Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities
Abstract
:1. Introduction
2. Microbial Remediation: The Mechanisms of Biosorption and Bioaccumulation Using Bacterial Biomass as a Tool in Polluted Environmental Cleanup
- Alkylation and redox processes in which HMs were transformed. The speciation and mobility of metal (loids) may be different from the initial state. For example, metals generally are less soluble in their oxidation state, whereas the solubility and mobility of metalloids depend on both the oxidation state and the ionic form [31].
- Passive adsorption is metabolism-independent, in which metals are on the cell surface via electrostatic attraction with functional groups. This mechanism was explained by the different processes including the precipitation and the surface complexation, ion exchange as only dominating role, or physical adsorption. As protons were addressed by the completion between pH and metal cations on the binding sites, thus, pH is the most strongly effective factor that influences the biosorption process [32]. The other essential factors include temperature, ionic strength, the concentration and type of the sorbate and biosorbent, the state of biomass: suspension or immobilized and the presence of other anion and cations in the growth medium. Most applications focus on the utilization of dead biomass because the toxicity of bacteria is avoided, no requirement for maintenance, and the storage of biomass is easy and can be kept for long period without loss of effectiveness. Numerous bacterial strains were reported in HMs biosorption that are dominant in Bacillus, Pseudomonas, Streptomyces [30,33,34].
- Active adsorption is the metabolism-dependent intracellular accumulation of toxicants in living cells within cytoplasm. HMs were converted to non-bioavailable form by binding with metallothioneins (MTs) as low-molecular mass cystein-rich proteins, and metallo-chaperones. By being bound with HMs, these intracellular proteins can also lower the free ion concentrations within cytoplasm in which the detoxification of metals occurred [35]. This process is sensitive to environmental conditions depending on each type of bacterial strain such as pH, temperature, salinity. Moreover, it also depends on the biochemical structure, physiological/genetic adaptation, and the toxicity of metal. Cyanobacteria, pseudomonads, and mycobacteria have been found as the candidates that can synthesize MTs. MTs are usually associated with Zn, Cu, and other toxic metals such as Cd, Hg, and Pb [36]. Pseudomonas aeruginosa and Pseudomonas putida were reported as MTs producing bacteria exposed to Ca and Cu contamination [37].
- The metal ions uptake is carried out by a complex mechanism of releasing EPS, such as proteins, DNA, RNA, and polysaccharides the slippery layer on the outside of the cell wall. These have a crucial role of stopping the penetration of metals into the intracellular environment in which, ion exchange may occur. Numerous bacterial strains were investigated for the commercial production of EPS such as Stenotrophomonas maltophilia, Azotobacter chroococcum, Bacillus cereus KMS3-1 [38,39,40]. Bioremediation efficiency by this mechanism relies on the type and amount of carbon source available and other abiotic stress factors like pH, temperature, and the growth phase of each bacterium [41].
