Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology
Abstract
:1. Introduction
2. A Star Is Born: From a Casual Discovery to the Limelight in Medicine, Industry, and Research
3. À la Recherche de la Mutation Perdu
3.1. Chromosomal Rearrangement
3.2. Amplification of the Penicillin Gene Cluster
3.3. Point Mutations Targeting Secondary Metabolism Genes, Regulators, and Other Genes
3.4. Concluding Remarks on the Genetic Analysis of Strains Obtained in CSI Programs
4. Penicillium chrysogenum Reveals a Secret and Changes Identity
4.1. P. chrysogenum Contains Functional Mating Type Genes
4.2. P. chrysogenum Is Reclassified as P. rubens
4.3. P. chrysogenum (P. rubens) Sexual Cycle
5. Penicillium chrysogenum Did It Again: Pioneering the Discovery of Gene Clustering of Fungal Secondary Metabolite Genes
6. Sometimes Fewer Is Better, or the Unexpected Virtue of Simplicity
6.1. The Penicillin Biosynthetic Pathway: Enzymes and Genes Involved
6.2. Ancillary Enzymes in Penicillin Biosynthesis
6.3. Analysis of the 56.9 kb Amplified Region Containing the Penicillin Biosynthetic Genes
7. Where’d You Get Those Genes?
7.1. β-Lactam Biosynthetic Genes and Their Proposed Origins
7.2. A Possible Pathway for the Formation of the Penicillin Gene Cluster
- An HGT event involving at least the genes pcbAB, pcbC, and cefE or cefF occurred from bacteria to an ancestor of the currently cephalosporin producing fungi, which belong to the orders Hypocreales and Sordariales. This is supported mainly by the comparison of IPNS sequences [151] and the conservation of the arrangement of the genes pcbAB and pcbC in all β-lactam-producing fungi. The transferred genes are sufficient to synthesize DAC provided a mechanism to isomerize IPN into penicillin N is available (see point 2). cefE and cefF are believed to have originated in bacteria after gene duplication of an ancestral gene whose product possessed both penicillin N expandase and DAOC hydroxylase activities; then, CefE and CefF would have evolved to specialize in each of the activities. Thus, the gene transferred to fungi might have been an ancestor of cefE/cefF before duplication.
- The function of IPN epimerization to penicillin N was developed de novo in the cephalosporin-producing ancestor. The epimerization system is different in bacteria and fungi, involving only one step in bacteria, catalyzed by the product of the cefD gene, and three steps in fungi: isopenicillinyl N-CoA synthetase (catalyzed by the product of the cefD1 gene), racemase (catalyzed by the product of cefD2), and thioesterase. Although the bacterial cefD might have been transferred along with the other genes it resulted not functional in fungi. Alternatively, the cefD gene was not transferred. Whatever the case, fungi evolved a system to isomerize IPN (with an L-AAA side chain) to penicillin N (with a D-AAA side chain). The cefD1 and cefD2 are clearly of eukaryotic origin, they both contain introns, and they must have been recruited to the original cluster transferred from bacteria early in the evolution, since all characterized cephalosporin producers have these two genes clustered with genes pcbAB, pcbC, and (with the exception of A. chrysogenum) cefEF. CefD1 is highly similar to very-long-chain-fatty acid-CoA synthetases, whereas CefD2 is highly similar to human racemases [154]. Members of both families have been found in mammalian microbodies [155]. We can speculate that the cephalosporin-producing ancestor evolved a transport system (the CefP transporter) to introduce IPN into the peroxisome, where it would be converted to penicillin N by enzymes residing there. The penicillin N would then be used as the substrate of the expandase/hydroxylase enzyme (product of the cefEF gene) for DAC formation.
- The cefG gene, of eukaryotic origin and encoding the last enzyme of CPC biosynthesis [156], is present in A. chrysogenum but absent in other cephalosporin producers such as Pochonia chlamydosporia and Madurella mycetomatis. This indicates that this gene evolved later, after the split of A. chrysogenum from the other species. Another difference between A. chrysogenum and the other species is that, while in the latter the cefEF gene has been maintained in its original location clustered with the pcbAB–pcbC genes, in A. chrysogenum it moved to a new location in another chromosome. Most likely, the cefG gene was recruited to this new location to form the so-called “late” cephalosporin cluster [46,156].
- An LGT event, involving at least the pcbAB and pcbC genes, occurred between Hypocreales and an ancestor of Penicillium and Aspergillus (Eurotiales). There exists the possibility that the cefD1 and cefD2 genes were transferred alongside pcbAB and pcbC. We have performed Blast searches of A. chrysogenum CefD1 and CefD2 in the kingdom Fungi, and the results suggest that the cefD1 and cefD2 genes may have been transferred to a Penicillium-Aspergillus ancestor by LGT. CefD1 appears in cephalosporin producers and other Hypocreales (Claviceps, Metarhyzium, Torrubiella), with identities of 60–65% in the case of Claviceps spp., and next in many penicillin-producing and non-producing species of the genera Penicillium and Aspergillus, with identities of 45–50%, but not in other Eurotiales or members of other taxa. Regarding CefD2, it appears in cephalosporin producers but not in other Hypocreales, and next in many Penicillium and Aspergillus species (penicillin-producing and non-producing), with high identity percentages of around 65%, but not in other Eurotiales or other taxa. The cefD2 genes in A. chrysogenum and P. chrysogenum contain a single intron whose position is conserved at the beginning of the ORF. This transfer would have endowed the Penicillium-Aspergillus ancestor with the capacity to produce penicillin N, which possesses some more antibacterial activity than IPN [157]. Eventually, the penDE gene (see below) joined the imported penicillin N cluster, which meant a dramatic improvement in antibiotic capacity owing to the much stronger antibacterial activity of penicillins G or V with respect to IPN or penicillin N. We can speculate that conserving together the pcbAB, pcbC, and penDE genes was advantageous for the fungus, while the cefD1 and cefD2 genes were now much less important, or even detrimental regarding antibiotic production and thus they were not conserved in the new penicillin cluster. However, these genes were not lost either, and they continue being transcribed and targeted to peroxisomes [30]. The cefT gene might also have been transferred with the other genes from Hypocreales to a Penicillium-Aspergillus ancestor. A. chrysogenum CefT and P. chrysogenum PaaT are highly similar (65.7% identity head-to-tail) and share some functional characteristics, such as the capacity to transport PAA [158,159], which is the function that PaaT performs in penicillin biosynthesis, tranporting PAA into the peroxisome [135].
- The penDE gene, of eukaryotic origin, was recruited to the pcbAB–pcbC cluster to eventually form the definitive penicillin biosynthetic cluster. During the process, the penDE gene acquired a peroxisome targeting sequence (PTS1). Below, we will describe the origin of the penDE gene in more detail.
- After the split of the genera Penicillium and Aspergillus, the penicillin gene cluster was inherited by both containing just the pcbAB–pcbC-penDE genes, in the same arrangement and with several regulatory elements already present in the gene promoters (see next section), with no other relevant genes for penicillin biosynthesis in the vicinity of the cluster (20–25 kb upstream and downstream).
- Most of the Penicillium and Aspergillus species lost the cluster, all genes at once or in more than one step, as observed in P. verrucosum, which contains the pcbAB gene but lacks pcbC and penDE [160]. The adaptation to different environments and ecological niches must have played a role in this process, but not enough data and studies are available to postulate particular environments that may favor or act against the presence of the penicillin cluster. In a study conducted by Prigent et al. [161], aiming to find correspondences between phylogenetic clades, habitats and metabolic clades elaborated from genome-scale metabolic models of 24 Penicillium species, two of the penicillin producers (P. rubens and P. flavigenum) were assigned the same habitat, desert plants, while the other two were included in other habitats. Nevertheless, many Penicillium species can be found in a wide range of habitats.
- In a lineage leading to P. chrysogenum NRRL1951, a decrease in PAA catabolism by a mutation in the pahA gene led to an important increase in penicillin production capacity, while the penicillin cluster became placed within an amplifiable DNA region of 105.2 kb. No amplification of the penicillin cluster seems to have occurred naturally, but the stage was set for amplification to occur once strain NRRL 1951 was picked out for penicillin production and CSI programs started to be developed (shifting the amplifiable region from 105.2 to 56.9 kb in most cases).
7.3. Origin of the penDE Gene
7.4. Concluding Remarks on the Origin and Distribution of β-Lactam Genes
8. An Orchestra without a Director
8.1. Regulatory Signals and Transcription Factors
8.2. The Heterotrimeric G-Protein Signal Transduction Pathway
8.3. The Velvet Complex
8.4. Exogenous Inducers
8.5. Endogenous Inducers
9. Treasure Island
9.1. BGCs in P. chrysogenum Wis. 54-1255 and Their Connexions to Other Fungi
9.2. Genome Mining and Its Application in P. chrysogenum
9.3. Secondary Metabolites Isolated from Other P. chrysogenum Strains
10. A Growing Toolkit
10.1. Recombination Techniques
10.2. Genetic Transformation
10.3. Autonomously Replicating Vectors
10.4. Tools for Gene Overexpression
10.5. Utilization of Reporter Genes and Targeted Integration to Obtain Monocopy Transformants
10.6. Targeted Integration to Obtain Gene Knockout Strains
10.7. RNAi-Mediated Gene Silencing
11. Improving on the Improved: Engineering P. chrysogenum to Increase Penicillin Production and Synthesize Cephalosporin Precursors
11.1. Increase of the Copy Number of the Penicillin Biosynthetic Genes
11.2. Increase of Precursor Availability
11.3. Improvement of Precursor and Penicillin Transport
11.4. Concluding Remarks on Strain Improvement Using Genetic Engineering
11.5. Engineering P. chrysogenum Pathways for the Production of Cephalosporins
12. Great Expectations: P. chrysogenum Goes Synthetic
12.1. Reprogramming P. chrysogenum for the Production of Alternative Secondary Metabolites
12.2. Development of CRIPSR/Cas9 Technology and the Future of Synthetic Biology in P. chrysogenum
13. Epilogue
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cairns, T.C.; Nai, C.; Meyer, V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal. Biol. Biotechnol. 2018, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beroe Advantage Procurement. Penicillin Market, Supplier, Risk and Competitive Intelligence. 2021. Available online: https://www.beroeinc.com/category-intelligence/penicillin-market/ (accessed on 16 December 2021).
- Grand View Research. Antibiotics Market Size, Share & Trends Analysis Report by Drug Class, 2021–2028. 2021. Available online: https://www.grandviewresearch.com/industry-analysis/antibiotic-market (accessed on 16 December 2021).
