Nematicidal Effects of Volatile Organic Compounds from Microorganisms and Plants on Plant-Parasitic Nematodes
Abstract
:1. Introduction
2. Nematicidal Effects of Volatile Organic Compounds
2.1. Nematicidal Effects of Microbial Volatile Organic Compounds
2.1.1. Nematicidal VOCs from Bacteria
Nematicidal VOCs from Pseudomonas
Nematicidal VOCs from Bacillus
Nematicidal VOCs from Other Bacteria
2.1.2. Nematicidal VOCs from Fungi
2.2. Nematicidal Effects of Volatile Organic Compounds from Plants
2.2.1. Nematicidal VOCs from Lamiaceae
2.2.2. Nematicidal VOCs from Asteraceae
2.2.3. Nematicidal VOCs from Myrtaceae
2.2.4. Nematicidal VOCs from Brassicaceae
2.2.5. Nematicidal VOCs from Apiaceae
2.2.6. Nematicidal VOCs from Rutaceae
2.2.7. Nematicidal VOCs from Other Plants
3. Nematicidal Mechanisms of Volatile Organic Compounds
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ntalli, N.G.; Ozalexandridou, E.X.; Kasiotis, K.M.; Samara, M.; Golfinopoulos, S.K. Nematicidal activity and phytochemistry of Greek Lamiaceae species. Agronomy 2020, 10, 1119. [Google Scholar] [CrossRef]
- Bird, D.M.; Williamson, V.M.; Abad, P.; McCarter, J.; Danchin, E.G.; Castagnone-Sereno, P.; Opperman, C.H. The genomes of root-knot nematodes. Annu. Rev Phytopathol. 2009, 47, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.F.; Campos, V.P.; de Paula, L.L.; Oliveira, D.F.; de Silva, F.J.; Terra, W.C.; Silva, G.H.; Salimena, J.P. Nematicidal screening of essential oils and potent toxicity of Dysphania ambrosioides essential oil against Meloidogyne incognita in vitro and in vivo. J. Phytopathol. 2019, 167, 380–389. [Google Scholar] [CrossRef]
- Mccarter, J.P. Molecular approaches toward resistance to plant-parasitic nematodes. Plant Cell Monogr. 2008, 15, 239–267. [Google Scholar]
- Pradhan, M.A.A.; Rahaman, M.M.; Paul, S.K.; Ahamad, M.U.; Goswami, B.K. Effect of BAU-biofungicide, neem oil and a nematicide on the root-rnot (Meloidogyne javanica) of Papaya (Carica papaya). Bangladesh J. Agril. Res. 2012, 37, 271–277. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Khah, E.M.; Sabir, N. Response of local and commercial tomato cultivars and rootstocks to Meloidogyne javanica infestation. Aust. J. Crop Sci. 2011, 5, 1388–1395. [Google Scholar]
- Vovlas, N.; Mifsud, D.; Landa, B.B.; Castillo, P. Pathogenicity of the root-knot nematode Meloidogyne javanica on potato. Plant Pathol. 2005, 54, 657–664. [Google Scholar] [CrossRef]
- Robertson, L.; Arcos, S.C.; Escuer, M.; Merino, R.S.; Esparrago, G.; Abelleira, A.; Navas, A. Incidence of the pinewood nematode Bursaphelenchus xylophlius Steiner & Buhrer, 1934 (Nickle, 1970) in Spain. Nematology 2011, 13, 755–757. [Google Scholar]
- Fonseca, L.; Cardoso, J.M.S.; Lopes, A.; Pestana, M.; Abreu, F.; Nunes, N.; Mota, M.; Abrantes, I. The pinewood nematode, Bursaphelenchus xylophilus, in Madeira Island. Helminthologia 2012, 49, 96–103. [Google Scholar] [CrossRef]
- Tan, Q.Q.; Hai, Y.W.; Shu, X.J.; Hong, B.M. Mortality and movement behaviour of Bursaphelenchus xylophilus under different dosages of Copper Sulphate. Plant Prot. Sci. 2013, 49, 98–103. [Google Scholar] [CrossRef]
- Chitwood, D.J. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Ma, K.C.; Ko, S.J.; Kang, B.R.; Kim, I.S.; Kim, Y.C. Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 2011, 62, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Campos, V.P.; Pinho, R.S.C.; Freire, E.S. Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Cienc. Agrotecnol. 2010, 34, 525–535. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Lu, H.; Wang, X.; Zhang, K.Q.; Li, G.H. Effect of volatile organic compounds from bacteria on nematodes. Chem. Biodivers. 2015, 12, 1415–1421. [Google Scholar] [CrossRef]
