Inanimate Surfaces and Air Contamination with Multidrug Resistant Species of Staphylococcus in the Neonatal Intensive Care Unit Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied NICU
2.2. Sampling
2.2.1. Surface Screening
2.2.2. Air
2.2.3. Clinical Samples of Neonates and Epidemiological Surveillance
2.3. Identification and Antimicrobial Susceptibility Testing
2.4. Detection of Methicillin-Resistant Staphylococcus (MRS)
2.5. Resistance to Macrolides, Lincosamides, and Streptogramin B (MLSB)
2.6. Statistical Analysis
2.7. Research Ethics
3. Results
3.1. Microbial Load of Inanimate Surfaces and Air
3.2. Surfaces and Isolated Species
3.3. Clinical Samples
3.4. Multidrug Resistance
3.5. Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russotto, V.; Cortegiani, A.; Raineri, S.M.; Giarratano, A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J. Intensive Care 2015, 3, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.M.; Johani, K.; Melo, D.S.; Lopes, L.K.O.; Lima, L.K.O.L.; Tipple, A.F.V.; Hu, H.; Vickery, K. Biofilm contamination of high-touched surfaces in intensive care units: Epidemiology and potential impacts. Lett. Appl. Microbiol. 2019, 68, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suleyman, G.; Alangaden, G.; Bordossy, A.C. The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections. Curr. Infect. Dis. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Huslage, K.; Rutala, W.A.; Sickbert-Bennett, E.; Weber, D.J. A quantitative approach to defining “high-touch” surfaces in hospitals. Infect. Control Hosp. Epidemiol. 2010, 31, 850–853. Available online: https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Huslage+K%2C+Rutala+WA%2C+Sickbert-Bennett+E%2C+Weber+DJ.+A+quantitative+approach+to+defining+%E2%80%9Chigh-touch%E2%80%9D+surfaces+in+hospitals.+Infect+Control+Hosp+Epidemiol+2010%3B+31+%288%29%3A+850%E2%80%933.&btnG= (accessed on 10 October 2020). [CrossRef] [PubMed] [Green Version]
- Dancer, S.J. The role of environmental cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 2009, 73, 378–385. [Google Scholar] [CrossRef]
- Shams, A.M.; Rose, L.J.; Edwards, J.R.; Cali, S.; Harris, A.D.; Jacob, J.T.; LaFae, A.; Pineles, L.L.; Thom, K.A.; McDonald, L.C.; et al. Assessment of the overall and multidrug-resistant organism bioburden on environmental surfaces in healthcare facilities. Infect. Control Hosp. Epidemiol. 2016, 37, 1426–1432. [Google Scholar] [CrossRef]
- Smith, J.; Adams, C.E.; King, M.F.; Noakes, C.J.; Robertson, C.; Dancer, S.J. Is there an association between airborne and surface microbes in the critical care environment? J. Hosp. Infect. 2018, 100, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Salgueiro, V.C.; Seixas, M.D.L.; Guimarães, L.C.; Ferreira, D.D.C.; Da Cunha, D.C.; Nouér, S.A.; Dos Santos, K.R.N. High rate of neonates colonized by methicillin-resistant Staphylococcus species in an Intensive Care Unit. J. Infect. Dev. Ctries. 2019, 13, 810–816. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.J.; Boyle, M.G.; Hogan, P.G.; Johnson, A.J.; Wallace, M.A.; Elward, A.M.; Warner, B.B.; Burnham, C.-A.D.; Fritz, S.A. Emergence of community-associated methicillin-resistant Staphylococcus aureus strains in the neonatal intensive care unit: An infection prevention and patient safety challenge. Clin. Microbiol. Infect. 2016, 22, 645–648. [Google Scholar] [CrossRef] [Green Version]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Mohsen, L.; Ramy, N.; Saied, D.; Akmal, D.; Salama, N.; Haleim, M.M.A.; Aly, H. Emerging antimicrobial resistance in early and late-onset neonatal sepsis. Antimicrob. Resist. Infect. Control 2017, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Polin, R.A.; Denson, S.; Brady, M.T.; Papile, L.