- Elander, R.P. Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol. 2003, 61, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Brotzu, G. Ricerche su di un nuovo antibiotico. Lavori Dell’Instituto D’Igiene du Cagliari 1948, 1–11. [Google Scholar]
- Abraham, E.P.; Newton, G.G.F. The structure of cephalosporin C. Biochem. J. 1961, 79, 377–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, W.; Rogers, D.E. Social ramifications of control of microbial disease. Johns Hopkins Med. J. 1982, 151, 302–312. [Google Scholar]
- Spellberg, B. The future of antibiotics. Crit. Care 2014, 18, 228. [Google Scholar] [CrossRef] [Green Version]
- Fleming, A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
- Chain, E.; Florey, H.W.; Gardner, A.D.; Heatley, N.G.; Jennings, M.A.; Orr-Ewing, J.; Sanders, A.G. Penicillin as a chemotherapeutic agent. Lancet 1940, 236, 226–228. [Google Scholar] [CrossRef]
- Abraham, E.P.; Chain, E.; Fletcher, C.M.; Florey, H.W.; Gardner, A.D.; Heatley, N.G.; Jennings, M.A. Further observations on penicillin. Lancet 1941, 238, 177–189. [Google Scholar] [CrossRef]
- Fletcher, C. First Clinical Use of Penicillin. Br. Med. J. 1984, 289, 1721–1723. [Google Scholar] [CrossRef] [Green Version]
- Moyer, A.J.; Coghill, R.D. Penicillin. IX. The laboratory scale production of penicillin in submerged cultures by Penicillium notatum Westling (NRRL 832). J. Bacteriol. 1946, 51, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backus, M.P.; Stauffer, J.F. The production and selection of a family of strains in Penicillium chrysogenum. Mycologia 1955, 47, 429–463. [Google Scholar] [CrossRef]
- Raper, K.B.; Alexander, D.F.; Penicillin, V. Mycological aspects of penicillin production. J. Elisha Mitchell Sci. Soc. 1945, 61, 74–113. [Google Scholar]
- Hersbach, G.J.M.; Van der Beek, C.P.; Van Dijck, P.W.M. The Penicillins: Properties, Biosynthesis, and Fermentation. In Biotechnology of Industrial Antibiotics. Drugs and the Pharmaceutical Sciences; Vandamme, E.J., Ed.; Marcel Dekker: New York, NY, USA, 1984; Volume 22, pp. 45–140. [Google Scholar]
- Lein, J. The Panlabs Penicillin Strain Improvement Program. In Overproduction of Microbial Metabolites; Vanek, Z., Hostalek, Z., Eds.; Butterworths: Boston, MA, USA, 1986; pp. 105–139. [Google Scholar]
- Rodríguez-Sáiz, M.; Barredo, J.L.; Moreno, M.A.; Fernández-Cañón, J.M.; Peñalva, M.A.; Díez, B. Reduced function of a phenylacetate-oxidizing cytochrome p450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J. Bacteriol. 2001, 183, 5465–5471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Sáiz, M.; Díez, B.; Barredo, J.L. Why did the Fleming strain fail in penicillin industry? Fungal Genet. Biol. 2005, 42, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, M.A.; Albang, R.; Albermann, K.; Badger, J.H.; Daran, J.M.; Driessen, A.J.; García-Estrada, C.; Fedorova, N.D.; Harris, D.M.; Heijne, W.H.; et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 2008, 26, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Harris, D.M.; van der Krogt, Z.A.; Klaassen, P.; Raamsdonk, L.M.; Hage, S.; van den Berg, M.A.; Bovenberg, R.A.L.; Pronk, J.T.; Daran, J.-M. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillin G production. BMC Genom. 2009, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Veiga, T.; Solis-Escalante, D.; Romagnoli, G.; ten Pierick, A.; Hanemaaijer, M.; Deshmukh, A.T.; Wahl, A.; Pronk, J.T.; Daran, J.-M. Resolving phenylalanine metabolism sheds light on natural synthesis of penicillin G in Penicillium chrysogenum. Eukaryot. Cell 2012, 11, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Jami, M.S.; Martín, J.F.; Barreiro, C.; Domínguez-Santos, R.; Vasco-Cárdenas, M.F.; Pascual, M.; García-Estrada, C. Catabolism of phenylacetic acid in Penicillium rubens. Proteome-wide analysis in response to the benzylpenicillin side chain precursor. J. Proteom. 2018, 187, 243–259. [Google Scholar] [CrossRef]
- Pathak, A.; Nowell, R.W.; Wilson, C.G.; Ryan, M.J.; Barraclough, T.G. Comparative genomics of Alexander Fleming’s original Penicillium isolate (IMI 15378) reveals sequence divergence of penicillin synthesis genes. Sci. Rep. 2020, 10, 15705. [Google Scholar] [CrossRef]
- Van den Berg, M.A. Functional characterisation of penicillin production strains. Fungal Biol. Rev. 2010, 24, 73–78. [Google Scholar] [CrossRef]
- Salo, O.; Ries, M.; Medema, M.H.; Lankhorst, P.P.; Vreeken, R.J.; Bovenberg, R.A.L.; Driessen, A.J.M. Genomic mutational analysis of the impact of the classical strain improvement program on β-lactam producing Penicillium chrysogenum. BMC Genom. 2015, 16, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specht, T.; Dahlmann, T.A.; Zadra, I.; Kürnsteiner, H.; Kück, U. Complete sequencing and chromosome-Scale Genome Assembly of the Industrial Progenitor Strain P2niaD18 from the Penicillin Producer Penicillium chrysogenum. Genome Announc. 2014, 2, e00577–e1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.Q.; Zhong, J.; Zhao, Y.; Xiao, J.; Liu, J.; Dai, M.; Guizhen, Z.; Li, Z.; Jun, Y.; Jiayan, W.; et al. Genome sequencing of high-penicillin producing industrial strain of Penicillium chrysogenum. BMC Genom. 2014, 15, S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasution, U.; van Gulik, W.M.; Ras, C.; Proell, A.; Heijnen, J.J. A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum. Metab. Eng. 2008, 10, 10–23. [Google Scholar] [CrossRef]
- Kiel, J.A.K.W.; van den Berg, M.A.; Fusetti, F.; Poolman, B.; Bovenberg, R.A.L.; Veenhuis, M.; van der Klei, I.J. Matching the proteome to the genome: The microbody of penicillin-producing Penicillium chrysogenum cells. Funct. Integr. Genom. 2009, 9, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Jami, M.S.; Barreiro, C.; García-Estrada, C.; Martin, J. Proteome analysis of the penicillin producer Penicillium chrysogenum: Characterization of protein changes during the industrial strain improvement. Mol. Cell. Proteom. 2010, 9, 1182–1198. [Google Scholar] [CrossRef] [Green Version]
- Jami, M.-S.; García-Estrada, C.; Barreiro, C.; Cuadrado, A.-A.; Salehi-Najafabadi, Z.; Martín, J.-F. The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol. Cell. Proteom. 2010, 9, 2729–2744. [Google Scholar] [CrossRef] [Green Version]
- García-Estrada, C.; Barreiro, C.; Jami, M.S.; Martín-González, J.; Martín, J.F. The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. J. Proteom. 2013, 85, 129–159. [Google Scholar] [CrossRef]
- Cheng, J.S.; Zhao, Y.; Qiao, B.; Lu, H.; Chen, Y.; Yuan, Y.J. Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum during Pilot and Industrial Penicillin G Fermentation. Appl. Biochem. Biotechnol. 2016, 179, 788–804. [Google Scholar] [CrossRef]
- Terfehr, D.; Dahlmann, T.A.; Kück, U. Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs. BMC Genom. 2017, 18, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Berg, M.A. Impact of the Penicillium chrysogenum genome on industrial production of metabolites. Appl. Microbiol. Biotechnol. 2011, 92, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, C.; Martín, J.F.; García-Estrada, C. Proteomics shows new faces for the old Penicillin producer Penicillium chrysogenum. J. Biomed. Biotechnol. 2012, 2012, 105109. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, C.; Garcia-Estrada, C. Proteomics and Penicillium chrysogenum: Unveiling the secrets behind penicillin production. J. Proteom. 2019, 198, 119–131. [Google Scholar] [CrossRef] [PubMed]
- García-Estrada, C.; Martín, J.F.; Cueto, L.; Barreiro, C. Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes 2020, 11, 712. [Google Scholar] [CrossRef]
- Martín, J.F. Insight into the Genome of Diverse Penicillium chrysogenum Strains: Specific Genes, Cluster Duplications and DNA Fragment Translocations. Int. J. Mol. Sci. 2020, 21, 3936. [Google Scholar] [CrossRef]
- Fierro, F.; Gutiérrez, S.; Díez, B.; Martín, J.F. Resolution of four large chromosomes in penicillin-producing filamentous fungi: The penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum. Mol. Gen. Genet. 1993, 241, 573–578. [Google Scholar] [CrossRef]
- Montenegro, E.; Fierro, F.; Fernández, F.J.; Gutiérrez, S.; Martín, J.F. Resolution of Chromosomes III and VI of Aspergillus nidulans by Pulsed-Field Gel Electrophoresis Shows that the Penicillin Biosynthetic Pathway Genes pcbAB, pcbC, and penDE Are Clustered on Chromosome VI (3.0 Megabases). J. Bacteriol. 1992, 174, 7063–7067. [Google Scholar] [CrossRef] [Green Version]
- Skatrud, P.L.; Queener, S.W. An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene 1989, 78, 331–338. [Google Scholar] [CrossRef]
- Smith, A.W.; Collins, K.; Ramsden, M.; Fox, H.M.; Peberdy, J. Chromosome rearrangements in improved cephalosporin C producing strains of Acremonium chrysogenum. Curr. Genet. 1991, 19, 235–237. [Google Scholar] [CrossRef]
- Walz, M.; Kück, U. Polymorphic karyotypes in related Acremonium strains. Curr. Genet. 1991, 19, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, S.; Fierro, F.; Casqueiro, J.; Martín, J.F. Gene organization and plasticity of the ß-lactam genes in different filamentous fungi. Antonie Van Leeuwenhoek 1999, 75, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Fierro, F.; Martín, J.F. Molecular mechanism of chromosomal rearrangement in fungi. Crit. Rev. Microbiol. 1999, 25, 1–17. [Google Scholar] [CrossRef]
- Xu, Z.; van den Berg, M.A.; Covaleda, L.; Lu, H.; Santos, F.A.; Uhm, T.; Lee, M.K.; Wu, C.; Liu, S.; Zhang, H.B. Genome physical mapping from large-insert clones by fingerprint analysis with capillary electrophoresis: A robust physical map of Penicillium chrysogenum. Nucleic Acids Res. 2005, 33, e50. [Google Scholar] [CrossRef] [Green Version]
- Hoff, B.; Pöggeler, S.; Kück, U. Eighty years after its discovery, Fleming’s Penicillium strain discloses the secret of its sex. Eukaryot Cell. 2008, 7, 465–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhm, J.; Dahlmann, T.A.; Gümüşer, H.; Kück, U. A MAT1-2 wild-type strain from Penicillium chrysogenum: Functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain. Mol. Microbiol. 2015, 95, 859–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, V.L.; Ellison, C.E.; Eisen, M.B.; Pachter, L.; Brem, R.B. Structural variation among wild and industrial strains of Penicillium chrysogenum. PLoS ONE 2014, 9, e96784. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J.L.; Díez, B.; Álvarez, E.; Martín, J.F. Large amplification of a 35 kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of Penicillium chrysogenum. Curr. Genet. 1989, 16, 453–459. [Google Scholar] [CrossRef]
- Smith, D.J.; Bull, J.H.; Edwards, J.; Turner, G. Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol. Gen. Genet. 1989, 216, 492–497. [Google Scholar] [CrossRef]
- Fierro, F.; Barredo, J.L.; Díez, B.; Gutiérrez, S.; Fernández, F.J.; Martín, J.F. The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc. Natl. Acad. Sci. USA 1995, 92, 6200–6204. [Google Scholar] [CrossRef] [Green Version]
- Smidák, R.; Kralovicova, M.; Sevcikova, B.; Jakubcova, M.; Kormanec, J.; Timko, J.; Turna, J. Sequence analysis and gene amplification study of the penicillin biosynthesis gene cluster from different strains of Penicillium chrysogenum. Biologia 2010, 65, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fierro, F.; Barredo, J.L.; Díez, B.; Gutiérrez, S.; Marcos, A.T.; Martín, J.F. Molecular genetics as a tool to remove bottlenecks in the biosynthesis of β-lactam antibiotics. World J. Microbiol. Biotechnol. 1996, 12, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Newbert, R.W.; Barton, B.; Greaves, P.; Harper, J.; Turner, G. Analysis of a commercially improved Penicillium chrysogenum strain series: Involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J. Ind. Microbiol. Biotechnol. 1997, 19, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Nijland, J.G.; Ebbendorf, B.; Woszczynska, M.; Boer, R.; Bovenberg, R.A.L.; Driessen, A.J.M. Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum. Appl. Environ. Microbiol. 2010, 76, 7109–7115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziemons, S.; Koutsantas, K.; Becker, K.; Dahlmann, T.; Kück, U. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes. BMC Biotechnol. 2017, 17, 16. [Google Scholar] [CrossRef] [Green Version]
- Bayram, O.; Braus, G.H. Coordination of secondary metabolism and development in fungi: The velvet family of regulatory proteins. FEMS Microbiol. Rev. 2012, 36, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Van Gulik, W.M.; de Laat, W.T.; Vinke, J.L.; Heijnen, J.J. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol. Bioeng. 2000, 20, 602–618. [Google Scholar] [CrossRef]
- Kleijn, R.J.; Liu, F.; van Winden, W.A.; van Gulik, W.M.; Ras, C.; Heijnen, J.J. Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum. Metab. Eng. 2007, 9, 112–123. [Google Scholar] [CrossRef]
- Coppin, E.; Debuchy, R.; Arnaise, S.; Picard, M. Mating type and sexual development in ascomycetes. Microbiol. Mol. Biol. Rev. 1997, 61, 411–428. [Google Scholar] [CrossRef]
- Butler, G. The evolution of MAT: The ascomycetes. In Sex in Fungi; Heitman, J., Kronstad, J.W., Taylor, J.W., Casselton, L.A., Eds.; ASM Press: Washington, DC, USA, 2007; pp. 3–18. [Google Scholar] [CrossRef]
- Wilson, A.M.; Wilken, P.M.; van der Nest, M.A.; Wingfield, M.J.; Wingfield, B.D. It’s All in the Genes: The Regulatory Pathways of Sexual Reproduction in Filamentous Ascomycetes. Genes 2019, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Ni, M.; Feretzaki, M.; Sun, S.; Wang, X.; Heitman, J. Sex in fungi. Annu. Rev. Genet. 2011, 45, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, M.; Rydholm, C.; Schwier, E.U.; Anderson, M.J.; Szakacs, G.; Lutzoni, F.; Debeaupuis, J.P.; Latgé, J.P.; Denning, D.W.; Dyer, P.S. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 2005, 15, 1242–1248. [Google Scholar] [CrossRef]
- Woo, P.C.; Chong, K.T.; Tse, H.; Cai, J.J.; Lau, C.C.; Zhou, A.C.; Lau, S.K.; Yuen, K.Y. Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffei. FEBS Lett. 2006, 580, 3409–3416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pöggeler, S.; Hoff, B.; Kück, U. Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl. Environ. Microbiol. 2008, 74, 6006–6016. [Google Scholar] [CrossRef] [Green Version]
- Kück, U.; Pöggeler, S. Cryptic sex in fungi. Fungal Biol. Rev. 2009, 23, 86–90. [Google Scholar] [CrossRef]
- Dyer, P.S.; O’Gorman, C.M. A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr. Opin. Microbiol. 2011, 14, 649–654. [Google Scholar] [CrossRef]
- Houbraken, J.; Frisvad, J.C.; Samson, R.A. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2011, 2, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Thom, C. Cultural studies of species of Penicillium. In Bulletin of the Bureau of Animal Industry; USDA: Washington, DC, USA, 1910; Volume 118, pp. 1–109. Available online: https://archive.org/details/bullbai118 (accessed on 10 February 2022).