- Zhai, Y.L.; Shao, Z.Z.; Cai, M.M.; Zheng, L.Y.; Li, G.Y.; Huang, D.; Cheng, W.L.; Thomashow, L.S.; Weller, D.M.; Yu, Z.N.; et al. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from antarctic soil against Meloidogyne incognita. Front. Microbiol. 2018, 9, 253. [Google Scholar] [CrossRef]
- Wolfgang, A.; Taffner, J.; Guimaraes, R.A.; Coyne, D.; Berg, G. Novel strategies for soil-borne diseases: Exploiting the microbiome and volatile-based mechanisms toward controlling Meloidogyne-based disease complexes. Front. Microbiol. 2019, 10, 1296. [Google Scholar] [CrossRef]
- Ayaz, M.; Ali, Q.; Farzand, A.; Khan, A.R.; Ling, H.; Gao, X.W. Nematicidal volatiles from Bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against Meloidogyne incognita. Int. J. Mol. Sci. 2021, 22, 5049. [Google Scholar] [CrossRef]
- Yin, N.; Liu, R.; Zhao, J.L.; Khan, R.A.A.; Li, Y.; Ling, J.; Liu, W.; Yang, Y.H.; Xie, B.Y.; Mao, Z.C. Volatile organic compounds of Bacillus cereus strain Bc-cm103 exhibit fumigation activity against Meloidogyne incognita. Plant Dis. 2020, 105, 904–911. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.K.; Ma, L.; Zhang, K.Q.; Duan, C.Q.; Mo, M.H. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur. J. Plant Pathol. 2009, 126, 417–422. [Google Scholar] [CrossRef]
- Luo, T.; Hou, S.S.; Yang, L.; Qi, G.F.; Zhao, X.Y. Nematodes avoid and are killed by Bacillus mycoides-produced styrene. J. Invertebr. Pathol. 2018, 159, 129–136. [Google Scholar] [CrossRef]
- Yang, L.L.; Huang, Y.; Liu, J.; Ma, L.; Mo, M.H.; Li, W.J.; Yang, F.X. Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie Van Leeuwenhoek 2012, 102, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.L.; Yang, J.Y.; Nie, Q.Y.; Huang, D.; Yu, C.; Zheng, L.Y.; Cai, M.M.; Thomashow, L.S.; Weller, D.M.; Yu, Z.N.; et al. Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control Meloidogyne incognita by multiple strategies. Sci. Rep. 2017, 7, 16213. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yu, C.; Shao, Z.Z.; Cai, M.M.; Li, G.Y.; Zheng, L.Y.; Yu, Z.N.; Zhang, J.B. Identification and characterization of nematicidal volatile organic compounds from deep-sea Virgibacillus dokdonensis MCCC 1A00493. Molecules 2020, 25, 744. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yu, H.; Chen, W.; Cheng, W.L.; Shao, Z.Z.; Zhang, J.B. Identification and characteristics of 4-vinylphenol from Virgibacillus dokdonensis MCCC 1A00493 against Meloidogyne incognita. Acta Microbiol. Sin. 2022, 62, 346–356. [Google Scholar]
- Mei, X.Y.; Wang, X.; Li, G.H. Pathogenicity and volatile nematicidal metabolites from Duddingtonia flagrans against Meloidogyne incognita. Microorganisms 2021, 9, 2268. [Google Scholar] [CrossRef]
- Freire, E.S.; Campos, V.P.; Pinho, R.S.C.; Oliveira, D.F.; Faria, M.R.; Pohlit, A.M.; Noberto, N.P.; Rezende, E.L.; Pfenning, L.H.; Silva, J.R.C. Volatile substances produced by Fusarium oxysporum from coffee rhizosphere and other microbes affect Meloidogyne incognita and Arthrobotrys conoides. J. Nematol. 2012, 44, 321–328. [Google Scholar]
- Terra, W.C.; Campos, V.P.; Martins, S.J.; Costa, L.S.A.S.; da Silva, J.C.P.; Barros, A.F.; Lopez, L.E.; Santos, T.C.N.; Smant, G.; Oliveira, D.F. Volatile organic molecules from Fusarium oxysporum strain 21 with nematicidal activity against Meloidogyne incognita. Crop Prot. 2018, 106, 125–131. [Google Scholar] [CrossRef]
- Liarzi, O.; Bucki, P.; Miyara, S.B.; Ezra, D. Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS ONE 2016, 11, e0168437. [Google Scholar] [CrossRef]
- Khoja, S.; Eltayef, K.M.; Baxter, I.; Myrta, A.; Bull, J.C.; Butt, T. Volatiles of the entomopathogenic fungus, Metarhizium brunneum, attract and kill plant parasitic nematodes. Biol. Control 2021, 152, 104472. [Google Scholar] [CrossRef]