2.1. Biosorption Process
2.2. Bioaccumulation Process
2.3. Difference in Attractive Spots of Biosorption and Bioaccumulation Process
3. Potential of Extremophiles in Heavy Metal Removing
4. Future Prospects
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Zhong, T.; Liu, L.; Ouyang, X. Impact of soil heavy metal pollution on food safety in China. PLoS ONE 2015, 10, 0135182. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Sun, X.; Xu, J. Heavy metal pollution in the East China Sea: A review. Mar. Pollut. Bull. 2020, 159, 111473. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Ananthashankar, R.; Alhattab, M.V.V.R.; Ramakrishnan, V.V. Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process Technol. 2014, 5, 1–19. [Google Scholar]
- Tak, H.I.; Ahmad, F.; Babalola, O.O. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev. Environ. Contam. Toxicol. 2013, 223, 33–52. [Google Scholar]
- Dash, H.R.; Das, S. Bioremediation potential of mercury by Bacillus species isolated from marine environment and wastes of steel industry. Bioremediat. J. 2014, 18, 204–212. [Google Scholar] [CrossRef]
- Biswas, R.; Sarkar, A. Characterization of arsenite-oxidizing bacteria to decipher their role in arsenic bioremediation. Prep. Biochem. Biotech. 2019, 49, 30–37. [Google Scholar] [CrossRef]
- Mohamed, M.S.; El-Arabi, N.I.; El-Hussein, A.; El-Maaty, S.A.; Abdelhadi, A.A. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: A prospective bacterium for bioremediation. Folia. Microbiol. 2020, 65, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Kim, Y.S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef]
- Joshi, N.C. Heavy metals, conventional methods for heavy metal removal, biosorption and the development of low cost adsorbent. Eur. J. Pharm. Sci. 2017, 4, 388–393. [Google Scholar]
- Hennebel, T.; Boon, N.; Maes, S.; Lenz, M. Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnol. 2015, 32, 121–127. [Google Scholar]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef]
- Bădescu, I.S.; Bulgariu, D.; Ahmad, I.; Bulgariu, L. Valorisation possibilities of exhausted biosorbents loaded with metal ions—A review. J. Environ. Manag. 2018, 224, 288–297. [Google Scholar] [CrossRef]
- Rao, M.A.; Scelza, R.; Scotti, R.; Gianfreda, L. Role of enzymes in the remediation of polluted environments. J. Soil Sci. Plant Nutr. 2010, 10, 333–353. [Google Scholar] [CrossRef]
- Schenk, P.M.; Carvalhais, L.C.; Kazan, K. Unraveling plant-microbe interactions: Can multi-species transcriptomics help? Trends Biotechnol. 2012, 30, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Desoky, E.S.M.; Merwad, A.R.M.; Semida, W.M.; Ibrahim, S.A.; El-Saadony, M.T.; Rady, M.M. Heavy metals-resistant bacteria (HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant. Ecotoxicol. Environ. Saf. 2020, 198, 110685. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Investigation of lipolytic-secreting bacteria from an artificially polluted soil using a modified culture method and optimization of their lipase production. Microorganism 2021, 9, 2590. [Google Scholar] [CrossRef]
- Ahirwar, N.K.; Gupta, G.; Singh, R.; Singh, V. Isolation, identification and characterization of heavy metal resistant bacteria from industrial affected soil in central India. Int. J. Pure. Appl. Biosci. 2016, 4, 88–93. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
- Ilyas, S.; Kim, M.S.; Lee, J.C.; Jabeen, A.; Bhatti, H.N. Bio-reclamation of strategic and energy critical metals from secondary resources. Metals 2017, 7, 207. [Google Scholar] [CrossRef]
- Germa, G. Microbial bioremediation of some heavy metals in soils: An updated review. Egypt. Acad. J. Biolog. Sci. G Microbiol. 2015, 7, 29–45. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, M.; Shamim, S. Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms 2021, 9, 1628. [Google Scholar] [CrossRef] [PubMed]