- Raper, K.B.; Thom, C. Manual of the Penicillia; Williams & Wilkins: Baltimore, MD, USA, 1949. [Google Scholar] [CrossRef]
- Scott, J.; Untereiner, W.A.; Wong, B.; Strauss, N.A.; Malloch, D. Genotypic variation in Penicillium chrysogenum from indoor environments. Mycologia 2004, 96, 1095–1105. [Google Scholar] [CrossRef]
- Samson, R.A.; Hadlok, R.; Stolk, A.C. A taxonomic study of the Penicillium chrysogenum series. Antonie van Leeuwenhoek 1977, 43, 169–175. [Google Scholar] [CrossRef]
- Henk, D.A.; Eagle, C.E.; Brown, K.; Van Den Berg, M.A.; Dyer, P.S.; Peterson, S.W.; Fisher, M.C. Speciation despite globally overlapping distributions in Penicillium chrysogenum: The population genetics of Alexander Fleming’s lucky fungus. Mol. Ecol. 2011, 20, 4288–4301. [Google Scholar] [CrossRef]
- Braumann, I.; van den Berg, M.; Kempken, F. Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Curr. Genet. 2008, 53, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Böhm, J.; Hoff, B.; O’Gorman, C.M.; Wolfers, S.; Klix, V.; Binger, D.; Zadra, I.; Kürnsteiner, H.; Pöggeler, S.; Dyer, P.S.; et al. Sexual reproduction and matingtype-mediated strain development in the penicillin producing fungus Penicillium chrysogenum. Proc. Natl. Acad. Sci. USA 2013, 110, 1476–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barredo, J.L.; Cantoral, J.M.; Álvarez, E.; Díez, B.; Martín, J.F. Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78. Mol. Gen. Genet. 1989, 216, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Barredo, J.L.; van Solingen, P.; Díez, B.; Álvarez, E.; Cantoral, J.M.; Kattevilder, A.; Smaal, E.B.; Groenen, M.A.M.; Veenstra, A.E.; Martín, J.F. Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-acid-acyltransferase gene of Penicillium chrysogenum. Gene 1989, 83, 291–300. [Google Scholar] [CrossRef]
- Ramos, F.R.; López-Nieto, M.J.; Martín, J.F. Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N. Antimicrob Agents Chemother. 1985, 27, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, E.; Cantoral, J.M.; Barredo, J.L.; Díez, B.; Martin, J.F. Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum. Antimicrob. Agents Chemother. 1987, 31, 1675–1682. [Google Scholar] [CrossRef] [Green Version]
- Carr, L.G.; Skatrud, P.L.; Scheetz III, M.E.; Queener, S.W.; Ingolia, T.D. Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 1986, 48, 257–266. [Google Scholar] [CrossRef]
- Samson, S.M.; Belagaje, R.; Blankenship, D.T.; Chapman, J.L.; Perry, D.; Skatrud, P.L.; Van Frank, R.M.; Abraham, E.P.; Baldwin, J.E.; Queener, S.W.; et al. Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 1985, 318, 191–194. [Google Scholar] [CrossRef]
- Díez, B.; Barredo, J.L.; Alvarez, E.; Cantoral, J.M.; van Solingen, P.; Groenen, M.A.M.; Veenstra, A.E.; Martin, J.F. Two genes involved in penicillin biosynthesis are linked in a 5.1 kb Sall fragment in the genome of Penicillium chrysogenum. Mol. Gen. Genet. 1989, 218, 572–576. [Google Scholar] [CrossRef]
- Díez, B.; Gutiérrez, S.; Barredo, J.L.; van Solingen, P.; van der Voort, L.H.; Lucía, H.M.; Martín, J.F. The cluster of penicillin biosynthetic genes. J. Biol. Chem. 1990, 265, 16358–16365. [Google Scholar] [CrossRef]
- Smith, D.J.; Burnham, M.K.R.; Bull, J.H.; Hodgson, J.E.; Ward, M.J.; Browne, P.; Brown, J.; Barton, B.; Earl, A.J.; Turner, G. β-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J. 1990, 9, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Earl, A.J.; Turner, G. The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J. 1990, 9, 2743–2750. [Google Scholar] [CrossRef] [PubMed]
- MacCabe, A.P.; Riach, M.B.R.; Unkles, S.E.; Kinghorn, J.R. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J. 1990, 9, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, E.; Barredo, J.L.; Gutierrez, S.; Diez, B.; Álvarez, E.; Martin, J.F. Cloning, characterization of the acyl-CoA:6-aminopenicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene. Mol. Gen. Genet. 1990. [Google Scholar] [CrossRef]
- Keller, N.P.; Hohn, T.M. Metabolic pathway gene clusters in filamentous fungi. Fungal Genet. Biol. 1997, 21, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef]
- Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; de Bruijn, I.; Chooi, Y.-H.; Claesen, J.; Coates, R.C.; et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef]
- Kautsar, S.A.; Blin, K.; Shaw, S.; Weber, T.; Medema, M.H. BiG-FAM: The biosynthetic gene cluster families database. Nucleic Acids Res. 2021, 49, D490–D497. [Google Scholar] [CrossRef]
- Palaniappan, K.; Chen, I.-M.A.; Chu, K.; Ratner, A.; Seshadri, R.; Kyrpides, N.C.; Ivanova, N.N.; Mouncey, N.J. IMG-ABC v.5.0: An update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. Nucleic Acids Res. 2020, 48, D422–D430. [Google Scholar] [CrossRef]
- Bergmann, S.; Funk, A.N.; Scherlach, K.; Schroeckh, V.; Shelest, E.; Horn, U.; Hertweck, C.; Brakhage, A.A. Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Appl. Environ. Microbiol. 2010, 76, 8143–8149. [Google Scholar] [CrossRef] [Green Version]
- Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites—Strategies to activate silent gene clusters. Fungal Genet. Biol. 2011, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bok, J.W.; Ye, R.; Clevenger, K.D.; Mead, D.; Wagner, M.; Krerowicz, A.; Albright, J.C.; Goering, A.W.; Thomas, P.M.; Kelleher, N.L.; et al. Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genom. 2015, 16, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, C.J.B.; Tang, M.; Schlecht, U.; Horecka, J.; Fischer, C.R.; Lin, H.-C.; Li, J.; Naughton, B.; Cherry, J.; Miranda, M.; et al. HEx: A heterologous expression platform for the discovery of fungal natural products. Sci. Adv. 2018, 4, eaar5459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcengiz, G.; Demain, A.L. Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol. Adv. 2013, 31, 287–311. [Google Scholar] [CrossRef]
- Smith, P.W.; Zuccotto, F.; Bates, R.H.; Martínez-Martínez, M.S.; Read, K.D.; Peet, C.; Epemolu, O. Pharmacokinetics of β-Lactam antibiotics: Clues from the past to help discover long-acting oral drugs in the future. ACS Infect. Dis. 2018, 4, 1439–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [Google Scholar] [CrossRef] [Green Version]
- Aharonowitz, Y.; Cohen, G.; Martín, J.F. Penicillin and cephalosporin biosynthetic genes: Structure, organization, regulation and evolution. Annu. Rev. Microbiol. 1992, 46, 461–495. [Google Scholar] [CrossRef]
- Brakhage, A.A. Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol. Mol. Biol. Rev. 1998, 62, 547–585. [Google Scholar] [CrossRef] [Green Version]
- Demain, A.L.; Martín, J.F.; Elander, R.P. Penicillin Biochemistry and Genetics. In Penicillin, A Paradigm for Biotechnology; Mateles, R.I., Ed.; Candida: Chicago, IL, USA, 1998; pp. 93–113. [Google Scholar]
- Liras, P.; Martín, J.F. b-Lactam antibiotics. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Elsevier: Oxford, UK, 2009; pp. 274–289. [Google Scholar] [CrossRef]
- Martín de Valmaseda, E.M.; Campoy, S.; Naranjo, L.; Casqueiro, J.; Martin, J.F. Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase. Mol. Genet. Genom. 2005, 274, 272–282. [Google Scholar] [CrossRef]
- Naranjo, L.; Martín de Valmaseda, E.; Bañuelos, O.; López, P.; Riano, J.; Casqueiro, J.; Martín, J.F. The conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: Characterization of the lys7 gene encoding saccharopine reductase. J. Bacteriol. 2001, 183, 7165–7172. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, S.; Díez, B.; Montenegro, E.; Martín, J.F. Characterization of the Cephalosporium acremonium pcbAB gene encoding a-aminoadiyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: Linkage to the pcbC gene as a cluster of early cephalosporin-biosynthetic genes and evidence of multiple functional domains. J. Bacteriol. 1991, 173, 2354–2365. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Demain, A.L. ACV synthetase. Crit. Rev. Biotechnol. 1992, 12, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Aharonowitz, Y.; Bergmeyer, J.; Cantoral, J.M.; Cohen, G.; Demain, A.L.; Fink, U.; Kinghorn, J.; Kleinkauf, H.; MacCabe, A.; Palissa, H.; et al. Delta-(L-alphaaminoadipyl)-L-cysteinyl-D-valine synthetase, the multienzyme integrating the four primary reactions in betalactam biosynthesis, as a model peptide synthetase. Bio/Technology 1993, 11, 807–810. [Google Scholar] [CrossRef]
- Roach, P.L.; Clifton, I.J.; Fülop, V.; Harlos, K.; Barton, G.J.; Hajdu, J.; Andersson, I.; Schofield, C.J.; Baldwin, J.E. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 1995, 375, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Tobin, M.B.; Fleming, M.D.; Skatrud, P.L.; Miller, J.R. Molecular characterization of the acyl-coenzyme A: Isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli. J. Bacteriol. 1990, 172, 5908–5914. [Google Scholar] [CrossRef] [Green Version]
- Gidijala, L.; Kiel, J.; Bovenberg, R.; Van Der Klei, I.J.; Van Den Berg, M.A. Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi. Biotechnol. Genet. Eng. Rev. 2010, 27, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Lamas-Maceiras, M.; Vaca, I.; Rodríguez, E.; Casqueiro, J.; Martín, J.F. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. Biochem. J. 2006, 395, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.Q.; Liu, J.; Dai, M.; Ren, Z.H.; Su, C.Y.; He, J.G. Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem. Biophys. Res. Commun. 2007, 360, 453–458. [Google Scholar] [CrossRef]
- Lambalot, R.H.; Gehring, A.M.; Flugel, R.S.; Zuber, P.; LaCelle, M.; Marahiel, M.A.; Reid, R.; Khosla, C.; Walsh, C.T. A new enzyme superfamily—The phosphopantetheinyl transferases. Chem. Biol. 1996, 3, 923–936. [Google Scholar] [CrossRef] [Green Version]
- García-Estrada, C.; Ullán, R.V.; Velasco-Conde, T.; Godio, R.P.; Teijeira, F.; Vaca, I.; Feltrer, R.; Kosalková, K.; Mauriz, E.; Martín, J.F. Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochem. J. 2008, 415, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aguado, M.; Teijeira, F.; Martín, J.F.; Ullán, R.V. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 2013, 97, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.F.; Liras, P. The PenV vacuolar membrane protein that controls penicillin biosynthesis is a putative member of a subfamily of stress-gated transient receptor calcium channels. Curr. Res. Biotechnol. 2021, 3, 317–322. [Google Scholar] [CrossRef]
- Lendenfeld, T.; Ghali, D.; Wolschek, M.; Kubicek-Pranz, E.M.; Kubicek, C.P. Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. The amino acid precursors are derived from the vacuole. J. Biol. Chem. 1993, 268, 665–671. [Google Scholar] [CrossRef]
- Van der Lende, T.R.; van de Kamp, M.; Berg, M.; Sjollema, K.; Bovenberg, R.A.L.; Veenhuis, M.; Konings, W.N.; Driessen, A.J. Delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet. Biol. 2002, 37, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.F.; Ullán, R.V.; García-Estrada, C. Regulation and compartmentalization of β-lactam biosynthesis. Microb. Biotechnol. 2010, 3, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, W.H.; van der Krift, T.; Krouwer, A.; Wosten, H.; van der Voort, L. Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J. 1991, 10, 489–495. [Google Scholar] [CrossRef]
- Martín, J.F. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biol. Biotechnol. 2020, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Kurzatkowski, W.; Kuczerowska, A.G. Pexophagy in Penicillin G Secretion by Penicillium chrysogenum PQ-96. Pol. J. Microbiol. 2016, 65, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Müller, W.H.; Bovenberg, R.A.L.; Groothuis, M.H.; Kattevilder, F.; Smaal, E.B.; Van der Voort, L.H.; Verkleij, A.J. Involvement of microbodies in penicillin biosynthesis. Biochim. Biophys. Acta 1992, 1116, 210–213. [Google Scholar] [CrossRef]
- Müller, W.H.; Essers, J.; Humbel, B.M.; Verkleij, A.J. Enrichment of Penicillium chrysogenum microbodies by isopycnic centrifugation in nycodenz as visualized with immuno-electron microscopy. Biochim. Biophys. Acta 1995, 1245, 215–220. [Google Scholar] [CrossRef]