- Yu, J.; Du, G.C.; Li, R.G.; Li, L.; Li, Z.; Zhou, C.J.; Chen, C.C.; Guo, D.S. Nematicidal activities of bacterial volatiles and components from two marine bacteria, Pseudoalteromonas marina strain H-42 and Vibrio atlanticus strain S-16, against the pine wood nematode, Bursaphelenchus xylophilus. Nematology 2015, 17, 1011–1025. [Google Scholar] [CrossRef]
- Li, H.C.; Dou, G.M.; Gao, M.G.; Ren, F.; Li, R.H.; Zhang, X.Y.; Yan, D.H. Annulohypoxylon sp. FPYF3050 produces volatile organic compounds against the pine wood nematode, Bursaphelenchus xylophilus. Nematology 2020, 22, 245–255. [Google Scholar] [CrossRef]
- Yang, Z.S.; Yu, Z.F.; Lei, L.P.; Xia, Z.Y.; Shao, L.; Zhang, K.Q.; Li, G.H. Nematicidal effect of volatiles produced by Trichoderma sp. J. Asia-Pac. Entomol. 2012, 15, 647–650. [Google Scholar] [CrossRef]
- Parsons, P.A.; Spence, G.E. Acetaldehyde: A low-concentration resource and larval attractant in 3 Drosophila species. Experientia 1981, 37, 576–577. [Google Scholar] [CrossRef]
- Curto, G.; Dongiovanni, C.; Sasanelli, N.; Santori, A.; Myrta, A. Efficacy of dimethyl disulfide (DMDS) in the control of the root-knot nematode Meloidogyne incognita and the cyst nematode Heterodera carotae on carrot in field condition in Italy. Acta Hortic. 2014, 1044, 405–410. [Google Scholar] [CrossRef]
- Fritsch, J.; Fouillet, T.; Charles, P.; Fargier-Puech, P.; Ramponi-Bur, C.; Descamps, S.; Fretay, G.D.; Myrta, A. French experiences with dimethyl disulfide (DMDS) as a nematicide in vegetable crops. Acta Hortic. 2014, 1044, 427–434. [Google Scholar] [CrossRef]
- Ghisalberti, E.L.; Narbey, M.J.; Dewan, M.M.; Sivasithamparam, K. Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant Soil 1990, 121, 287–291. [Google Scholar] [CrossRef]
- Li, H.Q.; Liu, Q.Z.; Liu, Z.L.; Du, S.S.; Deng, Z.W. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 2013, 18, 4170–4180. [Google Scholar] [CrossRef]
- Avato, P.; Laquale, S.; Argentieri, M.P.; Lamiri, A.; Radicci, V.; D’Addabbo, T. Nematicidal activity of essential oils from aromatic plants of Morocco. J. Pest Sci. 2017, 90, 711–722. [Google Scholar] [CrossRef]
- Caboni, P.; Saba, M.; Tocco, G.; Casu, L.; Murgia, A.; Maxia, A.; Menkissoglu-Spiroudi, U.; Ntalli, N. Nematicidal activity of mint aqueous extracts against the root-knot nematode Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 9784–9788. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J. Agric. Food Chem. 2010, 58, 7856–7863. [Google Scholar] [CrossRef]
- Laquale, S.; Candido, V.; Avato, P.; Argentieri, M.P.; D’Addabbo, T. Essential oils as soil biofumigants for the control of the root-knot nematode Meloidogyne incognita on tomato. Ann. Appl. Biol. 2015, 167, 217–224. [Google Scholar] [CrossRef]
- Barbosa, P.; Lima, A.S.; Vieira, P.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Fgueiredo, A.C.; Mota, M. Nematicidal activity of essential oils and volatiles derived from Portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus. J. Nematol. 2010, 42, 8–16. [Google Scholar] [PubMed]
- Silva, J.C.P.; Campos, V.P.; Barros, A.F.; Pedroso, M.P.; Terra, W.C.; Lopez, L.E.; de Souza, J.T. Plant volatiles reduce the viability of the root-knot nematode Meloidogyne incognita either directly or when retained in water. Plant Dis. 2018, 102, 2170–2179. [Google Scholar] [CrossRef] [PubMed]
- Kalaiselvi, D.; Mohankumar, A.; Shanmugam, G.; Thiruppathi, G.; Nivitha, S.; Sundararaj, P. Altitude-related changes in the phytochemical profile of essential oils extracted from Artemisia nilagirica and their nematicidal activity against Meloidogyne incognita. Ind. Crops Prod. 2019, 139, 111472. [Google Scholar] [CrossRef]
- Massuh, Y.; Cruz-Estrada, A.; González-Coloma, A.; Ojeda, M.S.; Zygadlo, J.A.; Andrés, M.F. Nematicidal activity of the essential oil of three varieties of Tagetes minuta from Argentina. Nat. Prod. Commun. 2017, 12, 705–707. [Google Scholar] [CrossRef]