- Oves, M.; Khan, M.S.; Zaidi, A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J. Biol. Sci. 2013, 20, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimermanova, M.; Pristas, P.; Piknova, M. Biodiversity of Actinomycetes from heavy metal contaminated technosols. Microorganisms 2021, 9, 1635. [Google Scholar] [CrossRef] [PubMed]
- Satyapal, G.K.; Mishra, S.K.; Srivastava, A.; Ranjan, R.K.; Prakash, K.; Haque, R.; Kumar, N. Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol. Rep. 2018, 17, 117–125. [Google Scholar] [CrossRef]
- Polak-Berecka, M.; Szwajgier, D.; Waśko, A. Biosorption of Al(+3) and Cd(+2) by an exopolysaccharide from Lactobacillus rhamnosus. J. Food Sci. 2014, 79, 2404–2408. [Google Scholar] [CrossRef] [PubMed]
- Bhati, T.; Gupta, R.; Yadav, N.; Singh, R.; Fuloria, A.; Waziri, A.; Purty, R. Assessment of Bioremediation Potential of Cellulosimicrobium sp. for Treatment of Multiple Heavy Metals. Microbiol. Biotechnol. Lett. 2019, 47, 269–277. [Google Scholar] [CrossRef]
- Brdarić, E.; Soković Bajić, S.; Đokić, J.; Đurđić, S.; Ruas-Madiedo, P.; Stevanović, M.; Tolinački, M.; Dinić, M.; Mutić, J.; Golić, N.; et al. Protective Effect of an exopolysaccharide produced by Lactiplantibacillus plantarum BGAN8 against Cadmium-induced toxicity in Caco-2 Cells. Front. Microbiol. 2021, 12, 759378. [Google Scholar] [CrossRef]
- Timková, I. Biosorption and bioaccumulation abilities of Actinomycetes/Streptomycetes isolated from metal contaminated sites. Separations 2018, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Hansda, A.; Kumar, V. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J. Microbiol. Biotechnol. 2016, 32, 170. [Google Scholar] [CrossRef]
- Schiewer, S.; Volesky, B. Biosorption Processes for Heavy Metal Removal, Environmetal Microbe-Metal Interaction; ASM Press: Washington, DC, USA, 2000; pp. 329–362. [Google Scholar]
- Naz, T.; Khan, M.D.; Ahmed, I.; ur Rehman, S.; Rha, E.S.; Malook, I.; Jamil, M. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Toxicol. Ind. Health 2016, 32, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Syed, S.; Chinthala, P. Heavy metal detoxification by different Bacillus species Isolated from Solar Salterns. Scientifica 2015, 2015, 319760. [Google Scholar] [CrossRef] [Green Version]
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 147, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.M.; Singh, G.; Jadeja, R.N. Physical and chemical methods for heavy metal removal. Pollut. Water Manag. Resour. Strateg. Scarcity 2021, 377–397. [Google Scholar]
- Enshaei, M.; Khanafari, A.; Akhavan Sepahey, A. Metallothionein induction in two species of Pseudomonas exposed to Cadmium and Copper contamination. J. Environ. Health Sci. Eng. 2012, 7, 287–298. [Google Scholar]
- Kiliç, N.K.; Kürkçü, G.; Kumruoğlu, D.; Dönmez, G. EPS production and bioremoval of heavy metals by mixed and pure bacterial cultures isolated from Ankara Stream. Water. Sci. Technol. 2015, 72, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, A.; Ahmed, B.; Zaidi, A.; Khan, M.S. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Ecotoxicology 2019, 28, 302–322. [Google Scholar] [CrossRef]
- Mathivanan, K.; Chandirika, J.U.; Mathimani, T.; Rajaram, R.; Annadurai, G.; Yin, H. Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment. Ecotoxicol. Environ. Saf. 2021, 208, 111567. [Google Scholar] [CrossRef]
- Gupta, P.; Diwan, B. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2017, 13, 58–71. [Google Scholar] [CrossRef]
- Volesky, B. Biosorption of Heavy Metals; CRC Press: Boca Raton, FL, USA, 1990; ISBN 978-0849349171. [Google Scholar]