- García-Estrada, C.; Vaca, I.; Fierro, F.; Sjollema, K.; Veenhuis, M.; Martín, J.F. The unprocessed preprotein form IATC103S of the isopenicillin N acyltransferase is transported inside peroxisomes and regulates its self-processing. Fungal Genet. Biol. 2008, 45, 1043–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijer, W.H.; Gidijala, L.; Fekken, S.; Kiel, J.A.; van den Berg, M.A.; Lascaris, R.; Bovenberg, R.A.; van der Klei, I.J. Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl. Environ. Microbiol. 2010, 76, 5702–5709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiel, J.A.; van der Klei, I.J.; van den Berg, M.A.; Bovenberg, R.A.; Veenhuis, M. Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet. Biol. 2005, 42, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Kiel, J.A.; Veenhuis, M.; van der Klei, I.J. PEX genes in fungal genomes: Common, rare or redundant. Traffic 2006, 7, 1291–1303. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aguado, M.; Martín, J.F.; Rodríguez-Castro, R.; García-Estrada, C.; Albillos, S.M.; Teijeira, F.; Ullán, R.V. New insights into the isopenicillin N transport in Penicillium chrysogenum. Metab. Eng. 2014, 22, 89–103. [Google Scholar] [CrossRef]
- Fernández-Aguado, M.; Ullán, R.V.; Teijeira, F.; Rodríguez-Castro, R.; Martín, J.F. The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 2013, 97, 3073–3084. [Google Scholar] [CrossRef]
- Weber, S.S.; Kovalchuk, A.; Bovenberg, R.A.; Driessen, A.J. The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum. Fungal Genet. Biol. 2012, 49, 915–921. [Google Scholar] [CrossRef]
- Pollack, J.K.; Harris, S.D.; Marten, M.R. Autophagy in filamentous fungi. Fungal Genet. Biol. 2009, 46, 1–8. [Google Scholar] [CrossRef]
- Voigt, O.; Pöggeler, S. Self-eating to grow and kill: Autophagy in filamentous ascomycetes. Appl. Microbiol. Biotechnol. 2013, 97, 9277–9290. [Google Scholar] [CrossRef]
- Campos, C.; Lázaro-Rodríguez, T.G.; Fragoso-Soriano, R.; Fernández, F.J. Vesicular transport and secretion of penicillin G in Penicillium rubens P2-32-T. Arch. Microbiol. 2020, 202, 1257–1262. [Google Scholar] [CrossRef]
- Van den Berg, M.A.; Westerlaken, I.; Leeflang, C.; Kerkman, R.; Bovenberg, R.A.L. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin 54-1255. Fungal Genet. Biol. 2007, 44, 830–844. [Google Scholar] [CrossRef] [PubMed]
- Fierro, F.; Montenegro, E.; Gutiérrez, S.; Martín, J.F. Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl. Microbiol. Biotechnol. 1996, 44, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Fierro, F.; García-Estrada, C.; Castillo, N.I.; Rodríguez, R.; Velasco-Conde, T.; Martin, J.F. Transcriptional and bioinformatics analysis of the 58.6 kb DNA region amplified in tandem repeats containg the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet. Biol. 2006, 43, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Esmahan, C.; Álvarez, E.; Montenegro, E.; Martín, J.F. Catabolism of lysine in Penicillium chrysogenum leads to formation of 2-aminoadipic acid, a precursor of penicillin biosynthesis. Appl. Environ. Microbiol. 1994, 60, 1705–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollegioni, L.; Caldinelli, L.; Molla, G.; Sacchi, S.; Pilone, M.S. Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: A comparison between proteins from different sources. Biotechnol. Prog. 2004, 20, 467–473. [Google Scholar] [CrossRef]
- Dotzlaf, J.E.; Yeh, W.K. Copurification and characterization of deacetoxy-cephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J. Bacteriol. 1987, 169, 1611–1618. [Google Scholar] [CrossRef] [Green Version]
- Cortés, J.; Martén, J.F.; Castro, J.M.; Láiz, L.; Liras, P. Purification and characterization of a 2-oxoglutarate-linked ATP-independent deacetoxycephalosporin C synthase of Streptomyces lactamdurans. J. Gen. Microbiol. 1987, 133, 3165–3174. [Google Scholar] [CrossRef] [Green Version]
- Weigel, B.J.; Burgett, S.G.; Chen, V.J.; Skatrud, P.L.; Frolik, C.A.; Queener, S.W.; Ingolia, T.D. Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J. Bacteriol. 1988, 170, 3817–3826. [Google Scholar] [CrossRef] [Green Version]
- Landan, G.; Cohen, G.; Aharonowitz, Y.; Shuali, Y.; Graur, D.; Shiffman, D. Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. Mol. Biol. Evol. 1990, 7, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Peñalva, M.A.; Moya, A.; Dopazo, J.; Ramón, D. Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes. Proc. Biol. Sci. 1990, 241, 164–169. [Google Scholar] [CrossRef]
- Cohen, G.; Shiffman, D.; Mevarech, M.; Aharonowitz, Y. Microbial isopenicillin N synthase genes: Structure, function, diversity and evolution. Trends Biotechnol. 1990, 8, 105–111. [Google Scholar] [CrossRef]
- Martín, J.F.; Liras, P. Transfer of econdary Metabolite Gene Clusters: Assembly and Reorganization of the β-Lactam Gene Cluster from Bacteria to Fungi and Arthropods. In Horizontal Gene Transfer: Breaking Borders between Living Kingdoms; Villa, T.G., Vinas, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 337–361. [Google Scholar]
- Pruess, D.L.; Johnson, M.J. Penicillin Acyltransferase in Penicillium chrysogenum. J. Bacteriol. 1967, 94, 1502–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumina, M.V.; Zhgun, A.A.; Kerpichnikov, I.V.; Domracheva, A.G.; Novak, M.I.; Valiachmetov, A.Y.; Knorre, D.A.; Severin, F.F.; Eldarov, M.A.; Bartoshevich, Y.E. Functional analysis of MFS protein CefT involved in the transport of beta-lactam antibiotics in Acremonium chrysogenum and Saccharomyces cerevisiae. Appl. Biochem. Microbiol. 2013, 4, 368–377. [Google Scholar] [CrossRef]
- Ullán, R.V.; Casqueiro, J.; Bañuelos, O.; Fernández, F.J.; Gutiérrez, S.; Martín, J.F. A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J. Biol. Chem. 2002, 277, 46216–46225. [Google Scholar] [CrossRef] [Green Version]
- Wanders, R.J. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 2004, 83, 16–27. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Velasco, J.; Fernández, F.J.; Martín, J.F. The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J. Bacteriol. 1992, 174, 3056–3064. [Google Scholar] [CrossRef] [Green Version]
- Ott, J.L.; Neuss, N. Antibiotic activity of pure penicillin N and isopenicillin N. J. Antibiot. 1982, 35, 637–638. [Google Scholar] [CrossRef] [Green Version]
- Ullán, R.V.; Liu, G.; Casqueiro, J.; Gutiérrez, S.; Bañuelos, O.; Martín, J.F. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol. Genet. Genom. 2002, 267, 673–683. [Google Scholar] [CrossRef]
- Yang, J.; Xinxin, X.; Liu, G. Amplification of an MFS transporter encoding gene penT significantly stimulates penicillin production and enhances the sensitivity of Penicillium chrysogenum to phenylacetic acid. J. Genet. Genom. 2012, 39, 593–602. [Google Scholar] [CrossRef]
- Laich, F.; Fierro, F.; Martín, J.F. Production of Penicillin by Fungi Growing on Food Products: Identification of a Complete Penicillin Gene Cluster in Penicillium griseofulvum and a Truncated Cluster in Penicillium verrucosum. Appl. Environ. Microbiol. 2002, 68, 1211–1219. [Google Scholar] [CrossRef] [Green Version]
- Prigent, S.; Nielsen, J.C.; Frisvad, J.C.; Nielsen, J. Reconstruction of 24 Penicillium genome--scale metabolic models shows diversity based on their secondary metabolism. Biotechnol. Bioeng. 2018, 115, 2604–2612. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.F.; Gutiérrez, S.; Fernández, F.J.; Velasco, J.; Fierro, F.; Marcos, A.T.; Kosalková, K. Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie van Leeuwenhoek 1994, 65, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Spröte, P.; Hynes, M.J.; Hortschansky, P.; Shelest, E.; Scharf, D.H.; Wolke, S.M.; Brakhage, A.A. Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol. Microbiol. 2008, 70, 445–461. [Google Scholar] [CrossRef] [PubMed]
- García-Estrada, C.; Vaca, I.; Ullán, R.V.; van den Berg, M.A.; Bovenberg, R.A.L.; Martín, J.F. Molecular characterization of a fungal gene paralogue of the penicillin penDE gene of Penicillium chrysogenum. BMC Microbiol. 2009, 9, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Estrada, C.; Fierro, F.; Martín, J.F. Evolution of fungal β-lactam biosynthesis gene clusters. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; FORMATEX: Badajoz, Spain, 2010; Volume 3, pp. 577–588. [Google Scholar]
- Roelofs, D.; Timmermans, M.J.; Hensbergen, P.; van Leeuwen, H.; Koopman, J.; Faddeeva, A.; Suring, W.; de Boer, T.E.; Mariën, J.; Boer, R.; et al. A functional isopenicillin N synthase in an animal genome. Mol. Biol. Evol. 2013, 30, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Suring, W.; Meusemann, K.; Blanke, A.; Mariën, J.; Schol, T.; Agamennone, V.; Faddeeva-Vakhrusheva, A.; Berg, M.P.; Brouwer, A.; van Straalen, N.M.; et al. Evolutionary ecology of beta-lactam gene clusters in animals. Mol. Ecol. 2017, 26, 3217–3229. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Zhang, Z.; Qin, G.; Chen, T.; Tian, S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3416–3438. [Google Scholar] [CrossRef]
- Grijseels, S.; Pohl, C.; Nielsen, J.C.; Wasil, Z.; Nygård, Y.; Nielsen, J.; Frisvad, J.C.; Nielsen, K.F.; Workman, M.; Larsen, T.O.; et al. Identification of the decumbenone biosynthetic gene cluster in Penicillium decumbens and the importance for production of calbistrin. Fungal Biol. Biotechnol. 2018, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- El Hajj Assaf, C.; Zetina-Serrano, C.; Tahtah, N.; Khoury, A.E.; Atoui, A.; Oswald, I.P.; Puel, O.; Lorber, S. Regulation of Secondary Metabolism in the Penicillium Genus. Int. J. Mol. Sci. 2020, 21, 9462. [Google Scholar] [CrossRef]
- Brakhage, A.A.; Al-Abdallah, Q.; Tüncher, A.; Spröte, P. Evolution of β-lactam biosynthesis genes and recruitment of trans-acting factors. Phytochemistry 2005, 66, 1200–1210. [Google Scholar] [CrossRef]
- Brakhage, A.A.; Thön, M.; Spröte, P.; Scharf, D.H.; Al-Abdallah, Q.; Wolke, S.M.; Hortschansky, P. Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 2009, 70, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- García-Estrada, C.; Domínguez-Santos, R.; Kosalková, K.; Martín, J.F. Transcription factors controlling primary and secondary metabolism in filamentous fungi: The β-lactam paradigm. Fermentation 2018, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Hughes, A.L.; Friedman, R. Sharing of transcription factors after gene duplication in the yeast Saccharomyces cerevisiae. Genetica 2007, 129, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Litzka, O.; Papagiannopolous, P.; Davis, M.A.; Hynes, M.J.; Brakhage, A.A. The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. Eur. J. Biochem. 1998, 251, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.F.; Casqueiro, J.; Kosalková, K.; Marcos, A.T.; Gutiérrez, S. Penicillin and cephalosporin biosynthesis: Mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek 1999, 75, 21–31. [Google Scholar] [CrossRef]
- Castillo, N.I.; Fierro, F.; Gutiérrez, S.; Martín, J.F. Genome-wide analysis of differentially expressed genes from Penicillium chrysogenum grown with a repressing or a non-repressing carbon source. Curr. Genet. 2006, 49, 85–96. [Google Scholar] [CrossRef]
- Cepeda-García, C.; Domínguez-Santos, R.; García-Rico, R.O.; García-Estrada, C.; Cajiao, A.; Fierro, F.; Martín, J.F. Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 2014, 98, 7113–7124. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Friedlin, E.; Marzluf, G.A. A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl. Environ. Microbiol. 1994, 60, 4432–4439. [Google Scholar] [CrossRef] [Green Version]
- Tudzynski, B. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 2014, 5, 656. [Google Scholar] [CrossRef] [Green Version]
- Haas, H.; Marzluf, G.A. NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr. Genet. 1995, 28, 177–183. [Google Scholar] [CrossRef]
- Suárez, T.; Peñalva, M.A. Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB–pcbC promoter of the penicillin biosynthetic cluster. Mol. Microbiol. 1996, 20, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.W.; Renno, D.; Saunders, G. Extracellular pH affects regulation of the pcbAB gene in Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 1997, 47, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-Y.; Roze, L.V.; Wee, J.; Linz, J.E. Evidence that a transcription factor regulatory network coordinates oxidative stress response and secondary metabolism in aspergilli. Microbiologyopen 2013, 2, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Miranda, R.U.; Gómez-Quiroz, L.E.; Mendoza, M.; Pérez-Sánchez, A.; Fierro, F.; Barrios-González, J. Reactive oxygen species regulate lovastatin biosynthesis in Aspergillus terreus during submerged and solid-state fermentations. Fungal Biol. 2014, 118, 979–989. [Google Scholar] [CrossRef]
- Montibus, M.; Pinson-Gadais, L.; Richard-Forget, F.; Barreau, C.; Ponts, N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit. Rev. Microbiol. 2015, 41, 295–308. [Google Scholar] [CrossRef]