- Adekunle, O.K.; Acharya, R.; Singh, B. Toxicity of pure compounds isolated from Tagetes minuta oil to Meloidogyne incognita. Australas. Plant Dis. Notes 2007, 2, 101–104. [Google Scholar] [CrossRef]
- Sosa, M.E.; Lancelle, H.G.; Tonn, C.E.; Andres, M.F.; Gonzalez-Coloma, A. Insecticidal and nematicidal essential oils from Argentinean Eupatorium and Baccharis spp. Biochem. Syst. Ecol. 2012, 43, 132–138. [Google Scholar] [CrossRef]
- Sainz, P.; Andres, M.F.; Martinez-Diaz, R.A.; Bailen, M.; Navarro-Rocha, J.; Diaz, C.E.; Gonzalez-Coloma, A. Chemical composition and biological activities of Artemisia pedemontana subsp. assoana essential oils and hydrolate. Biomolecules 2019, 9, 558. [Google Scholar]
- Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag. Sci. 2011, 67, 341–351. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Laquale, S.; Candido, V.; Avato, P. Relationship between chemical composition and nematicidal activity of different essential oils. Plants 2020, 9, 1546. [Google Scholar] [CrossRef]
- Aissani, N.; Tedeschi, P.; Maietti, A.; Brandolini, V.; Garau, V.L.; Caboni, P. Nematicidal activity of allylisothiocyanate from horseradish (Armoracia rusticana) roots against Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 4723–4727. [Google Scholar] [CrossRef] [PubMed]
- Aissani, N.; Urgeghe, P.P.; Oplos, C.; Saba, M.; Tocco, G.; Petretto, G.L.; Eloh, K.; Menkissoglu-Spiroudi, U.; Ntalli, N.; Caboni, P. Nematicidal activity of the volatilome of Eruca sativa on Meloidogyne incognita. J. Agric. Food Chem. 2015, 63, 6120–6125. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.F.; Campos, V.P.; da Silva, J.C.P.; Pedroso, M.P.; Medeiros, F.H.V.; Pozza, E.A.; Reale, A.L. Nematicidal activity of volatile organic compounds emitted by Brassica juncea, Azadirachta indica, Canavalia ensiformis, Mucuna pruriens and Cajanus cajan against Meloidogyne incognita. Appl. Soil Ecol. 2014, 80, 34–43. [Google Scholar] [CrossRef]
- Silva, M.F.; Campos, V.P.; Barros, A.F.; Terra, W.C.; Pedroso, M.P.; Gomes, V.A.; Ribeiro, C.R.; Silva, F.J. Volatile emissions of watercress (Nasturtium officinale) leaves and passion fruit (Passiflora edulis) seeds against Meloidogyne incognita. Pest Manag. Sci. 2020, 76, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Pardavella, I.; Daferera, D.; Tselios, T.; Skiada, P.; Giannakou, I. The use of essential oil and hydrosol extracted from Cuminum cyminum seeds for the control of Meloidogyne incognita and Meloidogyne javanica. Plants 2020, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.M.O.F.; Rosa, J.S.; Silva, C.A.; Almeida, M.T.M.; Novo, M.T.; Cunha, A.C.; Fernandes-Ferreira, M. Larvicidal, molluscicidal and nematicidal activities of essential oils and compounds from Foeniculum vulgare. J. Pest Sci. 2015, 88, 413–426. [Google Scholar] [CrossRef]
- Goyal, L.; Kaushal, S.; Dhillon, N.K.; Heena. Nematicidal potential of Citrus reticulata peel essential oil, isolated major compound and its derivatives against Meloidogyne incognita. Arch. Phytopathol. Plant Prot. 2021, 54, 449–467. [Google Scholar] [CrossRef]
- da Silva, F.G.E.; Mendes, F.R.d.S.; Assunção, J.C.d.C.; Santiago, G.M.P.; Bezerra, M.A.X.; Barbosa, F.G.; Mafezoli, J.; Rocha, R.R. Seasonal variation, larvicidal and nematicidal activities of the lef essential oil of Ruta graveolens L. J. Essent. Oil Res. 2014, 26, 204–209. [Google Scholar] [CrossRef]
- Kim, J.; Seo, S.-M.; Park, I.-K. Nematicidal activity of plant essential oils and components from Gaultheria fragrantissima and Zanthoxylum alatum against the pine wood nematode, Bursaphelenchus xylophilus. Nematology 2011, 13, 87–93. [Google Scholar]