- Aryal, M.; Liakopoulou-Kyriakides, M. Bioremoval of heavy metals by bacterial biomass. Environ. Monit. Assess. 2015, 187, 4173. [Google Scholar] [CrossRef] [PubMed]
- Saba, R.Y.; Ahmed, M.; Sabri, A.N. Potential role of bacterial extracellular polymeric substances as biosorbent material for arsenic bioremediation. Bioremediat. J. 2019, 23, 72–81. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef] [PubMed]
- Van Hullebusch, E.D.; Zandvoort, M.H.; Lens, P.N. Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2003, 2, 9–33. [Google Scholar] [CrossRef]
- Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257. [Google Scholar] [CrossRef]
- Ueda, M. Establishment of cell surface engineering and its development. Biosci. Biotechnol. Biochem. 2016, 80, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Parajuli, D.; Ghimire, K.N.; Biswas, B.K.; Kawakita, H.; Oshima, T.; Ohto, K. Biosorbents for removing hazardous metals and metalloids. Materials 2017, 10, 857. [Google Scholar] [CrossRef] [Green Version]
- Ojuederie, O.B.; Babalola, O.O. Microbial and Plant-assisted bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef] [Green Version]
- Abdi, O.; Kazemi, M. A review study of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 2015, 6, 1386–1399. [Google Scholar]
- El-Naggar, N.E.A.; El-khateeb, A.Y.; Ghoniem, A.A.; El-Hersh, M.S.; Saber, W.I.A. Innovative low-cost biosorption process of Cr6+ by Pseudomonas alcaliphila NEWG-2. Sci. Rep. 2020, 10, 14043. [Google Scholar] [CrossRef]
- Chang, Y.; Deng, S.; Yun Liang, Y.; Chen, J. Cr(VI) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from mine soil: Characterization of both Cr(VI) bioreduction and total Cr biosorption processes. Environ. Sci. Pollut. Res. 2019, 26, 28135–28145. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Deng, S.; Xu, J.; Nan, H.; Li, Z.; Song, J.L. Simultaneous reduction of nitrate and Cr(VI) by Pseudomonas aeruginosa strain G12 in wastewater. Ecotoxicol. Environ. Saf. 2020, 191, 110001. [Google Scholar] [CrossRef] [PubMed]
- Karthik, C.; Ramkumar, V.S.; Pugazhendhi, A.; Gopalakrishnan, K.; Arulselvi, P.I. Biosorption and biotransformation of Cr(VI) by novel Cellulosimicrobium funkei strain AR6. J. Taiwan Inst. Chem. Eng. 2017, 70, 282–290. [Google Scholar] [CrossRef]
- Raman, N.M.; Asokan, S.; Sundari, N.S.; Ramasamy, S. Bioremediation of chromium(VI) by Stenotrophomonas maltophilia isolated from tannery effluent. Int. J. Environ. Sci. Technol. 2018, 15, 207–216. [Google Scholar] [CrossRef]
- Jin, R.; Wang, B.; Liu, G.; Wang, Y.; Zhou, J.; Wang, J. Bioreduction of Cr(VI) by Acinetobacter sp. WB-1 during simultaneous nitrification/denitrification process. Chem. Technol. Biotechnol. 2017, 92, 639–646. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Mishra, S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 2018, 147, 102–109. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Zhang, H.; Huang, G.; Yang, Q.; Wang, Y. Synchronous detoxification and reduction treatment of tannery sludge using Cr (VI) resistant bacterial strains. Sci. Total. Environ. 2019, 687, 34–40. [Google Scholar] [CrossRef]
- Jeong, S.W.; Kim, H.K.; Yang, J.E.; Choi, Y.J. Removal of Pb(II) by Pellicle-Like Biofilm-Producing Methylobacterium hispanicum EM2 strain from aqueous media. Water 2019, 11, 2081. [Google Scholar] [CrossRef] [Green Version]
- Photolo, M.M.; Sitole, L.; Mavumengwana, V.; Tlou, M.G. Genomic and Physiological Investigation of Heavy Metal Resistance from plant endophytic Methylobacterium radiotolerans MAMP 4754, Isolated from combretum erythrophyllum. Int. J. Environ. Res. Public Health 2021, 18, 997. [Google Scholar] [CrossRef]