- Mendoza-Martínez, A.E.; Cano-Domínguez, N.; Aguirre, J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol. 2020, 124, 253–262. [Google Scholar] [CrossRef]
- Bibián, M.E.; Pérez-Sánchez, A.; Mejía, A.; Barrios-González, J. Penicillin and cephalosporin biosyntheses are also regulated by reactive oxygen species. Appl. Microbiol. Biotechnol. 2020, 104, 1773–1783. [Google Scholar] [CrossRef]
- Kosalková, K.; Marcos, A.T.; Fierro, F.; Hernando-Rico, V.; Gutiérrez, S.; Martín, J.F. A Novel Heptameric Sequence (TTAGTAA) Is the Binding Site for a Protein Required for High Level Expression of pcbAB, the First Gene of the Penicillin Biosynthesis in Penicillium chrysogenum. J. Biol. Chem. 2000, 275, 2423–2430. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, W.; Carrasco-Navarro, U.; García-Estrada, C.; Kosalková, K.; Gutiérrez-Ruíz, M.C.; Barrios-González, J.; Fierro, F. bZIP transcription factors PcYap1 and PcRsmA link oxidative stress response to secondary metabolism and development in Penicillium chrysogenum. Microb. Cell Fact. 2022; in press. [Google Scholar] [CrossRef]
- Kaestner, K.H.; Knochel, W.; Martínez, D.E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000, 14, 142–146. [Google Scholar] [CrossRef]
- Domínguez-Santos, R.; Martín, J.F.; Kosalková, K.; Prieto, C.; Ullán, R.V.; García-Estrada, C. The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genet. Biol. 2012, 49, 866–881. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Santos, R.; García-Estrada, C.; Kosalková, K.; Prieto, C.; Santamarta, I.; Martín, J.F. PcFKH1, a novel regulatory factor from the forkhead family, controls the biosynthesis of penicillin in Penicillium chrysogenum. Biochimie 2015, 115, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Dutton, J.R.; Johns, S.; Miller, B.L. StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J. 1997, 16, 5710–5721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, D.C.; Doedt, T.; Chiang, L.Y.; Kim, H.S.; Chen, D.; Nierman, W.C.; Filler, S.G. The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol. Biol. Cell 2005, 16, 5866–5879. [Google Scholar] [CrossRef] [Green Version]
- Coyle, C.M.; Kenaley, S.C.; Rittenour, W.R.; Panaccione, D.G. Association of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia 2007, 99, 804–811. [Google Scholar] [CrossRef]
- Twumasi-Boateng, K.; Yu, Y.; Chen, D.; Gravelat, F.N.; Nierman, W.C.; Sheppard, D.C. Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot. Cell 2009, 8, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Sigl, C.; Haas, H.; Specht, T.; Pfaller, K.; Kürnsteiner, H.; Zadra, I. Among developmental regulators, StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum. Appl. Environ. Microbiol. 2011, 77, 972–982. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wright, S.J.; Krystofova, S.; Park, G.; Borkovich, K.A. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 2007, 61, 423–452. [Google Scholar] [CrossRef]
- Cappell, S.D.; Baker, R.; Skowyra, D.; Dohlman, H.G. Systematic analysis of essential genes reveals important regulators of G protein signaling. Mol. Cell 2010, 38, 746–757. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-S.; Kim, M.-J.; Yu, J.-H.; Shin, K.-S. Heterotrimeric G-protein signalers and RGSs in Aspergillus fumigatus. Pathogens 2020, 9, 902. [Google Scholar] [CrossRef]
- Yu, J.H. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 2006, 44, 145–154. [Google Scholar] [PubMed]
- Park, A.R.; Cho, A.R.; Seo, J.A.; Min, K.; Son, H.; Lee, J.; Choi, G.J.; Kim, J.C.; Lee, Y.W. Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet. Biol. 2012, 49, 511–520. [Google Scholar] [CrossRef] [PubMed]
- García-Rico, R.O.; Fierro, F. Role of G-protein alpha sub-units in the morphogenic processes of filamentous Ascomycota fungi. Rev. Iberoam. Micol. 2017, 34, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ke, Z.; Xu, S.; Tang, W.; Liu, Z. The G-protein alpha subunit CgGa1 mediates growth, sporulation, penetration and pathogenicity in Colletotrichum gloeosporioides. Microb. Pathog. 2021, 161, 105254. [Google Scholar] [CrossRef]
- García-Rico, R.O.; Martín, J.F.; Fierro, F. The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development. Res. Microbiol. 2007, 158, 437–446. [Google Scholar] [CrossRef]
- García-Rico, R.O.; Fierro, F.; Martín, J.F. Heterotrimeric Galpha protein Pga1 of Penicillium chrysogenum controls conidiation mainly by a cAMP-independent mechanism. Biochem. Cell Biol. 2008, 86, 57–69. [Google Scholar] [CrossRef] [PubMed]
- García-Rico, R.O.; Martín, J.F.; Fierro, F. Heterotrimeric Gα protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genet. Biol. 2011, 48, 641–649. [Google Scholar] [CrossRef]
- García-Rico, R.O.; Fierro, F.; Mauriz, E.; Gómez, A.; Fernández-Bodega, M.A.; Martín, J.F. The heterotrimeric Galpha protein Pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology 2008, 154, 3567–3578. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Navarro, U.; Vera-Estrella, R.; Barkla, B.J.; Zúñiga-León, E.; Reyes-Vivas, H.; Fernández, F.J.; Fierro, F. Proteomic analysis of the signaling pathway mediated by the heterotrimeric Gα protein Pga1 of Penicillium chrysogenum. Microb. Cell Fact. 2016, 15, 173. [Google Scholar] [CrossRef] [Green Version]
- Bayram, Ö.; Krappmann, S.; Ni, M.; Bok, J.W.; Helmstaedt, K.; Valerius, O.; Braus-Stromeyer, S.; Kwon, N.-J.; Keller, N.P.; Yu, J.-H.; et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008, 320, 1504–1506. [Google Scholar] [CrossRef]
- Kopke, K.; Hoff, B.; Bloemendal, S.; Katschorowski, A.; Kamerewerd, J.; Kück, U. Members of the Penicillium chrysogenum Velvet Complex Play Functionally Opposing Roles in the Regulation of Penicillin Biosynthesis and Conidiation. Eukaryot. Cell 2013, 12, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Bok, J.W.; Keller, N.P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 2004, 3, 527–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, R.M.; Fedorova, N.D.; Bok, J.W.; Cramer, R.A., Jr.; Wortman, J.R.; Kim, H.S.; Nierman, W.C.; Keller, N.P. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 2007, 3, e30050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Keller, N. Insights to fungal biology through LaeA sleuthing. Fungal Biol. Rev. 2013, 27, 51–59. [Google Scholar] [CrossRef]
- Martín, J.F. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: Cross-talk regulation of secondary metabolite pathways. J. Ind. Microbiol. Biotechnol. 2017, 44, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Ghosh, S.; Roy-Barman, S. MoLAEA Regulates Secondary Metabolism in Magnaporthe oryzae. mSphere 2020, 5, e00936-19. [Google Scholar] [CrossRef] [Green Version]
- Kosalková, K.; García-Estrada, C.; Ullán, R.V.; Godio, R.P.; Feltrer, R.; Teijeira, F.; Mauriz, E.; Martín, J.F. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 2009, 91, 214–225. [Google Scholar] [CrossRef]
- Hoff, B.; Kamerewerd, J.; Sigl, C.; Mitterbauer, R.; Zadra, I.; Kurnsteiner, H.; Kück, U. Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot. Cell. 2010, 9, 1236–1250. [Google Scholar] [CrossRef] [Green Version]
- Kosalková, K.; García-Estrada, C.; Barreiro, C.; Flórez, M.G.; Jami, M.S.; Paniagua, M.A.; Martín, J.F. Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway. Microb. Cell Fact. 2012, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.F. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi. Microb. Cell Fact. 2014, 13, 117. [Google Scholar] [CrossRef]
- Domínguez-Santos, R.; Kosalková, K.; García-Estrada, C.; Barreiro, C.; Ibáñez, A.; Morales, A.; Martín, J.F. Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum. J. Proteom. 2017, 156, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Ariyo, B.T.; Bucke, C.; Keshaverz, T. Alginate oligosaccharides as enhancers of penicillin production in cultures of Penicillium chrysogenum. Biotechnol. Bioeng. 1997, 53, 17–20. [Google Scholar] [CrossRef]
- Ariyo, B.; Tamerler, C.; Bucke, C.; Keshavarz, T. Enhanced penicillin production by oligosaccharides from batch cultures of Penicillium chrysogenum in stirred-tank reactors. FEMS Microbiol. Lett. 1998, 166, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Casqueiro, J.; Gutiérrez, S.; Kosalková, K.; Castillo, N.I.; Martin, J.F. Elicitation of Penicillin Biosynthesis by Alginate in Penicillium chrysogenum, Exerted on pcbAB, pcbC, and penDE Genes at the Transcriptional Level. J. Microbiol. Biotechnol. 2001, 11, 812–818. [Google Scholar]
- Nair, R.; Roy, I.; Bucke, C.; Keshavarz, T. Quantitative PCR study on the mode of action of oligosaccharide elicitors on penicillin G production by Penicillium chrysogenum. J. Appl. Microbiol. 2009, 107, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; García-Estrada, C.; Rumbero, A.; Recio, E.; Albillos, S.M.; Ullán, R.V.; Martín, J.F. Characterization of an Autoinducer of Penicillin Biosynthesis in Penicillium chrysogenum. Appl. Environ. Microbiol. 2011, 77, 5688–5696. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.; García-Estrada, C.; Kosalková, K.; Ullán, R.V.; Albillos, S.M.; Martín, J.F. The inducers 1,3-diaminopropane and spermidine produce a drastic increase in the expression of the penicillin biosynthetic genes for prolonged time, mediated by the laeA regulator. Fungal Genet. Biol. 2012, 49, 1004–1013. [Google Scholar] [CrossRef]
- Zhgun, A.A.; Nuraeva, G.K.; Dumina, M.V.; Voinova, T.M.; Dzhavakhiya, V.V.; Eldarov, M.A. 1,3-Diaminopropane and spermidine upregulate lovastatin production and expression of lovastatin biosynthetic genes in Aspergillus terreus via LaeA regulation. Appl. Biochem. Microbiol. 2019, 55, 243–254. [Google Scholar] [CrossRef]
- Zhgun, A.A.; Eldarov, M.A. Polyamines upregulate cephalosporin C production and expression of β-lactam biosynthetic genes in high-yielding Acremonium chrysogenum strain. Molecules 2021, 26, 6636. [Google Scholar] [CrossRef]
- Keller, N.P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 2019, 17, 167–180. [Google Scholar] [CrossRef]
- Nielsen, J.C.; Grijseels, S.; Prigent, S.; Ji, B.; Dainat, J.; Nielsen, K.F.; Frisvad, J.C.; Workman, M.; Nielsen, J. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat. Microbiol. 2017, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Laich, F.; Fierro, F.; Cardoza, R.E.; Martín, J.F. Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl. Environ. Microbiol. 1999, 65, 1236–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chávez, R.; Fierro, F.; García-Rico, R.O.; Laich, F. Mold-Fermented Foods: Penicillium spp. as Ripening Agents in the Elaboration of Cheese and Meat Products. In Mycofactories; Leitão, A.L., Ed.; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2011; pp. 73–98. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Chávez, F.; Zwahlen, R.D.; Bovenberg, R.A.L.; Driessen, A.J.M. Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Front. Microbiol. 2018, 9, 2768. [Google Scholar] [CrossRef] [PubMed]
- Castillo, N.I.; Ibáñez, M.; Beltrán, E.; Rivera-Monroy, J.; Ochoa, J.C.; Páez-Castillo, M.; Posada-Buitrago, M.L.; Sulyok, M.; Hernández, F. Identification of mycotoxins by UHPLC-QTOF MS in airborne fungi and fungi isolated from industrial paper and antique documents from the Archive of Bogotá. Environ. Res. 2016, 144, 130–138. [Google Scholar] [CrossRef]
- García-Estrada, C.; Ullán, R.V.; Albillos, S.M.; Fernández-Bodega, M.Á.; Durek, P.; von Döhren, H.; Martín, J.F. A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem. Biol. 2011, 18, 1499–1512. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Ries, M.I.; Nijland, J.G.; Lankhorst, P.P.; Hankemeier, T.; Bovenberg, R.A.; Vreeken, R.J.; Driessen, A.J. A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS ONE 2013, 8, e65328. [Google Scholar] [CrossRef] [Green Version]
- Ries, M.I.; Ali, H.; Lankhorst, P.P.; Hankemeier, T.; Bovenberg, R.A.; Driessen, A.J.; Vreeken, R.J. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J. Biol. Chem. 2013, 288, 37289–37295. [Google Scholar] [CrossRef] [Green Version]
- Kosalková, K.; Domínguez-Santos, R.; Coton, M.; Coton, E.; García-Estrada, C.; Liras, P.; Martín, J.F. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl. Microbiol. Biotechnol. 2015, 99, 7601–7612. [Google Scholar] [CrossRef]
- Matsuda, Y.; Awakawa, T.; Abe, I. Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron 2013, 69, 8199–8204. [Google Scholar] [CrossRef]