- Barros, A.F.; Campos, V.P.; de Paula, L.L.; Pedroso, L.A.; Silva, F.D.J.; da Silva, J.C.P.; de Oliveira, D.F.; Silva, G.H. The role of Cinnamomum zeylanicum essential oil, (E)-cinnamaldehyde and (E)-cinnamaldehyde oxime in the control of Meloidogyne incognita. J. Phytopathol. 2021, 169, 229–238. [Google Scholar] [CrossRef]
- Bai, P.H.; Bai, C.Q.; Liu, Q.Z.; Du, S.S.; Liu, Z.L. Nematicidal activity of the essential oil of Rhododendron anthopogonoides aerial parts and its constituent compounds against Meloidogyne incognita. Z. Fur Nat. C 2013, 68, 307–312. [Google Scholar]
- Bai, C.Q.; Liu, Z.L.; Liu, Q.Z. Nematicidal constituents from the essential oil of Chenopodium Ambrosioides aerial parts. E-J. Chem. 2011, 8, S143–S148. [Google Scholar] [CrossRef]
- Silva, M.d.F.; Campos, V.P.; Barros, A.F.; da Silva, J.C.P.; Pedroso, M.P.; Silva, F.d.J.; Gomes, V.A.; Justino, J.C. Medicinal plant volatiles applied against the root-knot nematode Meloidogyne incognita. Crop Prot. 2020, 130, 105057. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Vargiu, S.; Menkissoglu-Spiroudi, U.; Caboni, P. Nematicidal carboxylic acids and aldehydes from Melia azedarach fruits. J. Agric. Food Chem. 2010, 58, 11390–11394. [Google Scholar] [CrossRef] [PubMed]
- Caboni, P.; Sarais, G.; Aissani, N.; Tocco, G.; Sasanelli, N.; Liori, B.; Carta, A.; Angioni, A. Nematicidal activity of 2-thiophenecarboxaldehyde and methylisothiocyanate from caper (Capparis spinosa) against Meloidogyne incognita. J. Agric. Food Chem. 2012, 60, 7345–7351. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.C.P.; Campos, V.P.; Barros, A.F.; Pedroso, L.A.; Silva, M.d.F.; de Souza, J.T.; Pedroso, M.P.; de Medeiros, F.H.V. Performance of volatiles emitted from different plant species against juveniles and eggs of Meloidogyne incognita. Crop Prot. 2019, 116, 196–203. [Google Scholar] [CrossRef]
- Anastasiadis, I.; Kimbaris, A.C.; Kormpi, M.; Polissiou, M.G.; Karanastasi, E. The effect of a garlic essential oil component and entomopathogenic nematodes on the suppression of Meloidogyne javanica on tomato. Hell. Plant Prot. J. 2011, 4, 21–24. [Google Scholar]
- Caboni, P.; Ntalli, N.G.; Aissani, N.; Cavoski, I.; Angioni, A. Nematicidal activity of (E,E)-2,4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. J. Agric. Food Chem. 2012, 60, 1146–1151. [Google Scholar] [CrossRef]
- Baser, K.H.C. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef]
- Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef]
- Trabace, L.; Zotti, M.; Morgese, M.G.; Tucci, P.; Colaianna, M.; Schiavone, S.; Avato, P.; Cuomo, V. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats. Toxicol. Appl. Pharmacol. 2011, 255, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; Colaianna, M.; Morgese, M.G.; Tucci, P.; Schiavone, S.; Avato, P.; Trabace, L. Carvacrol: From ancient flavoring to neuromodulatory agent. Molecules 2013, 18, 6161–6172. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, F.J.T.; Barbosa, F.G.; Lima, J.S.; Coutinho, I.B.L.; Oliveira, F.C.; Rocha, R.R.; Neto, M.A. Antagonist activity of the essential oil Lippia alba (Mill.) N. E. Brown (Verbenaceae) on Meloidogyne incognita (Kofoid & White) Chitwood. Rev. Bras. Plantas Med. 2016, 18, 149–156. [Google Scholar]
- Silva, W.R.J.; Machado, A.R.T.; Campos, V.A.C.; Zeri, A.C.M.; Campos, V.P.; Oliveira, D.F. Volatile organic compounds for the control of Meloidogyne exigua in Coffea arabica. Trop. Plant Pathol. 2013, 38, 375–386. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Sienkiewicz, M.; Stobiecka, A.; Maciag, A.; Szoka, U.; Karna, E. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates. Chem. Biodivers. 2015, 12, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Carpinella, M.C.; Ferrayoli, C.G.; Palacios, S.M. Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J. Agric. Food Chem. 2005, 53, 2922–2927. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.H.; Kim, J.; Shin, S.C.; Park, I.K. Nematicidal activity of monoterpenoids against the pine wood nematode (Bursaphelenchus xylophilus). Russ. J. Nematol. 2007, 15, 35–40. [Google Scholar]