-A.; Baley, J.E.; Carlo, W.A.; Cummings, J.J.; Kumar, P.; Tan, R.C.; Watterberg, K.L.; et al. Epidemiology and diagnosis of health care-associated infections in the NICU. Pediatrics 2012, 129, e1104–e1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, D.V.; Brito, C.S.; Resende, D.S.; Moreira, Ó.J.; Abdallah, V.O.; Gontijo Filho, P.P. Nosocomial infections in a Brazilian neonatal intensive care unit: A 4-year surveillance study. Rev. Soc. Bras. Med. Trop. 2010, 43, 633–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marra, A.R.; Camargo, L.F.A.; Pignatari, A.C.C.; Sukiennik, T.; Behar, P.R.P.; Medeiros, E.A.S.; Ribeiro, J.; Girão, E.; Correa, L.; Guerra, C.; et al. Nosocomial bloodstream infections in Brazilian hospitals: Analysis of 2563 cases from a prospective nationwide surveillance study. J. Clin. Microbiol. 2011, 49, 1866–1871. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Lin, C.-F.; Rehn, Y.-J.F.; Chen, J.-C.; Chen, P.-Y.; Chen, C.-H.; Wang, T.-M.; Huang, F.-L. Reduced nosocomial infection rate in a neonatal intensive care unit during a 4-year surveillance period. J. Chin. Med. Assoc. 2017, 80, 427–431. [Google Scholar] [CrossRef]
- O’Reilly, D.; O’Connor, C.; McCallion, N.; Drew, R.J. A retrospective study (2001–2017) of acute and chronic morbidity and mortality associated with Staphylococcus aureus bacteraemia in a tertiary neonatal intensive care unit. Ir. J. Med. Sci. 2019, 188, 1297–1301. [Google Scholar] [CrossRef]
- Adams, C.E.; Dancer, S.J. Dynamic transmission of Staphylococcus aureus in the intensive care unit. Int. J. Environ. Res. Public Health 2020, 17, 2109. [Google Scholar] [CrossRef] [Green Version]
- Dancer, S.J. Controlling hospital-acquired infection: Focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 2014, 27, 665–690. [Google Scholar] [CrossRef] [Green Version]
- Pasquarella, C.; Pitzurra, O.; Savino, A. The index of microbial air contamination. J. Hosp. Infect. 2000, 46, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Dudeck, M.A.; Horan, T.C.; Peterson, K.D.; Allen-Bridson, K.; Morrell, G.; Anttila, A.; Pollock, D.A.; Edwards, J.R. National Healthcare Safety Network report, data summary for 2011, device-associated module. Am. J. Infect. Control 2013, 41, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.; Olmsted, R.N.; Monsees, E. Guide to Preventing Central Line-Associated Bloodstream Infections; Association for Professionals in Infection Control and Epidemiology (APIC): Washington, DC, USA, 2015; Available online: http://apic.org/Resource_/TinyMceFileManager/2015/APIC_CLABSI_WEB.pdf (accessed on 10 October 2020).
- Kassim, A.; Pflüger, V.; Premji, Z.; Daubenberger, C.; Revathi, G. Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiol. 2017, 17, 128. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Metodologia dos Testes de Sensibilidade a Agentes Antimicrobianos por Diluição para Bactéria de Crescimento Aeróbico; Norma Aprovada–Sexta Edição; CLSI: Wayne, PA, USA, 2012; Volume 23. Available online: http://www.anvisa.gov.br/servicosaude/manuais/clsi/clsi_opasm7_a6.pdf (accessed on 10 October 2020).
- Clinical and Laboratory Standards Institute (CLIS). Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI: Wayne, PA, USA, 2018; Available online: https://clsi.org/media/1930/m100ed28_sample.pdf (accessed on 10 October 2020).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2004; p. 392. Available online: http://resource.heartonline.cn/20150528/1_3kOQSTg.pdf (accessed on 10 October 2020).