- Rakhmawati, A.; Wahyuni, E.T.; Yuwono, T. Potential application of thermophilic bacterium Aeribacillus pallidus MRP280 for lead removal from aqueous solution. Heliyon 2021, 7, e08304. [Google Scholar] [CrossRef]
- Ren, G.; Jin, Y.; Zhang, C.; Gu, H.; Qu, J. Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicol. Environ. Saf. 2015, 117, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Hlihor, R.M.; Roşca, M.; Tavares, T.; Gavrilescu, M. The role of Arthrobacter viscosus in the removal of Pb(II) from aqueous solutions. Water Sci. Technol. 2017, 76, 1726–1738. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, X.; Zang, T.; Hu, Y.; Hu, X.; Ren, G.; Xu, X.; Qu, J. Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism. J. Microbiol. Biotechnol. 2016, 26, 1428–1438. [Google Scholar] [CrossRef]
- Li, D.; Xu, X.; Yu, H.; Han, X. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. J. Environ. Manag. 2017, 196, 8–15. [Google Scholar] [CrossRef]
- Vishan, I.; Laha, A.; Kalamdhad, A. Biosorption of Pb (II) by Bacillus badius AK strain originating from rotary drum compost of water hyacinth. Water Sci. Technol. 2017, 75, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Hussain, S.Z.; Rehman, A.; Zulfiqar, S.; Shakoori, A.R. Evaluation of cadmium resistant bacterium, Klebsiella Pneumoniae, isolated from industrial wastewater for its potential use to bioremediate environmental cadmium. Pak. J. Zool. 2015, 47, 1533–1543. [Google Scholar]
- Roşca, M.; Hlihor, R.M.; Cozma, P.; Drăgoi, E.N.; Diaconu, M.; Silva, B.; Teresa Tavares, T.; Gavrilescu, M. Comparison of Rhodotorula sp. and Bacillus megaterium in the removal of cadmium ions from liquid effluents. Green Process Synth. 2018, 7, 74–88. [Google Scholar] [CrossRef]
- Heidari, P.; Panico, A. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus sp. Int. J. Environ. Res. Public Health 2020, 17, 4059. [Google Scholar] [CrossRef]
- Imron, M.F.; Kurniawan, S.B.; Abdullah, S.R.S. Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain. Environ. Res. 2021, 31, 14. [Google Scholar] [CrossRef]
- Jafari, S.A.; Cheraghi, S.; Mirbakhsh, M.; Mirza, R.; Maryamabadi, A. Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. CLEAN–Soil Air Water 2015, 43, 118–126. [Google Scholar] [CrossRef]
- Karimpour, M.; Ashrafi, S.D.; Taghavi, K.; Mojtahedi, A.; Roohbakhsh, E.; Naghipour, D. Adsorption of cadmium and lead onto live and dead cell mass of Pseudomonas aeruginosa: A dataset. Data. Brief. 2018, 18, 1185–1192. [Google Scholar] [CrossRef]
- Hadiani, M.R.; Darani, K.K.; Rahimifard, N.; Younesi, H. Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal. Agric. Biotechnol. 2018, 15, 25–34. [Google Scholar] [CrossRef]
- Hwang, S.K.; Jho, E.H. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Sci. Total Environ. 2018, 635, 1308–1316, Erratum in Sci. Total Environ. 2019, 651 Pt 2, 3271. [Google Scholar] [CrossRef] [PubMed]
- Puyen, Z.M.; Villagrasa, E.; Maldonado, J.; Diestra, E.; Esteve, I.; Solé, A. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour. Technol. 2012, 126, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Shameer, S. Biosorption of lead, copper and cadmium using the extracellular polysaccharides (EPS) of Bacillus sp., from solar salterns. 3 Biotech 2016, 6, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwandira, W.; Nakashima, K.; Kawasaki, S.; Arabelo, A.; Banda, K.; Nyambe, I.; Chirwa, M.; Ito, M.; Sato, T.; Igarashi, T.; et al. Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci. Rep. 2020, 10, 21189. [Google Scholar] [CrossRef] [PubMed]
- Quiton, K.G.; Doma, B., Jr.; Futalan, C.M.; Wan, M.W. Removal of chromium (VI) and zinc (II) from aqueous solution using kaolin-supported bacterial biofilms of Gram-negative E. coli and Gram-positive Staphylococcus epidermidis. Sustain. Environ. Res. 2018, 28, 206–213. [Google Scholar] [CrossRef]