- Kim, J.; Seo, S.M.; Lee, S.G.; Shin, S.C.; Park, I.K. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem. 2008, 56, 7316–7320. [Google Scholar] [CrossRef]
- Park, I.K.; Kim, J.; Lee, S.G.; Shin, S.C. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Nematol. 2007, 39, 275–279. [Google Scholar]
- Choi, I.H.; Park, J.Y.; Shin, S.C.; Park, I.K. Nematicidal activity of medicinal plant extracts and two cinnamates isolated from Kaempferia galanga L. (Proh Hom) against the pine wood nematode, Bursaphelenchus xylophilus. Nematology 2006, 8, 359–365. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.L.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ho, S.H.; Lee, H.C.; Yap, Y.L. Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2002, 38, 403–412. [Google Scholar] [CrossRef]
- Barbosa, J.D.F.; Silva, V.B.; Alves, P.B.; Gumina, G.; Santos, R.L.C.; Sousa, D.P.; Cavalcanti, S.C.H. Structure-activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag. Sci. 2012, 68, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.O.; Lee, S.M.; Moon, Y.S.; Lee, S.G.; Ahn, Y.J. Nematicidal activity of cassia and cinnamon oil compounds and related compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 2007, 39, 31–36. [Google Scholar]
- Wang, Z.Q.; Kim, H.K.; Tao, W.Q.; Mo, W.; Young-Joon, A.J. Contact and fumigant toxicity of cinnamaldehyde and cinnamic acid and related compounds to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol. 2011, 48, 366–371. [Google Scholar] [CrossRef]
- Warnock, N.D.; Wilson, L.; Patten, C.; Fleming, C.C.; Maule, A.G.; Dalzell, J.J. Nematode neuropeptides as transgenic nematicides. PloS Pathog. 2017, 13, e1006237. [Google Scholar] [CrossRef]
- Geng, C.; Nie, X.T.; Tang, Z.Z.; Zhang, Y.Y.; Lin, J.; Sun, M.; Peng, D.H. DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Sci. Rep. 2016, 6, 25012. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2010, 58, 1101–1106. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, B.H.; Choi, W.S.; Park, B.S.; Kim, J.G.; Campbell, B.C. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Manag. Sci. 2001, 57, 548–553. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crop Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlob, J.; Demoa, M. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
Nematodes | Microorganisms | VOCs | References |
---|---|---|---|
M. incognita | Pseudomonas putida 1A00316 | dimethyl disulfide, 2-nonanone, 2-octanone, (Z)-hexen-1-ol acetate, 2-undecanone | [15] |
Pseudomonas koreensis T3GI1 | 3-methoxy-2,5-dimethyl pyrazine, 1-undecene, dimethyl disulfide | [16] | |
Pseudomonas monteilii T8GH4 | 1-undecene, dimethyl disulfide, 2-undecanone | [16] | |
Pseudomonas soli T13GI4 | 1-undecene, dimethyl disulfide | [16] | |
Comamonas sediminis T13GI2 | 1-undecene, dimethyl disulfide | [16] | |
Variovorax paradoxus T1GI1 | dimethyl disulfide | [16] | |
Bacillus atrophaeus GBSC56 | dimethyl disulfide, methyl isovalerate, 2-undecanone | [17] | |
Bacillus cereus Bc-cm103 | dimethyl disulfide, S-methyl ester butanethioic acid | [18] | |
Bacillus megaterium YFM3.25 | benzeneacetaldehyde, 2-nonanone, decanal, 2-undecanone, dimethyl disulphide | [19] | |
Bacillus mycoides R2 | styrene | [20] | |
Lysinibacillus mangiferahumi M-GX18T | 2-octanol, cyclohexene, 3-chloro-4-fluoroben-zaldehyde, dibutyl phthalate, 2-nitro-2-chloropropane, dimethachlore, dimethyl disulfide | [21] | |
Paenibacillus polymyxa KM2501-1 | furfural acetone, 2-decanol, 2-undecanone, 2-undecanol 2-decanone, 2-nonanol | [22] | |