- Hiwar, W.; King, M.; Shuweihdi, F.; Fletcher, L.A.; Dancer, S.J.; Noakes, C.J. What is the relationship between indoor air quality parameters and airborne microorganisms in hospital environments? A systematic review and meta-analysis. Indoor Air 2021, 31, 1308–1322. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.O.; da Paixao Peixoto, L.; Mourao Barros, E.T.; Guimarães, J.R.; Gontijo, B.C.; Almeida, J.L.; Guimaraes de Azevedo, L.; Oliviera e Lima, J.C.; Camara, D.S. Epidemiology of bacterial contamination of inert hospital surfaces and equipment in critical and non-critical care units: A Brazilian multicenter study. Microbiol. Res. J. Int. 2019, 13, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Morgado-Gamero, W.B.; Hernandez, M.M.; Ramirez, M.C.; Medina-Altahona, J.; De La Hoz, S.; Mendoza, H.P.; Parody, A.; Teixeira, E.C.; Agudelo-Castañeda, D.M. Antibiotic resistance of airborne viable bacteria and size distribution in neonatal intensive care units. Int. J. Environ. Res. Public Health 2019, 16, 3340. [Google Scholar] [CrossRef] [Green Version]
- Al-Haqan, A.; Boswihi, S.S.; Pathan, S.; Udo, E.E. Antimicrobial resistance and virulence determinants in coagulase-negative Staphylococci isolated mainly from preterm neonates. PLoS ONE 2020, 15, e0236713. [Google Scholar] [CrossRef]
- Shirai, Y.; Arai, H.; Tamaki, K.; Konishi, H.; Kawase, Y.; Shimizu, N.; Tateda, K.; Yoda, H. Neonatal methicillin-resistant Staphylococcus aureus colonization and infection. J. Neonatal. Perinatal. Med. 2017, 10, 439–444. [Google Scholar] [CrossRef]
- Zhang, L. Meta analysis on related risk factors of nosocomial infection for premature infants with critical illness. Nurs. Rehabil. J. 2016, 15, 819–823. Available online: http://www.zjhlykf.com/ch/index.aspx (accessed on 10 October 2020).
- Wang, L.; Du, K.-N.; Zhao, Y.-L.; Yu, Y.-J.; Sun, L.; Jiang, H.-B. Risk factors of nosocomial infection for infants in neonatal intensive care units: A systematic review and meta-analysis. Med. Sci. Monit. 2019, 25, 8213. [Google Scholar] [CrossRef]
- Li, X.; Ding, X.; Shi, P.; Zhu, Y.; Huang, Y.; Li, Q.; Lu, J.; Li, Z.; Zhu, L. Clinical features and antimicrobial susceptibility profiles of culture-proven neonatal sepsis in a tertiary children’s hospital, 2013 to 2017. Medicine 2019, 98, e14686. [Google Scholar] [CrossRef]
- Bonjean, M.; Hodille, E.; Dumitrescu, O.; Dupieux, C.; Mongo, C.N.; Allam, C.; Beghin, M.; Paris, M.; Borrel, O.; Chardon, H.; et al. Disk diffusion testing for detection of methicillin-resistant Staphylococci: Does moxalactam improve upon cefoxitin? J. Clin. Microbiol. 2016, 54, 2905–2909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzialla, C.; Borghesi, A.; Serra, G.; Stronati, M.; Corsello, G. Antimicrobial therapy in neonatal intensive care unit. Ital. J. Pediatr. 2015, 41, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Kalita, J.M.; Nag, V.L. Screening for methicillin-resistant Staphylococcus aureus carriage on the hands of healthcare workers: An assessment for hand hygiene practices. Indian J. Crit. Care Med. 2019, 23, 590. [Google Scholar] [CrossRef] [PubMed]