- Rojas-Aedo, J.F.; Gil-Durán, C.; Del-Cid, A.; Valdés, N.; Álamos, P.; Vaca, I.; García-Rico, R.O.; Levicán, G.; Tello, M.; Chávez, R. The Biosynthetic Gene Cluster for Andrastin A in Penicillium roqueforti. Front. Microbiol. 2017, 8, 813. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, P.I.; Ullán, R.V.; Albillos, S.M.; Montero, O.; Fernández-Bodega, M.A.; García-Estrada, C.; Fernández-Aguado, M.; Martín, J.F. Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: Cross talk of secondary metabolite pathways. Fungal Genet. Biol. 2014, 62, 11–24. [Google Scholar] [CrossRef]
- Roncal, T.; Cordobés, S.; Ugalde, U.; He, Y.; Sterner, O. Novel diterpenes with potent conidiation inducing activity. Tetrahedron Lett. 2002, 43, 6799–6802. [Google Scholar] [CrossRef] [Green Version]
- Roncal, T.; Cordobés, S.; Sterner, O.; Ugalde, U. Conidiation in Penicillium cyclopium is induced by conidiogenone, an endogenous diterpene. Eukaryot. Cell 2002, 1, 823–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiina, T.; Nakagawa, K.; Fujisaki, Y.; Ozaki, T.; Liu, C.; Toyomasu, T.; Hashimoto, M.; Koshino, H.; Minami, A.; Kawaide, H.; et al. Biosynthetic study of conidiation-inducing factor conidiogenone: Heterologous production and cyclization mechanism of a key bifunctional diterpene synthase. Biosci. Biotech. Biochem. 2019, 83, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Chávez, F.; Salo, O.; Samol, M.; Ries, M.; Kuipers, J.; Bovenberg, R.A.L.; Vreeken, R.J.; Driessen, A.J.M. Deregulation of secondary metabolism in a histone deacetylase mutant of Penicillium chrysogenum. MicrobiologyOpen 2018, 7, e00598. [Google Scholar] [CrossRef] [Green Version]
- Van der Lee, T.A.J.; Medema, M.H. Computational strategies for genome-based natural product discovery and engineering in fungi. Fungal Genet. Biol. 2016, 89, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Bok, J.W.; Hoffmeister, D.; Maggio-Hall, L.A.; Murillo, R.; Glasner, J.D.; Keller, N.P. Genomic mining for Aspergillus natural products. Chem. Biol. 2006, 13, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef]
- Rutledge, P.J.; Challis, G.L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 2015, 13, 509–523. [Google Scholar] [CrossRef]
- Lyu, H.-N.; Liu, H.-W.; Keller, N.; Yin, W.-B. Harnessing Diverse Transcriptional Regulators for Natural Product Discovery in Fungi. Nat. Prod. Rep. 2020, 37, 6–16. [Google Scholar] [CrossRef]
- Alberti, F.; Foster, G.D.; Bailey, A.M. Natural products from filamentous fungi and production by heterologous expression. Appl. Microbiol. Biotechnol. 2017, 101, 493–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, K.D.; Butler, K.S.; Moore, B.S.; Chekan, J.R. Genome mining methods to discover bioactive natural products. Nat. Prod. Rep. 2021, 38, 2100–2129. [Google Scholar] [CrossRef] [PubMed]
- Shwab, E.K.; Bok, J.W.; Tribus, M.; Galehr, J.; Graessle, S.; Keller, N.P. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell 2007, 6, 1656–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Z.; Zhou, H.; Wang, X.; Huang, H.; Wang, H.; Zhang, R.; Wang, Z.; Han, J. Deletion of the histone deacetylase HdaA in endophytic fungus Penicillium chrysogenum Fes1701 induces the complex response of multiple bioactive secondary metabolite production and relevant gene cluster expression. Molecules 2020, 25, 3657. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.; Gong, T.; Wen, Y.H.; Yan, D.J.; Chen, J.J.; Zhu, P. Chrysoxanthones A-C, three new xanthone-chromanone heterodimers from sponge-associated Penicillium chrysogenum HLS111 treated with histone deacetylase inhibitor. Mar. Drugs 2018, 16, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maskey, R.P.; Grün-Wollny, I.; Laatsch, H. Sorbicillin analogues and related dimeric compounds from Penicillium notatum. J. Nat. Prod. 2005, 68, 865–870. [Google Scholar] [CrossRef]
- Xin, Z.H.; Tian, L.; Zhu, T.J.; Wang, W.L.; Du, L.; Fang, Y.C.; Gu, Q.Q.; Zhu, W.M. Isocoumarin derivatives from the sea squirt-derived fungus Penicillium stoloniferum QY2-10 and the halotolerant fungus Penicillium notatum B-52. Arch. Pharm. Res. 2007, 30, 816–819. [Google Scholar] [CrossRef]
- Xin, Z.H.; Wang, W.L.; Zhang, Y.P.; Xie, H.; Gu, Q.Q.; Zhu, W.M. Pennicitrinone D, a new citrinin dimer from the halotolerant fungus Penicillium notatum B-52. J. Antibiot. 2009, 62, 225–227. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.S.; Li, X.M.; Du, F.Y.; Li, C.S.; Proksch, P.; Wang, B.G. Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar. Drugs 2010, 9, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.S.; Li, X.M.; Li, C.S.; Proksch, P.; Wang, B.G. Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorgan. Med. Chem. Lett. 2011, 21, 2894–2897. [Google Scholar] [CrossRef]
- Gao, S.S.; Li, X.M.; Zhang, Y.; Li, C.S.; Wang, B.G. Conidiogenones H and I, two new diterpenes of Cyclopiane class from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Chem. Biodivers. 2011, 8, 1748–1753. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yun, K.; Nenkep, V.N.; Choi, H.D.; Kang, J.S.; Son, B.W. Induced production of halogenated diphenyl ethers from the marine-derived fungus Penicillium chrysogenum. Chem. Biodivers. 2010, 7, 2766–2770. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, Y.; Sun, K.; Liu, P.; Yin, X.; Zhu, W. Cerebrosides and 2-pyridone alkaloids from the halotolerant fungus Penicillium chrysogenum grown in a hypersaline medium. J. Nat. Prod. 2011, 74, 1298–1302. [Google Scholar] [CrossRef]
- Lopes, F.C.; Tichota, D.M.; Sauter, I.P.; Meira, S.M.; Segalin, J.; Rott, M.B.; Rios, A.D.; Brandelli, A. Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues. Ann. Microbiol. 2012, 63, 771–778. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, X.; Du, L.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Sorbicatechols A and B, antiviral sorbicillinoids from the marine-derived fungus Penicillium chrysogenum PJX-17. J. Nat. Prod. 2014, 77, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Li, D.; Peng, J.; Zhu, T.; Gu, Q.; Li, D. Penicitols A-C and penixanacid A from the mangrove-derived Penicillium chrysogenum HDN11-24. J. Nat. Prod. 2015, 78, 306–310. [Google Scholar] [CrossRef]
- Vasanthakumar, A.; De Araujo, A.; Mazurek, J.; Schilling, M.; Mitchell, R. Pyomelanin production in Penicillium chrysogenum is stimulated by L-tyrosine. Microbiology 2015, 161, 1211–1218. [Google Scholar] [CrossRef]
- Mady, M.S.; Mohyeldin, M.M.; Ebrahim, H.Y.; Elsayed, H.E.; Houssen, W.E.; Haggag, E.G.; Soliman, R.F.; El Sayed, K.A. The indole alkaloid meleagrin, from the olive tree endophytic fungus Penicillium chrysogenum, as a novel lead for the control of c-Met-dependent breast cancer proliferation, migration and invasion. Bioorgan. Med. Chem. 2016, 24, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Chen, H.; Li, W.; Zhu, X.; Ding, W.; Li, C. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum. Mar. Drugs 2016, 14, 172. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhou, D.; Liang, F.; Wu, Z.; She, Z.; Li, C. Penochalasin K, a new unusual chaetoglobosin from the mangrove endophytic fungus Penicillium chrysogenum V11 and its effective semi-synthesis. Fitoterapia 2017, 123, 23–28. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Wang, Z.; Lin, X.; Zhao, B.; Kaliaperumal, K.; Liao, X.; Tu, Z.; Li, J.; Xu, S.; et al. Structurally diverse secondary metabolites from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001 and their biological evaluation. Fitoterapia 2017, 117, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Zhou, L.M.; Chen, S.T.; Yang, B.; Liao, S.R.; Kong, F.D.; Lin, X.P.; Wang, F.Z.; Zhou, X.F.; Liu, Y.H. New chlorinated diphenyl ethers and xanthones from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001. Fitoterapia 2018, 125, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Liu, X.; Mo, T.; Zhu, Z.; Li, J.; Wang, J.; Shi, X.; Zeng, K.; Wang, X.; Tu, P.; et al. 3,5-Dimethylorsellinic Acid Derived Meroterpenoids from Penicillium chrysogenum MT-12, an Endophytic Fungus Isolated from Huperzia serrata. J. Nat. Prod. 2017, 80, 2699–2707. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Liu, X.; Mo, T.; Li, S.S.; Wang, J.; Shi, X.P.; Wang, X.H.; Zhu, Z.X.; Zhao, Y.F.; Jin, H.W.; et al. Nitric oxide inhibitory polyketides from Penicillium chrysogenum MT-12, an endophytic fungus isolated from Huperzia serrata. Fitoterapia 2017, 123, 35–43. [Google Scholar] [CrossRef]
- Zhao, D.L.; Yuan, X.L.; Du, Y.M.; Zhang, Z.F.; Zhang, P. Benzophenone Derivatives from an Algal-Endophytic Isolate of Penicillium chrysogenum and Their Cytotoxicity. Molecules 2018, 23, 3378. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.F.; Mao, N.; Xue, X.J.; Qi, Y.X.; Wei, M.Y.; Wang, C.Y.; Shao, C.L. Structures and absolute configurations of diketopiperazine alkaloids chrysopiperazines A-C from the Gorgonian-derived Penicillium chrysogenum fungus. Mar. Drugs 2019, 17, 250. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Xia, M.; Chen, M.; Liu, X.; Li, Z.; Xie, Y.; Shao, Z.; Zhang, G. Cytotoxic polyketides isolated from the deep-sea-derived fungus Penicillium chrysogenum MCCC 3A00292. Mar. Drugs 2019, 17, 686. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Sun, S.; Li, L.; Dai, X.; Li, H.; He, Q.; Zhu, H. Tyrosol from marine Fungi, a novel Quorum sensing inhibitor against Chromobacterium violaceum and Pseudomonas aeruginosa. Bioorgan. Chem. 2019, 91, 103140. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Nadumane, V.K. Modulation of Bax and Bcl-2 genes by secondary metabolites produced by Penicillium rubens JGIPR9 causes the apoptosis of cancer cell lines. Mycology 2019, 12, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Cai, J.; Zhong, W.; Xu, G.; Wang, F.; Tian, X.; Zhou, X.; Liu, Q.; Liu, Y.; Wang, J. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from the deep-sea fungus Penicillium chrysogenum SCSIO 07007. Bioorgan. Chem. 2020, 96, 103646. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Li, F.; Lin, S.; Yang, B.; Mo, S.; Li, H.; Wang, J.; Qi, C.; Hu, Z.; et al. Bioassay-Directed Isolation of Antibacterial Metabolites from an Arthropod-Derived Penicillium chrysogenum. J. Nat. Prod. 2020, 83, 3397–3403. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.J.; Zhu, T.; Liu, J.T.; Ouyang, L.; Yang, F.; Lin, H.W. New sorbicillinoid derivatives with GLP-1R and eEF2K affinities from a sponge-derived fungus Penicillium chrysogenum 581F1. Nat. Prod. Res. 2020, 34, 2880–2886. [Google Scholar] [CrossRef] [PubMed]
- Pontecorvo, G.; Sermonti, G. Parasexual recombination in Penicillium chrysogenum. J. Gen. Microbiol. 1954, 11, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontecorvo, G. The parasexual cycle in fungi. Annu. Rev. Microbiol. 1956, 10, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Elander, R.P. Enhanced penicillin biosynthesis in mutant and recombinant strains of Penicillium chrysogenum. In Induced Mutations and Their Utilization; Stübbe, H., Ed.; Academie-Verlag: Berlin, Germany, 1967; pp. 403–423. [Google Scholar]
- Elander, R.P. Applications of microbial genetics to industrial fermentations. In Fermentation advances; Perlman, D., Ed.; Academic Press Inc.: New York, NY, USA, 1969; pp. 89–114. [Google Scholar]
- Pathak, S.G.; Elander, R.P. Biochemical Properties of Haploid and Diploid Strains of Penicillium chrysogenum. Appl. Microbiol. 1971, 22, 366–371. [Google Scholar] [CrossRef]
- Anné, J.; Peberdy, J.F. Induced Fusion of Fungal Protoplasts following Treatment with Polyethylene Glycol. J. Gen. Microbiol. 1976, 92, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Gnanam, A.J. Protoplast Fusion Techniques in Fungi. In Laboratory Protocols in Fungal Biology; Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A., Eds.; Springer: New York, NY, USA, 2012; pp. 483–488. [Google Scholar] [CrossRef]
- Hospet, R.; Thangadurai, D.; Cruz-Martins, N.; Sangeetha, J.; Appaiah, K.A.A.; Chowdhury, Z.Z.; Bedi, N.; Soytong, K.; Al Tawahaj, A.R.M.; Jabeen, S.; et al. Genome shuffling for phenotypic improvement of industrial strains through recursive protoplast fusion technology. Crit. Rev. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Chang, L.T.; Terasaka, D.T.; Elander, R.P. Protoplast fusion in industrial fungi. Dev. Ind. Microbiol. 1982, 23, 21–29. [Google Scholar]
- Chen, C.-C.; Feng, Y.-S.; Chyau, C.-C.; Chen, C.-N.; Huang, S.-J.; Chen, Y.-L.; Tseng, H.-P.; Chung, W.-H.; Chen, Y.-H. Method for Producing Novel β-Lactam Antibiotic from Protoplast Fusion Strain. U.S. Patent Application No. 7,241,588, 10 July 2007. [Google Scholar]