Pseudochrobactrum saccharolyticum AM180484 | dimethyl disulfide, S-methyl thiobutyrate, acetophenone, ethyl 3,3-dimethylacrylate, nonan-2-one | [14] | |
Proteus hauseri JN092591 | dimethyl disulfide, S-methyl thiobutyrate, nonan-2-one, 1-methoxy-4-methylbenzene | [14] | |
Wautersiella falsenii AM238687 | dimethyl disulfide, S-methyl thiobutyrate, nonan-2-one, 1-methoxy-4-methylbenzene, butyl isovalerate | [14] | |
Arthrobacter nicotianae JQ071518 | dimethyl disulfide, S-methyl thiobutyrate, acetophenone | [14] | |
Achromobacter xylosoxidans AF411019 | dimethyl disulfide, S-methyl thiobutyrate, acetophenone, nonan-2-one, 1-methoxy-4-methylbenzene | [14] | |
Virgibacillus dokdonensis MCCC 1A00493 | acetaldehyde, dimethyl disulfide, 4-vinylphenol | [23,24] | |
Duddingtonia flagrans | cyclohexanamine, cyclohexanone, cyclohexanol | [25] | |
Fusarium oxysporum 21 | 2-methylbutyl acetate, 3-methylbutyl acetate, ethyl acetate, 2-methylpropyl acetate, caryophyllene | [26,27] | |
Meloidogyne javanica | Pseudomonas koreensis T3GI1 | 3-methoxy-2,5-dimethyl pyrazine, 1-undecene, dimethyl disulfide | [16] |
Variovorax paradoxus T1GI1 | dimethyl disulfide | [16] | |
Comamonas sediminis T13GI2 | 1-undecene, dimethyl disulfide | [16] | |
Pseudomonas monteilii T8GH4 | 1-undecene, dimethyl disulfide, 2-undecanone | [16] | |
Pseudomonas soli T13GI4 | 1-undecene, dimethyl disulfide | [16] | |
Daldinia cf. concentrica | 3-methyl-1-butanol, (±)-2-methyl-1-butanol, 4-heptanone, isoamyl acetate | [28] | |
Meloidogyne hapla | Metarhizium brunneum | 1-octen-3-ol, 3-octanone | [29] |
Bursaphelenchus xylophilus | Pseudoalteromonas marina H-42 | dimethyl disulphide, dimethyl trisulphide | [30] |
Vibrio atlanticus S-16 | dimethyl disulphid, dimethyl trisulphide, benzaldehyde, tert-butylamine | [30] | |
Annulohypoxylon sp. FPYF3050 | 1,8-cineole | [31] | |
Trichoderma sp. YMF 1.00416 | 6-pentyl-2H-pyran-2-one | [32] |
Nematode | Plant Sources | Family | VOCs | References |
---|---|---|---|---|
M. incognita | Agastache rugosa | Lamiaceae | methyleugenol, estragole, eugenol | [37] |
M. incognita | Rosmarinus officinalis | Lamiaceae | 1,8-cineole, camphor, α-pinene | [38] |
M. incognita | Thymus satureioides | Lamiaceae | borneol, thymol | [38] |
M. incognita | Mentha spicata | Lamiaceae | carvone | [39] |
M. incognita | Mentha pulegium | Lamiaceae | menthofuran, pulegone, trans-anethole, carvacrol | [39,40] |
M. incognita M.javanica | Origanum vulgare | Lamiaceae | carvacrol, thymol, terpinen-4-ol | [1,40] |
M. incognita | Origanum dictamnus | Lamiaceae | carvacrol, thymol, terpinen-4-ol | [40] |
M. incognita | Melissa officinalis | Lamiaceae | L-carvone, trans-anethole, geraniol, eugenol, carvacrol, thymol, terpinen-4-ol | [40] |
M. incognita | Mentha piperita | Lamiaceae | - | [41] |
M. javanica | Thymus citriodorus | Lamiaceae | thymol | [1] |
B. xylophilus | Satureja montana | Lamiaceae | carvacrol, γ-terpinene, p-cymene | [42] |
B. xylophilus | Thymbra capitata | Lamiaceae | carvacrol | [42] |
B. xylophilus | Thymus caespititius | Lamiaceae | carvacrol | [42] |
B. xylophilus | Origanum vulgare | Lamiaceae | carvacrol, γ-terpinene, p-cymene | [42] |
M. incognita | Artemisia herba-alba | Asteraceae | thujone, camphor | [38] |
M. incognita | Helianthus annuus | Asteraceae | 2,3-butanediol, sabinene, eucalyptol, limonene, α-thujene | [43] |
M. incognita | Artemisia nilagirica | Asteraceae | - | [44] |
M. incognita M.javanica | Tagetes minuta | Asteraceae | dihydrotagetone, (Z)-β-ocimene, (E)-ocimenone | [45,46] |
M. javanica | Eupatorium viscidum | Asteraceae | 6-methyl-5-hepten-2-one | [47] |
M. javanica | Artemisia pedemontana subsp. assoana | Asteraceae | - | [48] |
M. incognita | Eucalyptus meliodora | Myrtaceae | trans-anethole, benzaldehyde | [49] |