Inanimate Surfaces | No Growth | Scanty Growth <2.5 cfu/cm2 | Light Growth ≥2.5–12 cfu/cm2 | Moderate Growth >12–40 cfu/cm2 | Heavy Growth >40 cfu/cm2 | Hygiene Fails (≥2.5 cfu/cm2) | |
n | % | ||||||
Light switches (n = 9) | 4 | 2 | 3 | 0 | 0 | 3 | 33.3 |
Monitors table (n = 60) | 34 | 11 | 8 | 2 | 5 | 15 | 25.0 |
Baby incubators (n = 60) | 34 | 12 | 11 | 3 | 0 | 14 | 23.3 |
Door handle (n = 18) | 11 | 3 | 3 | 1 | 0 | 4 | 22.2 |
Medication preparation table (n = 9) | 7 | 1 | 0 | 1 | 0 | 1 | 11.1 |
Drawer (n = 9) | 8 | 0 | 0 | 0 | 1 | 1 | 11.1 |
Respirators monitors (n = 60) | 49 | 5 | 5 | 1 | 0 | 6 | 10.0 |
Towel paper holder (n = 15) | 12 | 2 | 1 | 0 | 0 | 1 | 6.6 |
Vital sign monitors (n = 60) | 55 | 3 | 2 | 0 | 0 | 2 | 3.3 |
Infusion pumps (n = 60) | 56 | 2 | 2 | 0 | 0 | 2 | 3.3 |
Soap dish (n = 15) | 13 | 2 | 0 | 0 | 0 | 0 | 0 |
Facet spout (n = 15) | 14 | 1 | 0 | 0 | 0 | 0 | 0 |
Sink drains (n = 9) | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
Medicine storage refrigerator’s door (n = 9) | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
Air | No Growth | Scanty Growth <2 cfu/plate | Light Growth ≥2–10 cfu/plate | Moderate Growth >10–40 cfu/plate | Heavy Growth >40 cfu/plate | Hygiene Fails (≥2 cfu/plate/hour) | |
n | % | ||||||
N = 9 | 0 | 0 | 3 | 5 | 1 | 9 | 100 |
Microorganisms | Samples |
---|---|
Staphylococcus aureus | Inanimate surfaces (n = 3) |
Air (n = 2) | |
Neonates (n = 14) | |
Staphylococcus epidermidis | Inanimate surfaces (n = 66) |
Air (n = 16) | |
Neonates (n = 39) | |
Staphylococcus capitis | Inanimate surfaces (n = 7) |
Neonates (n = 10) | |
Staphylococcus haemolyticus | Inanimate surfaces (n = 6) |
Neonates (n = 3) | |
Staphylococcus warneri | Inanimate surfaces (n = 4) |
Neonates (n = 1) | |
Staphylococcus xylosus | Inanimate surfaces (n = 4) |
Neonates (n = 1) | |
Staphylococcus hominis | Inanimate surfaces (n = 3) |
Neonates (n = 2) |
MRS (%) N = 132 | MSS (%) N = 49 | Total (%) N = 181 | ||
---|---|---|---|---|
E-S (n = 79) | E-S, CL-S | 20 (15.2) | 25 (51.0) | 45 (24.9) |
E-S, CL-R | 34 (25.8) | x | 34 (18.8) | |
E-R (n = 102) | E-R, CL-S (iMLSB) | 19 (14.4) | 4 (8.2) | 23 (12.7) |
E-R, CL-R (cMLSB) | 49 (37.1) | 15 (30.6) | 64 (35.4) | |
E-R, CL-S (MS Phenotype) | 10 (7.6) | 5 (10.2) | 15 (8.3) |
Characteristics | Staphylococcus Infection N = 48 | Without Infection N = 196 | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|---|---|
N | % | N | % | RR (IC95%) | p | RR (IC95%) | p | |
Weight (g) | ||||||||
<750 | 14 | 29.2 | 12 | 6.1 | - | - | - | - |
751–1000 | 5 | 10.4 | 8 | 4.1 | 0.54 (0.14–2.08) | 0.3675 | - | - |
1001–1500 | 11 | 22.9 | 36 | 18.4 | 0.26 (0.09–0.73) | 0.0104 | - | - |
1501–2500 | 11 | 22.9 | 86 | 43.9 | 0.11 (0.04–0.30) | 0.0000 | - | - |
>2500 | 7 | 14.6 | 54 | 27.5 | 0.11 (0.04–0.33) | 0.0001 | - | - |
Gestational Age (weeks) | ||||||||
<34 | 33 | 68.8 | 91 | 46.4 | - | - | - | - |
34 a 37 | 5 | 10.4 | 58 | 29.6 | 0.24 (0.09–0.64) | 0.0047 | - | - |