- Abd El-Motaleb, M.; El-Sabbagh, S.; Mohamed, W.; Wafy, K. Biosorption of Cu2+, Pb2+ and Cd2+ from wastewater by dead biomass of Streptomyces cyaneus Kw42. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 422–435. [Google Scholar] [CrossRef]
- Hamdan, A.M.; Abd-El-Mageed, H.; Ghanem, N. Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture. Sci. Rep. 2021, 11, 9314. [Google Scholar] [CrossRef]
- Orji, O.U.; Awoke, J.N.; Aja, P.M.; Aloke, C.; Obasi, O.D.; Alum, E.U.; Udu-Ibiam, O.E.; Oka, G.O. Halotolerant and metalotolerant bacteria strains with heavy metals biorestoration possibilities isolated from Uburu Salt Lake, Southeastern, Nigeria. Heliyon 2021, 7, e07512. [Google Scholar] [CrossRef] [PubMed]
- Choińska-Pulit, A.; Sobolczyk-Bednarek, J.; Łaba, W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol. Environ. Saf. 2018, 149, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Malik, A. Recent advances in microbial metal bioaccumulation. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1162–1222. [Google Scholar] [CrossRef]
- Shamim, S.; Rehman, A.; Qazi, M.H. Cadmium-resistance mechanism in the bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Arch. Environ. Contam. Toxicol. 2014, 67, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H. Transport protein evolution deduced from analysis of sequence, topology and structure. Curr. Opin. Struct. Biol. 2016, 38, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol. 2018, 6, 157. [Google Scholar] [CrossRef] [Green Version]
- Abioye, O.P.; Oyewole, O.A.; Oyeleke, S.B.; Adeyemi, M.O.; Orukotan, A.A. Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Braz. J. Biol. Sci. 2018, 5, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Dash, H.R.; Mangwani, N.; Das, S. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ. Sci. Pollut. Res. 2014, 21, 2642–2653. [Google Scholar] [CrossRef] [PubMed]
- Saranya, K.; Sundaramanickam, A.; Shekhar, S.; Swaminathan, S.; Balasubramanian, T. Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. Biomed. Res. Int. 2017, 2017, 6509648. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Pramanik, K.; Bhattacharya, S.; Mondal, S.; Ghosh, S.K.; Maiti, T.K. A potent cadmium bioaccumulating Enterobacter cloacae strain displays phytobeneficial property in Cd-exposed rice seedlings. Curr. Res. Microb. Sci. 2022, 3, 100101. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.; Zeng, Y.; Zhang, J.; Lu, G.; Dang, Z.; Chuling Guo, C. Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level. Ecotoxicol. Environ. Saf. 2019, 176, 162–169. [Google Scholar] [CrossRef]
- Nayak, A.K.; Panda, S.S.; Basu, A.; Dhal, N.K. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int. J. Phytoremediation 2018, 20, 682–691. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, B.; Cai, Q.T.; Xi, X.X.; Liu, M.; Hu, D.; Guo, D.B.; Wang, J.; Fan, C. Bioremediation of hexavalent chromium pollution by sporosarcina saromensis m52 isolated from offshore sediments in Xiamen, China. Biomed. Environ. Sci. 2016, 29, 127–136. [Google Scholar]
- Mat Arisah, F.; Amir, A.F.; Ramli, N.; Ariffin, H.; Maeda, T.; Hassan, M.A.; Mohd Yusoff, M.Z. Bacterial Resistance against heavy metals in Pseudomonas aeruginosa RW9 involving hexavalent chromium removal. Sustainability 2021, 13, 9797. [Google Scholar] [CrossRef]
- Njokua, K.L.; RAkinyedea, R.A.; Obidi, O. Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer. Sci. Afr. 2020, 10, e00545. [Google Scholar] [CrossRef]