M. incognita | Eucalyptus globulus | Myrtaceae | - | [41] |
M. incognita | Eucalyptus citriodora | Myrtaceae | citronellal, citronellol, citronellyl formate | [41,50] |
M. incognita | Syzygium aromaticum | Myrtaceae | eugenol | [50] |
M. incognita | Armoracia rusticana | Brassicaceae | allylisothiocyanate | [51] |
M. incognita | Eruca sativa | Brassicaceae | erucin, pentyl isothiocyanate, hexyl isothiocyanate, (E)-2-hexenal, 2-ethylfuran, methyl thiocyanate | [52] |
M. incognita | Brassica juncea | Brassicaceae | isothiocyanate | [53] |
M. incognita | Nasturtium officinale | Brassicaceae | 1-octanol | [54] |
M. incognita | Broccoli (Brassica oleracea L.) | Brassicaceae | dimethyl disulfide, 3-pentanol | [43] |
M. incognita M.javanica | Cuminum cyminum | Apiaceae | γ-terpinene, p-cymene | [55] |
M. incognita | Pimpinella anisum | Apiaceae | estragole, trans-anethole, carvone | [49] |
M. incognita | Foeniculum vulgare | Apiaceae | estragole, trans-anethole, carvone | [49] |
M. javanica | Foeniculum vulgare | Apiacea | trans-anethole, estragole | [56] |
M. incognita | Citrus reticulata | Rutaceae | limonene | [57] |
M. incognita | Citrus sinensis | Rutaceae | limonene | [38] |
M. incognita | Ruta graveolens L. | Rutaceae | 2-undecanone, carvitol, 2-nonanone, 2-decanone | [41,50,58] |
B. xylophilus | Zanthoxylum alatum | Rutaceae | linalool, limonene, methyl trans-cinnamate, 1,8-cineole | [59] |
M. incognita | Cinnamomum zeylanicum (Cinnamomum verum) | Lauraceae | (E)-cinnamaldehyde, eugenol | [50,60] |
M. incognita | Rhododendron anthopogonoides | Ericaceae | benzyl acetone | [61] |
B. xylophilus | Gaultheria fragrantissima | Ericaceae | methyl salicylate, ethyl salicylate | [59] |
M. incognita | Dysphania ambrosioides | Amaranthaceae | (Z)-ascaridole, (E)-ascaridole, p-cymene, isoascaridole | [3,62,63] |
M. incognita | Cymbopogon nardus | Poaceae | citronellal | [63] |
B. xylophilus | Cymbopogon citratus | Poaceae | geranial, neral, ββ-myrcene | [42] |
M. incognita | Pistacia terebinthus | Anacardiaceae | γ-eudesmol | [49] |
M. incognita | Pelargonium asperum | Geraniaceae | linalool, citronellol, geraniol | [41,50] |
M. incognita | Melia azedarach | Meliaceae | acetic, butyric, hexanoic, furfural, furfurol, 5-hydroxymethylfurfural | [64] |
M. incognita | Azadirachta indica | Meliaceae | - | [53] |
M. incognita | Capparis spinosa | Capparaceae | methylisothiocyanate, furfural, 2-thiophenecarboxaldehyde | [65] |
M. incognita | Passiflora edulis | Passifloraceae | - | [54] |
M. incognita | Bertholletia excelsa | Lecythidaceae | - | [66] |
M. incognita | Piper nigrum L. | Piperaceae | - | [66] |
M. javanica | garlic (Allium sativum) | Amaryllidaceae | diallyl disulfide | [67] |
M. javanica | Ailanthus altissima | Simaroubaceae | (E,E)-2,4-decadienal, (E)-2-decenal, furfural | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Wang, X.; Li, G. Nematicidal Effects of Volatile Organic Compounds from Microorganisms and Plants on Plant-Parasitic Nematodes. Microorganisms 2022, 10, 1201. https://doi.org/10.3390/microorganisms10061201
Deng X, Wang X, Li G. Nematicidal Effects of Volatile Organic Compounds from Microorganisms and Plants on Plant-Parasitic Nematodes. Microorganisms. 2022; 10(6):1201. https://doi.org/10.3390/microorganisms10061201
Chicago/Turabian StyleDeng, Xiaotong, Xin Wang, and Guohong Li. 2022. "Nematicidal Effects of Volatile Organic Compounds from Microorganisms and Plants on Plant-Parasitic Nematodes" Microorganisms 10, no. 6: 1201. https://doi.org/10.3390/microorganisms10061201
APA StyleDeng, X., Wang, X., & Li, G. (2022). Nematicidal Effects of Volatile Organic Compounds from Microorganisms and Plants on Plant-Parasitic Nematodes. Microorganisms, 10(6), 1201. https://doi.org/10.3390/microorganisms10061201