- Dahlmann, T.A.; Böhm, J.; Becker, K.; Kück, U. Sexual recombination as a tool for engineering industrial Penicillium chrysogenum strains. Curr. Genet. 2015, 61, 679–683. [Google Scholar] [CrossRef]
- Cantoral, J.M.; Díez, B.; Barredo, J.L.; Álvarez, E.; Martín, J.F. High–Frequency Transformation of Penicillium chrysogenum. Bio/Technology 1987, 5, 494–497. [Google Scholar] [CrossRef]
- Díez, B.; Álvarez, E.; Cantoral, J.M.; Barredo, J.L.; Martín, J.F. Selection and characterization of pyrG mutants of Penicillium chrysogenum lacking orotidine-5′-phosphate decarboxylase and complementation by the pyr4 gene of Neurospora crassa. Curr. Genet. 1987, 12, 277–282. [Google Scholar] [CrossRef]
- Cantoral, J.M.; Barredo, J.L.; Díez, B.; Alvarez, E.; Martín, J.F. Nucleotide sequence of the Penicillium chrysogenum pyrG (orotidine-5′-phosphate-decarboxylase) gene. Nucleic Acids Res. 1988, 16, 8177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, F.; Lozano, M.; Rubio, V.; Peñalva, M.A. Transformation in Penicillium chrysogenum. Gene 1987, 51, 97–102. [Google Scholar] [CrossRef]
- Picknett, T.M.; Saunders, G.; Ford, P.; Holt, G. Development of a gene transfer system for Penicillium chrysogenum. Curr. Genet. 1987, 12, 449–455. [Google Scholar] [CrossRef]
- Gouka, R.J.; Hartingsveldt, W.V.; Bovenberg, R.A.L.; van den Hondel, C.A.M.; Gorcom, R.F.M. Cloning of the nitrate-nitrite reductase gene cluster of Penicillium chrysogenum and use of the niaD gene as a homologous selection marker. J. Biotechnol. 1991, 20, 189–200. [Google Scholar] [CrossRef]
- Beri, R.K.; Turner, G. Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selective marker. Curr. Genet. 1987, 11, 639–641. [Google Scholar] [CrossRef]
- Kolar, M.; Punt, P.J.; van den Hondel, C.A.M.J.J.; Schwab, H. Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene 1988, 62, 127–134. [Google Scholar] [CrossRef]
- Bull, J.H.; Smith, D.J.; Turner, G. Transformation of Penicillium chrysogenum with a dominant selectable marker. Curr. Genet. 1988, 13, 377–382. [Google Scholar] [CrossRef]
- Stahl, U.; Leitner, E.; Esser, K. Transformation of Penicilhum chrysogenum by a vector containing a mitochondrial origin of replication. Appl. Microbial. Biotechnol. 1987, 26, 237–241. [Google Scholar] [CrossRef]
- Carramolino, L.; Lozano, M.; Pérez-Aranda, A.; Rubio, V.; Sánchez, F. Transformation of Penicillium chrysogenum to sulfonamide resistance. Gene 1989, 77, 31–38. [Google Scholar] [CrossRef]
- Picknett, T.M.; Saunders, G. Transformation of Penicillium chysogenum with selection for increased resistance to benomyl. FEMS Microbiol. Lett. 1989, 60, 165–168. [Google Scholar] [CrossRef]
- Sigl, C.; Handler, M.; Sprenger, G.; Kürnsteiner, H.; Zadra, I. A novel homologous dominant selection marker for genetic transformation of Penicillium chrysogenum: Overexpression of squalene epoxidase-encoding ergA. J. Biotechnol. 2010, 150, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Kopke, K.; Hoff, B.; Kück, U. Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl. Environ. Microbiol. 2010, 76, 4664–4674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.-B.; Kong, Q.-L.; Xu, W.-S. Efficient transformation of Penicillium chrysogenum mediated by Agrobacterium tumefaciens LBA4404 for cloning of Vitreoscilla hemoglobin gene. Electron. J. Biotechnol. 2002, 5, 21–28. [Google Scholar] [CrossRef] [Green Version]
- De Boer, P.; Bronkhof, J.; Dukiќ, K.; Kerkman, R.; Touw, H.; van den Berg, M.; Offringa, R. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches. Fungal Genet. Biol. 2013, 61, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.X.; Vu, H.H.; Nguyen, G.T.; Vu, H.T.; Mai, L.T.D.; Pham, D.N.; Le, D.H.; Nguyen, H.Q.; Tran, V.T. A newly constructed Agrobacterium-mediated transformation system revealed the influence of nitrogen sources on the function of the LaeA regulator in Penicillium chrysogenum. Fungal Biol. 2019, 123, 830–842. [Google Scholar] [CrossRef]
- Gems, D.; Johnstone, I.L.; Clutterbuck, A.J. An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 1991, 98, 61–67. [Google Scholar] [CrossRef]
- Aleksenko, A.; Clutterbuck, A.J. The AMA1 plasmid replicator in Aspergillus nidulans is an inverted duplication of a low-copy-number dispersed genomic repeat. Mol. Microbiol. 1996, 19, 565–574. [Google Scholar] [CrossRef]
- Fierro, F.; Kosalková, K.; Gutiérrez, S.; Martín, J.F. Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum. Curr. Genet. 1996, 29, 482–489. [Google Scholar] [CrossRef]
- Fierro, F.; Laich, F.; García-Rico, R.O.; Martín, J.F. High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. Int. J. Food Microbiol. 2004, 90, 237–248. [Google Scholar] [CrossRef]
- Pohl, C.; Kiel, J.A.K.W.; Driessen, A.J.M.; Bovenberg, R.A.L.; Nygård, Y. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum. ACS Synth. Biol. 2016, 5, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Mózsik, L.; Pohl, C.; Meyer, V.; Bovenberg, R.A.L.; Nygård, Y.; Driessen, A.J.M. Modular Synthetic Biology Toolkit for Filamentous Fungi. ACS Synth. Biol. 2021, 10, 2850–2861. [Google Scholar] [CrossRef]
- Veenstra, A.E.; van Solingen, P.; Bovenberg, R.A.; van der Voort, L.H. Strain improvement of Penicillium chrysogenum by recombinant DNA techniques. J. Biotechnol. 1991, 17, 81–90. [Google Scholar] [CrossRef]
- Theilgaard, H.; van den Berg, M.; Mulder, C.; Bovenberg, R.; Nielsen, J. Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol. Bioeng. 2001, 72, 379–388. [Google Scholar] [CrossRef]
- Weber, S.S.; Polli, F.; Boer, R.; Bovenberg, R.A.L.; Driessen, A.J.M. Increased penicillin production in Penicillium chrysogenum production strains via balanced overexpression of isopenicillin N acyltransferase. Appl. Environ. Microbiol. 2012, 78, 7107–7113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez, B.; Mellado, E.; Rodríguez, M.; Bernasconi, E.; Barredo, J.L. The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi. Appl. Microbiol. Biotechnol. 1999, 52, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Polli, F.; Meijrink, B.; Bovenberg, R.A.L.; Driessen, A.J.M. New promoters for strain engineering of Penicillium chrysogenum. Fungal Genet. Biol. 2016, 89, 62–71. [Google Scholar] [CrossRef]
- Zadra, I.; Abt, B.; Parson, W.; Haas, H. xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl. Environ. Microbiol. 2000, 66, 4810–4816. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, S.; Marcos, A.T.; Casqueiro, J.; Kosalková, K.; Fernández, F.J.; Velasco, J.; Martín, J.F. Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology 1999, 145, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, L.; Martín de Valmaseda, E.; Casqueiro, J.; Ullán, R.V.; Lamas-Maceiras, M.; Bañuelos, O.; Martín, J.F. Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from alpha-aminoadipic acid. Appl. Environ. Microbiol. 2004, 70, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Snoek, I.S.; van der Krogt, Z.A.; Touw, H.; Kerkman, R.; Pronk, J.T.; Bovenberg, R.A.; van den Berg, M.A.; Daran, J.M. Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet. Biol. 2009, 46, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Hoff, B.; Kamerewerd, J.; Sigl, C.; Zadra, I.; Kück, U. Homologous recombination in the antibiotic producer Penicillium chrysogenum: Strain DeltaPcku70 shows up-regulation of genes from the HOG pathway. Appl. Microbiol. Biotechnol. 2010, 85, 1081–1094. [Google Scholar] [CrossRef]
- De Boer, P.; Bastiaans, J.; Touw, H.; Kerkman, R.; Bronkhof, J.; van den Berg, M.; Offringa, R. Highly efficient gene targeting in Penicillium chrysogenum using the bi-partite approach in deltalig4 or deltaku70 mutants. Fungal Genet. Biol. 2010, 47, 839–846. [Google Scholar] [CrossRef]
- Ullán, R.V.; Godio, R.P.; Teijeira, F.; Vaca, I.; García-Estrada, C.; Feltrer, R.; Kosalková, K.; Martín, J.F. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: Validation studies using β-lactam genes expression. J. Microbiol. Methods 2008, 75, 209–218. [Google Scholar] [CrossRef]
- Janus, D.; Hoff, B.; Kück, U. Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum. Microbiology 2009, 155, 3946–3956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlmann, T.A.; Kück, U. Dicer-Dependent Biogenesis of Small RNAs and Evidence for MicroRNA-Like RNAs in the Penicillin Producing Fungus Penicillium chrysogenum. PLoS ONE 2015, 10, e0125989. [Google Scholar] [CrossRef] [Green Version]
- Skatrud, P.L.; Queener, S.W.; Fisher, D.L.; Chapman, J.L. Strain improvement studies in Penicillium chrysogenum using the cloned P. chrysogenum Isopenicillin N Synthase gene and the amdS gene of Aspergillus nidulans. SIM News 1987, 37, 77. [Google Scholar]
- Henriksen, C.M.; Christensen, L.H.; Nielsen, J.; Villadsen, J. Growth energetics and metabolic fluxes in continuous cultures of Penicillium chrysogenum. J. Biotechnol. 1996, 45, 149–164. [Google Scholar] [CrossRef]
- Christensen, B.; Thykaer, J.; Nielsen, J. Metabolic characterization of high- and low-yielding strains of Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 2000, 54, 212–217. [Google Scholar] [CrossRef]
- Nielsen, J.; Jørgensen, H.S. Metabolic control analysis of the penicillin biosynthetic pathway in a high-yielding strain of Penicillium chrysogenum. Biotechnol. Prog. 1995, 11, 299–305. [Google Scholar] [CrossRef]
- Theilgaard, H.A.; Nielsen, J. Metabolic control analysis of the penicillin biosynthetic pathway: The influence of the LLDACV:bisACV ratio on the flux control. Antonie Van Leeuwenhoek 1999, 75, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Casqueiro, J.; Gutiérrez, S.; Bañuelos, O.; Hijarrubia, M.J.; Martín, J.F. Gene targeting in Penicillium chrysogenum: Disruption of the lys2 gene leads to penicillin overproduction. J. Bacteriol. 1999, 181, 1181–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullán, R.V.; Teijeira, F.; Martín, J.F. Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic beta-lactam transporter. Curr. Genet. 2008, 54, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Ullán, R.V.; Campoy, S.; Casqueiro, J.; Fernández, F.J.; Martín, J.F. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem. Biol. 2007, 14, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Cantoral, J.M.; Gutiérrez, S.; Fierro, F.; Gil-Espinosa, S.; van Liempt, M.; Martín, J.F. Biochemical characterization and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. J. Biol. Chem. 1993, 268, 737–744. [Google Scholar] [CrossRef]
- Fernández, F.J.; Gutiérrez, S.; Velasco, J.; Montenegro, E.; Marcos, A.T.; Martín, J.F. Molecular characterization of three loss-of-function mutations in the isopenicillin N-acyltransferase gene (penDE) of Penicillium chrysogenum. J. Bacteriol. 1994, 176, 4941–4948. [Google Scholar] [CrossRef] [Green Version]
- Velasco, J.; Gutiérrez, S.; Casqueiro, J.; Fierro, F.; Campoy, S.; Martín, J.F. Cloning and characterization of the gene cahB encoding a cephalosporin C acetylhydrolase from Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 2001, 57, 350–356. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, G.; Xie, L.; Yuan, N.; Zhu, C.; Zhu, B.; Hu, Y. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum. Mol. Biotechnol. 2010, 44, 101–109. [Google Scholar] [CrossRef]
- Nijland, J.G.; Kovalchuk, A.; van den Berg, M.A.; Bovenberg, R.A.; Driessen, A.J. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet. Biol. 2008, 45, 1415–1421. [Google Scholar] [CrossRef] [Green Version]
- Veiga, T.; Gombert, A.K.; Landes, N.; Verhoeven, M.D.; Kiel, J.A.; Krikken, A.M.; Nijland, J.G.; Touw, H.; Luttik, M.A.; van der Toorn, J.C.; et al. Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis. Metab. Eng. 2012, 14, 437–448. [Google Scholar] [CrossRef]
- Crawford, L.; Stepan, A.M.; McAda, P.C.; Rambosek, J.A.; Conder, M.J.; Vinci, V.A.; Reeves, C.D. Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechnology 1995, 13, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Robin, J.; Jakobsen, M.; Beyer, M.; Noorman, H.; Nielsen, J. Physiological characterisation of Penicillium chrysogenum strains expressing the expandase gene from Streptomyces clavuligerus during batch cultivations. Growth and adipoyl-7-aminodeacetoxycephalosporanic acid production. Appl. Microbiol. Biotechnol. 2001, 57, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Martins-Santana, L.; Nora, L.C.; Sanches-Medeiros, A.; Lovate, G.L.; Cassiano, M.H.A.; Silva-Rocha, R. Systems and Synthetic Biology Approaches to Engineer Fungi for Fine Chemical Production. Front. Bioeng. Biotechnol. 2018, 6, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, K.J.; Hans, M.; Meijrink, B.; van Scheppingen, W.B.; Vollebregt, A.; Tee, K.L.; van der Laan, J.M.; Leys, D.; Munro, A.W.; van den Berg, M.A. Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc. Natl. Acad. Sci. USA 2015, 112, 2847–2852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoni, M.; Rollini, M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 2002, 58, 555–564. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, J.K.; Kwon, T.J.; Yi, D.H.; Kim, Y.J.; Moon, S.H.; Suh, H.H.; Kang, S.M.; Park, Y.I. Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnol. Lett. 2003, 25, 1827–1831. [Google Scholar] [CrossRef]