- De, J.; Ramaiah, N.; Vardanyan, L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar. Biotechnol. 2008, 10, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Sedlakova-Kadukova, J.; Kopcakova, A.; Gresakova, L.; Godany, A.; Pristas, P. Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicol. Environ. Saf. 2019, 167, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, X.; Wang, B.; Mohamad, O.; Wei, G. Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotoxicol. Environ. Saf. 2012, 77, 7–17. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Kumar, M.; Singh, D.K. Multi-metal resistance and potential of Alcaligenes sp. MMA for the removal of heavy metals. SN Appl. Sci. 2020, 2, 1885. [Google Scholar] [CrossRef]
- Huang, F.; Wang, Z.H.; Cai, Y.X.; Chen, S.H.; Tian, J.H.; Cai, K.Z. Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicol. Environ. Saf. 2018, 157, 216–226. [Google Scholar] [CrossRef]
- Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A Review. J. Toxicol. 2018, 2018, 2568038. [Google Scholar] [CrossRef] [PubMed]
- Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 2016, 7, 303. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.; Bharadvaja, N.M. Microbial remediation of heavy metals. Shah, M., Eds. In Microbial Bioremediation and Biodegradation; Springer: Singapore, 2020; pp. 49–72. [Google Scholar]
- Ayangbenro Ayansina, S.; Olanrewaju Oluwaseyi, S.; Babalola Olubukola, O. Sulfate-Reducing Bacteria as an Effective Tool for Sustainable Acid Mine Bioremediation. Front. Microbiol. 2018, 9, 1986. [Google Scholar] [CrossRef] [PubMed]
- Méndez-García, C.; Peláez, A.I.; Mesa, V.; Sánchez, J.; Golyshina, O.V.; Ferrer, M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 2015, 6, 475. [Google Scholar] [PubMed] [Green Version]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Gatheru, W.M.; Sun, K.; Gao, Y. Sphingomonads in Microbe-assisted phytoremediation: Tackling Soil Pollution. Trends Biotechnol. 2017, 35, 883–899. [Google Scholar] [CrossRef]
- Marques, C.R. Extremophilic Microfactories: Applications in metal and radionuclide bioremediation. Front. Microbiol. 2018, 9, 1191. [Google Scholar] [CrossRef]
- Giovanella, P.; Vieira, G.A.L.; Ramos Otero, I.V.; Pais Pellizzer, E.; de Jesus Fontes, B.; Sette, L.D. Metal and organic pollutants bioremediation by extremophile microorganisms. J. Hazard. Mater. 2020, 382, 121024. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Purification and characterization of strong simultaneous enzyme production of protease and amylase from an extremophile-Bacillus sp. FW2 and its possibility in food waste degradation. Fermentation 2022, 8, 12. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Kim, J.; Shim, J.; Chang, S.; Chung, W. Coconut Mesocarp-Based Lignocellulosic Waste as a Substrate for Cellulase Production from High Promising Multienzyme-Producing Bacillus amyloliquefaciens FW2 without Pretreatments. Microorganisms 2022, 10, 327. [Google Scholar] [CrossRef]
- De Serrano, L.O.; Camper, A.K.; Richards, A.M. An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals 2016, 29, 551–571. [Google Scholar] [CrossRef] [Green Version]
- Voica, D.M.; Bartha, L.; Banciu, H.L.; Oren, A. Heavy metal resistance in halophilic Bacteria and Archaea. FEMS Microbiol. Lett. 2016, 363, fnw146. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Wang, Y.; Yang, X.; Zhang, B.; He, X.; Xu, W.; Huang, K. Cadmium tolerant characteristic of a newly isolated Lactococcus lactis subsp. lactis. Environ. Toxicol. Pharmacol. 2016, 48, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Kalita, D.; Joshi, S.R. Study on bioremediation of lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol. Rep. 2017, 16, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, S.; Kilinc, E.; Poli, A.; Nicolaus, B. Biosorption of heavy metals (Cd2+, Cu2+, Co2+, and Mn2+) by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus: Equilibrium and kinetic studies. Bioremediat. J. 2013, 17, 86–96. [Google Scholar] [CrossRef]