>37 | 10 | 20.8 | 47 | 24.0 | 0.59 (0.27–1.29) | 0.1860 | - | - |
Use of drain | 4 | 8.3 | 13 | 6,6 | 1.28 (0.40–4.11) | 0.6790 | - | - |
Use of bladder catheter | 10 | 20.8 | 15 | 7.7 | 3.18 (1.33–7.60) | 0.0095 * | - | - |
Use of CVC >7 days | 43 | 89.6 | 83 | 42.3 | 11.71 (4.45–30.83) | 0.0000 * | - | - |
Use of CVC | ||||||||
Umbilical | 29 | 60.4 | 60 | 30.6 | 3.46 (1.80–6.65) | 0.0002 * | - | - |
PICC | 43 | 89.6 | 116 | 59.2 | 5.93 (2.25–15.63) | 0.0003 * | - | - |
Intracath | 4 | 8.3 | 1 | 0.5 | 17.73 (1.93–162.50) | 0.0110 * | - | - |
Phlebotomy | 7 | 14.6 | 5 | 2.6 | 6.52 (1.97–21.57) | 0.0021 * | - | - |
Total Parenteral Nutrition | 40 | 83.3 | 81 | 41.3 | 7.10 (3.16–15.97) | 0.0000 * | - | - |
Mechanical Ventilation | 37 | 77.1 | 71 | 36.2 | 5.92 (2.84–12.33) | 0.0000 * | - | - |
Antimicrobial use prior to infection | 45 | 93.8 | 77 | 39.3 | 23.18 (6.96–77.22) | 0.0000 * | 6.68 (1.80–24.83) | 0.0045 * |
Use of >3 antimicrobials | 31 | 64.6 | 18 | 9.2 | 18.03 (8.39–38.74) | 0.0000 * | 4.01 (1.63–9.83) | 0.0024 * |
Hospitalization >7 days | 47 | 97.9 | 139 | 70.9 | 19.27 (2.60–143.02) | 0.0038 * | - | - |
Average hospitalization time (days) | 48.5 | 16.5 | 1.06 (1.04–1.08) | 0.0000 * | 1.03 (1.01–1.05) | 0.0013 * | ||
Death | 11 | 22.9 | 23 | 11.7 | 2.24 (1.01–4.98) | 0.0490 * | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menezes, R.d.P.; Marques, L.d.A.; Silva, F.F.; Silva, N.B.S.; Alves, P.G.V.; Bessa, M.A.d.S.; Araújo, L.B.d.; Penatti, M.P.A.; Pedroso, R.d.S.; Brito Röder, D.V.D.d. Inanimate Surfaces and Air Contamination with Multidrug Resistant Species of Staphylococcus in the Neonatal Intensive Care Unit Environment. Microorganisms 2022, 10, 567. https://doi.org/10.3390/microorganisms10030567
Menezes RdP, Marques LdA, Silva FF, Silva NBS, Alves PGV, Bessa MAdS, Araújo LBd, Penatti MPA, Pedroso RdS, Brito Röder DVDd. Inanimate Surfaces and Air Contamination with Multidrug Resistant Species of Staphylococcus in the Neonatal Intensive Care Unit Environment. Microorganisms. 2022; 10(3):567. https://doi.org/10.3390/microorganisms10030567
Chicago/Turabian StyleMenezes, Ralciane de Paula, Lara de Andrade Marques, Felipe Flávio Silva, Nagela Bernadelli Sousa Silva, Priscila Guerino Vilela Alves, Meliza Arantes de Souza Bessa, Lúcio Borges de Araújo, Mário Paulo Amante Penatti, Reginaldo dos Santos Pedroso, and Denise Von Dolinger de Brito Röder. 2022. "Inanimate Surfaces and Air Contamination with Multidrug Resistant Species of Staphylococcus in the Neonatal Intensive Care Unit Environment" Microorganisms 10, no. 3: 567. https://doi.org/10.3390/microorganisms10030567
APA StyleMenezes, R. d. P., Marques, L. d. A., Silva, F. F., Silva, N. B. S., Alves, P. G. V., Bessa, M. A. d. S., Araújo, L. B. d., Penatti, M. P. A., Pedroso, R. d. S., & Brito Röder, D. V. D. d. (2022). Inanimate Surfaces and Air Contamination with Multidrug Resistant Species of Staphylococcus in the Neonatal Intensive Care Unit Environment. Microorganisms, 10(3), 567. https://doi.org/10.3390/microorganisms10030567