- Pohl, C.; Polli, F.; Schütze, T.; Viggiano, A.; Mózsik, L.; Jung, S.; de Vries, M.; Bovenberg, R.A.L.; Meyer, V.; Driessen, A.J.M. A Penicillium rubens platform strain for secondary metabolite production. Sci. Rep. 2020, 10, 7630. [Google Scholar] [CrossRef]
- Schuster, M.; Kahmann, R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet. Biol. 2019, 130, 43–53. [Google Scholar] [CrossRef]
- Szenk, M.; Yim, T.; Balázsi, G. Multiplexed Gene Expression Tuning with Orthogonal Synthetic Gene Circuits. ACS Synth. Biol. 2020, 9, 930–939. [Google Scholar] [CrossRef]
- Mózsik, L.; Büttel, Z.; Bovenberg, R.A.L.; Driessen, A.J.M.; Nygård, Y. Synthetic control devices for gene regulation in Penicillium chrysogenum. Microb. Cell Fact. 2019, 18, 203. [Google Scholar] [CrossRef]
- Mózsik, L.; Hoekzema, M.; de Kok, N.A.W.; Bovenberg, R.A.L.; Nygård, Y.; Driessen, A.J.M. CRISPR-based transcriptional activation tool for silent genes in filamentous fungi. Sci. Rep. 2021, 11, 1118. [Google Scholar] [CrossRef]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef] [Green Version]
- Iacovelli, R.; Bovenberg, R.A.L.; Driessen, A.J.M. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J. Ind. Microbiol. Biotechnol. 2021, 48, kuab045. [Google Scholar] [CrossRef]
- Awan, A.R.; Shaw, W.M.; Ellis, T. Biosynthesis of therapeutic natural products using synthetic biology. Adv. Drug Deliv. Rev. 2016, 105, 96–106. [Google Scholar] [CrossRef]
- Abd El Aty, A.A.; Mohamed, A.A.; Zohair, M.M.; Soliman, A. Statistically controlled biogenesis of silver nano-size by Penicillium chrysogenum MF318506 for biomedical application. Biocatal. Agric. Biotechnol. 2020, 25, 101592. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Abu-Elghait, M.; Ahmed, N.E.; Salem, S.S. Eco-friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for In Vitro Antibacterial, Antibiofilm, and Antifungal Applications. Biol. Trace Elem. Res. 2021, 199, 2788–2799. [Google Scholar] [CrossRef]
- Germain, J.; Raveton, M.; Binet, M.N.; Mouhamadou, B. Screening and metabolic potential of fungal strains isolated from contaminated soil and sediment in the polychlorinated biphenyl degradation. Ecotoxicol. Environ. Saf. 2021, 208, 111703. [Google Scholar] [CrossRef]
- El-Shora, H.M.; El-Sharkawy, R.M. Tyrosinase from Penicillium chrysogenum: Characterization and application in phenol removal from aqueous solution. J. Gen. Appl. Microbiol. 2021, 66, 323–329. [Google Scholar] [CrossRef]
- Elleuche, S.; Nolting, N.; Pöggeler, S. Protein splicing of PRP8 mini-inteins from species of the genus Penicillium. Appl. Microbiol. Biotechnol. 2006, 72, 959–967. [Google Scholar] [CrossRef]
- Cheperegin, S.E.; Malysheva, A.V.; Sannikova, E.P.; Gubaidullin, I.I.; Efremov, B.D.; Kozlov, D.G. Expression of Highly Active Bacterial Phospholipase A2 in Yeast Using Intein-Mediated Delayed Protein Autoactivation. Appl. Biochem. Biotechnol. 2021, 193, 1351–1364. [Google Scholar] [CrossRef]
- Oses-Pedraza, R.; Torres-Díaz, C.; Lavín, P.; Retamales-Molina, P.; Atala, C.; Gallardo-Cerda, J.; Acuña-Rodríguez, I.S.; Molina-Montenegro, M.A. Root endophytic Penicillium promotes growth of Antarctic vascular plants by enhancing nitrogen mineralization. Extremophiles 2020, 24, 721–732. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, M.; Li, Y.; Zhong, Y.; Li, X.; Chen, Z.; Chen, S.; Wang, J. Penicillium chrysogenum polypeptide extract protects tobacco plants from tobacco mosaic virus infection through modulation of ABA biosynthesis and callose priming. J. Exp. Bot. 2021, 72, 3526–3539. [Google Scholar] [CrossRef]
- Yang, X.C.; Duan, Y.M.; Wang, X.X.; Wang, J.G.; Xu, X.Y.; Chen, S.L.; Yin, P.; Zhu, S.; Li, X.J.; Chen, S.Y. The effect of dry mycelium of Penicillium chrysogenum on the growth of flue-cured tobacco on floating system and resistance against tobacco mosaic under field conditions. J. Yunnan Agric. Univ. 2013, 28, 169–174. [Google Scholar]
Strain | Source | Secondary Metabolites | Bioactivity | Ref. |
---|---|---|---|---|
P. notatum isolate GWP A | Benchtop contamination | Rezishanones A-D (sorbicillinoids) | Weak activity against Staphylococcus aureus and Bacillus subtilis | [258] |
P. notatum B-52 | Salt sediments in Qinghai Lake, China | Di-hydrocitrinone (Isocoumarin deri-vative) | Inactive—evaluated against cell lines P388, BEL-7402, A-549 and HL-60 | [259] |
P. notatum B-52 | Salt sediments in Qinghai Lake, China | Pennicitrinone A and D (Citrinin di-mers), citrinin and mycophenolic acid | Pennicitrinone A: weak cytotoxicity against cancer cell lines P388 and BEL-7402 | [260] |
P. chrysogenum QEN-24S | Unidentified marine red algal species of the genus Laurencia | Penicitides A and B (Polyketides). Glycerol derivatives 2-(2,4-dihydroxy-6-methylbenzoyl)-glycerol and penicimonoterpene | Penicitide A: cytotoxic activity against the human hepatocellular liver carcinoma (HepG2) cell line. Penicimonoterpene: potent activity against Alternaria brassicae | [261] |
P. chrysogenum QEN-24S | Marine red algal species of the genus Laurencia | Penicisteroids A and B (polyoxygen-ated steroids) | Antifungal and cytotxic activity | [262] |
P. chrysogenum QEN-24S | Marine red algal species of the genus Laurencia | Conidiogenones H and I (diterpenes) | Conidiation inducer | [263] |
P. chrysogenum MFB574-2 | Marine red alga Hypnea complex | Two polybrominated diphenyl ethers (1,1-diphenyl-2-picrylhydrazyl) | Free radical-scavenging activity | [264] |
P. chrysogenum PXP-55 | Surface of the roots of the mangrove plant Rhizophora stylosa, China | Chrysogesides A-E (cerebrosides) Chrysogedones A and B (2-pyridone alkaloids) | Chrysogeside B: antimicrobial activity against Enterobacter aerogenes. No compound showed cytotoxic effects on P388, HeLa, HL-60 or A549 cancer cell lines | [265] |
P. chrysogenum IFL1 | Agro-industrial residues, grape waste and cheese whey | Ciclopiazonic acid, rugulosin, formyl-xanthocilin X | Antimicrobial activities against bacteria, fungi and amoebae | [266] |
P. chrysogenum PJX-17 | Sediments collected in the South China Sea | Sorbicatechols A and B (polyketides) | Anti-influenza activity | [267] |
P. chrysogenum HDN11-24 | Rhizosphere soil of the mangrove plant Acanthus ilicifolius | Penicitols A-C (citrinin derivatives). Penixanacid A (xanthone, polyketide) | Cytotoxicity against HeLa, BEL-7402, HEK-293, HCT-116 and A549 cell lines | [268] |
P. chrysogenum strains T04C and Fb | Walls of the tomb of King Tutankhamun in Upper Egypt | Pyomelanin | Contributes to survival of microorganisms in adverse conditions | [269] |
P. chrysogenum isolate MS15 | Leaf of olive tree Olea europea, Siwa oasis, Egyptian western desert | Meleagrin, roquefortine C, dehydro-histidyltryptophenyl-diketopiperazine (DHTD) | Meleagrin: c-Met inhibitory activity. Anti-tumoral activity against c-Met-dependent metastatic and invasive breast malignancies | [270] |
P. chrysogenum V11 | Endophytic, isolated from mangrove Myoporum bontioides | Penochalasins I and J (chaetoglobosins: cytochalasan alkaloids) | Penochalasin I: cytotoxicity against MDA-MB-435 and SGC-7901 human tumor cell lines. Penochalasin J: inhibited growth of Colletotrichum gloeosporioides | [271] |
P. chrysogenum V11 | Endophytic, isolated from mangrove Myoporum bontioides A. Gray | Penochalasins I and K. Chaetoglobosins A and C | Penochalasin K: inhibitory activities against Colletotrichum gloeosporioides and Rhizoctonia solani; cytotoxicity against cell lines MDA-MB-435 (breast cancer), SGC-7901 (gastric cancer) and A549 (lung adenocarcinoma) | [272] |
P. chrysogenum SCSIO 41001 | Deep sea sediment of Indian Ocean | Bipenicilisorin (isocoumarin dimer). Yaminterritrem C (merosesquiterpenoid). Penicitrinone F (citrinin dimer). Terremide D (alkaloid). δ valerolacton | Bipenicilisorin: cytotoxic activities against human cancer cell lines K562, A549, and Huh-7. Penicitrinone F: moderate inhibitory activity against cell line EV71 | [273] |
P. chrysogenum SCSIO 41001 | Deep sea sediment of Indian Ocean | Four chrysines (chlorinated diphenyl ethers) | Inhibitory activity against α-glucosidase, delays absorption of glucose after a meal | [274] |
P. chrysogenum MT-12 | Endophytic, isolated from moss Huperzia serrata, Nanping, China | Chrysogenolides (A-H). Seven 3,5-dimethylorsellinic acid derived meroterpenoids | Several compounds inhibit NO production in LPS-activated RAW 264.7 macrophage cells | [275] |
P. chrysogenum MT-12 | Endophytic, isolated from moss Huperzia serrata, Nanping, China | 12 Penicichrysogenins (polyketides) | Inhibition of nitric oxide production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells | [276] |
P. chrysogenum AD-1540 | Inner tissue of the marine red alga Grateloupia turuturu | Chryxanthones A and B (benzophe-none derivatives) | Chryxanthone A: moderate cytotoxicity against BT-549 and HeLa cell lines. Chryxanthone B: selective growth-inhibitory effect on the A549 cell line | [277] |
P. chrysogenum CHNSCLM-0019 | Gorgonian Dichotella gemmacea collected in the South China Sea | Chrysopiperazines A and B, and Chrysopiperazine C (diketopiperazine alkaloids) | Inactive against several bacteria and Candida albicans at a concentration of 50 µM | [278] |
P. chrysogenum MCCC 3A00292 | Deep-sea sediment (2076 meters depth) of the South Atlantic Ocean | Peniciversiols A, B and C (versiol-type analogues). Penicilactones A and B (lactone derivatives) | Peniciversiol A: inhibitory effect against the BIU-87 cancer cell line | [279] |
P. chrysogenum DXY-1 | Marine sediments sur-rounding the East Sea, Taiwan Strait | Tyrosol (ethyl acetate extract) | Anti-quorum sensing (anti-QS) activity against Chromobacterium violaceum and Pseudomonas aeruginosa | [280] |
P. rubens JGIPR9 | Garden soil obtained from Madurai district, Tamil Nadu—India | Bioactive fraction P5 (containing indole-2, 3-(4,4-dimethyl-3-thiosemicarbazone) | Cytotoxic effect against HepG2, HeLa and MCF-7 cancer cells—induces apoptosis | [281] |
P. chrysogenum SCSIO 07007 | Deep-sea hydrothermal vent environments of the Western Atlantic | Chrysopyrones A and B (3,4,6-trisubstituted α-pyrone derivatives). Penilline C (indolyl diketopipe-razine derivative) | Chrysopyrones A and B: inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), enzyme validated as biological target for Type II diabetes treatment | [282] |
P. chrysogenum TJ403-CA4 | Intestinal tract of the arthropod Cryptotympana atrata, collected in Lvliang City, Shanxi, China | Five 6−5−5−5-fused tetracyclic cyclopiane-type diterpenes (C20-carboxyl conidiogenone C, C20-carboxyl conidiogenone K, C19-hydroxy conidiogenone C, C7-hydroxy conidiogenone C, C8-hydroxy conidiogenone C) | Compounds 2 and 3 were active against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 | [283] |
P. chrysogenum 581F1 | Marine sponge Theonella swinhoei, Xisha Islands, South China Sea | 13-hydroxy-dihydrotrichodermolide and 10,11,27,28-tetrahydrotrisorbicillinone C (sorbicillinoids) | Biomolecular interactions targeting proteins GLP-1R (protein related to diabetes) and eEF2K (related inhibition tu-mor growth) | [284] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fierro, F.; Vaca, I.; Castillo, N.I.; García-Rico, R.O.; Chávez, R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022, 10, 573. https://doi.org/10.3390/microorganisms10030573
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms. 2022; 10(3):573. https://doi.org/10.3390/microorganisms10030573
Chicago/Turabian StyleFierro, Francisco, Inmaculada Vaca, Nancy I. Castillo, Ramón Ovidio García-Rico, and Renato Chávez. 2022. "Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology" Microorganisms 10, no. 3: 573. https://doi.org/10.3390/microorganisms10030573
APA StyleFierro, F., Vaca, I., Castillo, N. I., García-Rico, R. O., & Chávez, R. (2022). Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms, 10(3), 573. https://doi.org/10.3390/microorganisms10030573