; Metzger, D.; Maltese, L.M.; Drake, E.J.; Gulick, A.M. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect. Immun. 2014, 82, 2356–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, C.; Jacob, J.J.; Vasudevan, K.; Biswas, R.; Manesh, A.; Sethuvel, D.P.M.; Varughese, S.; Biswas, I.; Veeraraghavan, B. Emergence of multidrug-resistant hypervirulent ST23 Klebsiella pneumoniae: Multidrug-resistant plasmid acquisition drives evolution. Front. Cell Infect. Microbiol. 2020, 10, 575289. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, J. Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: Antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koczura, R.; Kaznowski, A. Occurrence of the Yersinia high-pathogenicity island and iron uptake systems in clinical isolates of Klebsiella pneumoniae. Microb. Pathog. 2003, 35, 197–202. [Google Scholar] [CrossRef]
- Schubert, S.; Cuenca, S.; Fischer, D.; Heesemann, J. High-pathogenicity island of Yersinia pestis in enterobacteriaceae isolated from blood cultures and urine samples: Prevalence and functional expression. J. Infect. Dis. 2000, 182, 1268–1271. [Google Scholar] [CrossRef] [Green Version]
- Bardaji, L.; Añorga, M.; Ruiz-Masó, J.A.; Del Solar, G.; Murillo, J. Plasmid replicons from Pseudomonas are natural chimeras of functional, exchangeable modules. Front. Microbiol. 2017, 8, 190. [Google Scholar] [CrossRef]
- Dolejska, M.; Brhelova, E.; Dobiasova, H.; Krivdova, J.; Jurankova, J.; Sevcikova, A.; Dubska, L.; Literak, I.; Cizek, A.; Vavrina, M.; et al. Dissemination of IncFII(K)-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from children in hospital paediatric oncology wards. Int. J. Antimicrob. Agents 2012, 40, 510–515. [Google Scholar] [CrossRef]
- Ho, W.S.; Yap, K.P.; Yeo, C.C.; Rajasekaram, G.; Thong, K.L. The complete sequence and comparative analysis of a multidrug-resistance and virulence multireplicon IncFII Plasmid pEC302/04 from an extraintestinal pathogenic Escherichia coli EC302/04 indicate extensive diversity of IncFII plasmids. Front. Microbiol. 2015, 6, 1547. [Google Scholar] [CrossRef] [Green Version]
- Villa, L.; García-Fernández, A.; Fortini, D.; Carattoli, A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J. Antimicrob. Chemother. 2010, 65, 2518–2529. [Google Scholar] [CrossRef] [Green Version]
- Ramsamy, Y.; Mlisana, K.P.; Allam, M.; Amoako, D.G.; Abia, A.L.K.; Ismail, A.; Singh, R.; Kisten, T.; Han, K.S.; Muckart, D.J.J.; et al. Genomic analysis of carbapenemase-producing extensively drug-resistant Klebsiella pneumoniae isolates reveals the horizontal spread of p18-43_01 plasmid encoding bla(NDM-1) in South Africa. Microorganisms 2020, 8, 137. [Google Scholar] [CrossRef] [Green Version]
STs | ID | Origin | Year | gapA | infB | mdh | pgi | pho | rpoB | tonB |
---|---|---|---|---|---|---|---|---|---|---|
1322 | DE-MRI1 | Milk powder | 2005 | 2 | 5 | 121 | 8 | 180 | 1 | 6 |
DE-MRI12 | Milk powder | 2007 | 2 | 5 | 121 | 8 | 180 | 1 | 6 | |
DE-MRI14 | Milk powder | 2007 | 2 | 5 | 121 | 8 | 180 | 1 | 6 | |
567 | DE-MRI10 | Milk powder | 2006 | 2 | 1 | 77 | 1 | 17 | 4 | 42 |
DE-MRI17 | Milk powder | 2007 | 2 | 1 | 77 | 1 | 17 | 4 | 42 | |
DE-MRI18 | Milk powder | 2008 | 2 | 1 | 77 | 1 | 17 | 4 | 42 | |
23 | DE-MRI13 | Milk powder | 2007 | 2 | 1 | 1 | 1 | 9 | 4 | 12 |
220 | DE-MRI24 | Milk powder | 2011 | 2 | 1 | 2 | 1 | 45 | 4 | 9 |
502 | DE-MRI9 | Milk powder | 2003 | 2 | 53 | 3 | 1 | 10 | 4 | 18 |
1083 | DE-MRI4 | Milk powder | 2005 | 2 | 1 | 2 | 1 | 13 | 1 | 23 |
New 1 5625 | DE-MRI15 | Milk powder | 2007 | 2 | 1 | 1 | 3 | 40 | 1 | 22 |
DE-MRI16 | Milk powder | 2007 | 2 | 1 | 1 | 3 | 40 | 1 | 22 | |
DE-MRI19 | Milk powder | 2008 | 2 | 1 | 1 | 3 | 40 | 1 | 22 | |
DE-MRI23 | Milk powder | 2010 | 2 | 1 | 1 | 3 | 40 | 1 | 22 | |
DE-MRI25 | Milk powder | 2011 | 2 | 1 | 1 | 3 | 40 | 1 | 22 | |
New2 6016 | DE-MRI22 | Milk powder | 2010 | 2 | 6 | 3 | 1 | 1 | 102 | 25 |
New3 6014 | DE- MRI 2 | Milk powder | 2005 | 2 | 10 | 1 | 393 | 56 | 24 | 31 |
DE- MRI 3 | Milk powder | 2005 | 2 | 10 | 1 | 393 | 56 | 24 | 31 | |
DE-MRI 5 | Milk powder | 2005 | 2 | 10 | 1 | 393 | 56 | 24 | 31 | |
DE-MRI 6 | Milk powder | 2006 | 2 | 10 | 1 | 393 | 56 | 24 | 31 | |
DE-MRI 7 | Milk powder | 2006 | 2 | 10 | 1 | 393 | 56 | 24 | 31 | |
DE-MRI 8 | Milk powder | 2006 | 2 | 10 | 1 | 393 | 56 | 24 | 31 | |
DE-MRI20 | Milk powder | 2009 | 2 | 10 | 1 | 393 | 56 | 24 | 31 | |
DE-MRI21 | Milk powder | 2009 | 2 | 10 | 1 | 393 | 56 | 24 | 31 |
Parameters of Twenty-Four K. pneumoniae Isolates | |
---|---|
Average total number of reads | 18,554,295 reads per isolate |
Isolates mean coverage | 8558-fold |
Genome | |
Minimum genome size (bp) | 5.305.557 bp |
Maximum genome size (bp) | 5.770.949 bp |
The average of the GC content (%) | 57.08% |
The mean N50 | 27,275 bp |
Database accession no. | |
European Nucleotide Archive (ENA) | Project accession number: PRJEB45776 |
Virulence associated genes (% coverage/No. of isolates) | |
Enterobactin (Iron uptake) | entA (99.20/21); entB (99.18/24); fepC (94.61/24) |
Salmochelin (Iron uptake) | IroB (97.08/1); iroC (99.28/1); iroD (100/1); iroN (98.81/1). All were found in the same isolate. |
Aerobactin (Iron uptake) | iucA (99.72/1); iucB (100/1); iucC (99.89/1); iutA (99:96/1). All were found in the same isolate. |
Yersiniabactin (Iron uptake) | ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX, irp1, irp2, fyuA. All were found with 100% coverage in the same two isolates. |
T6SS-II | ompA (100/24). |
Adherence (Gene related to ECP from E. coli) | ykgK.ecpR (98.31/24); yagV.ecpE (99.74/24); yagW.ecpD (100/24); yagX.ecpC (99.96/24); yagY.ecpB (100/24); yagZ.ecpA (99.32/24). |
Regulator of mucoid phenotype A | rmpA2 (96.67/1); rmpA (98.57/1); rmpC (90.23/1); and rmpD (100/1). |
Antibiotic resistance determinants | |
Resistance genes (%) | blaSHV (100); oqxA (100); oqxB (100); KpnE (100); KpnF (100); KpnG (100); KpnH (100); Ompk37 (100); acrA (100); acrB (100); acrD (100); emrR (100); emrD (100); ramA (100); fosA (71); pmrB_R256G (4); mcr-9 (4). |
Plasmid replicons | Col family (Col440II; Col440I; ColRNAI); IncF family (IncFIB.K.; IncFIB.Mar.; IncFIB.pKPHS1.; IncFII_1_pKP91); Inc family (IncHI1B and IncR); Rep A family (RepA_1). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wareth, G.; Linde, J.; Hammer, P.; Pletz, M.W.; Neubauer, H.; Sprague, L.D. WGS-Based Phenotyping and Molecular Characterization of the Resistome, Virulome and Plasmid Replicons in Klebsiella pneumoniae Isolates from Powdered Milk Produced in Germany. Microorganisms 2022, 10, 564. https://doi.org/10.3390/microorganisms10030564
Wareth G, Linde J, Hammer P, Pletz MW, Neubauer H, Sprague LD. WGS-Based Phenotyping and Molecular Characterization of the Resistome, Virulome and Plasmid Replicons in Klebsiella pneumoniae Isolates from Powdered Milk Produced in Germany. Microorganisms. 2022; 10(3):564. https://doi.org/10.3390/microorganisms10030564
Chicago/Turabian StyleWareth, Gamal, Jörg Linde, Philipp Hammer, Mathias W. Pletz, Heinrich Neubauer, and Lisa D. Sprague. 2022. "WGS-Based Phenotyping and Molecular Characterization of the Resistome, Virulome and Plasmid Replicons in Klebsiella pneumoniae Isolates from Powdered Milk Produced in Germany" Microorganisms 10, no. 3: 564. https://doi.org/10.3390/microorganisms10030564
APA StyleWareth, G., Linde, J., Hammer, P., Pletz, M. W., Neubauer, H., & Sprague, L. D. (2022). WGS-Based Phenotyping and Molecular Characterization of the Resistome, Virulome and Plasmid Replicons in Klebsiella pneumoniae Isolates from Powdered Milk Produced in Germany. Microorganisms, 10(3), 564. https://doi.org/10.3390/microorganisms10030564