- Masaki, Y.; Hirajima, T.; Sasaki, K.; Okibe, N. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC. Extremophiles 2015, 19, 495–503. [Google Scholar] [CrossRef]
- Ulloa, G.; Collao, B.; Araneda, M.; Escobar, B.; Álvarez, S.; Bravo, D. Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH. Enzym. Microb. Technol. 2016, 95, 217–224. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Liu, D.; Xu, C.; Ai, Y.; Sun, X.; Zhang, M.; Gao, Y.; Zhang, Y.; Yang, T.; et al. A novel Pb-resistant Bacillus subtilis bacterium isolate for co-biosorption of hazardous Sb(III) and Pb(II): Thermodynamics and application strategy. Int. J. Environ. Res. Public Health 2018, 15, 702. [Google Scholar] [CrossRef] [Green Version]
- Romero-González, M.; Nwaobi, B.C.; Hufton, J.M.; Gilmour, D.J. Ex-situ bioremediation of U(VI) from contaminated mine water using Acidothiobacillus ferrooxidans strains. Front. Environ. Sci. 2016, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yan, L.; Xing, W.; Chen, P.; Zhang, Y.; Wang, W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018, 22, 563–579. [Google Scholar] [CrossRef]
- Gumulya, Y.; Boxall, N.J.; Khaleque, H.N.; Santala, V.; Carlson, R.P.; Kaksonen, A.H. In a quest for engineering acidophiles for biomining applications: Challenges and opportunities. Genes 2018, 21, 116. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Abdollahi, H.; Shafaei, S.Z.; Gharabaghi, M.; Jafari, H.; Akcil, A. Acidophilic bioleaching: A review on the process and effect of organic-inorganic reagents and materials on its efficiency. Min. Proc. Ext. Met. Rev. 2019, 2, 87–107. [Google Scholar] [CrossRef]
- Saavedra, A.; Aguirre, P.; Gentina, J.C. Biooxidation of Iron by Acidithiobacillus ferrooxidans in the Presence of D-Galactose: Understanding its influence on the production of EPS and cell tolerance to high concentrations of iron. Front. Microbiol. 2020, 11, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.R.; Helbling, D.E.; Men, Y.; Fenner, K. Can meta-omics help to establish causality between contaminant biotransformations and genes or gene products? Environ. Sci. 2015, 1, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Filote, C.; Roșca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Apostol, M.; Gavrilescu, M. Sustainable application of biosorption and bioaccumulation of persistent pollutants in wastewater treatment: Current Practice. Processes 2021, 9, 1696. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, B.; Yu, Q. Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Appl. Mater. Interfaces 2020, 12, 22948–22957. [Google Scholar] [CrossRef]
- Wu, C.; Li, F.; Yi, S.; Ge, F. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. J. Environ. Manag. 2021, 296, 113185. [Google Scholar] [CrossRef] [PubMed]
- Giese, E.C.; Silva, D.D.V.; Costa, A.F.M.; Almeida, S.G.C.; Dussan, K.J. Immobilized microbial nanoparticles for biosorption. Crit. Rev. Biotechnol. 2020, 40, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Velkova, Z.; Kirova, G.; Stoytcheva, M.; Kostadinova, S.; Todorova, K.; Gochev, V. Immobilized microbial biosorbents for heavy metals removal. Eng. Life Sci. 2018, 18, 871–881. [Google Scholar] [CrossRef] [Green Version]
Methods | Description |
---|---|
Chemical precipitation | The most common method for heavy metal removal from solutions. The ionic metals are converted to insoluble forms by chemical reactions using precipitating reagents (precipitants) and form metal hydroxides, sulfides, carbonates, and phosphates (insoluble solid particles) that can be simply separated by settling or filtration. |
Electrodialysis (ED) and Electrodialysis Reversal (EDR) | ED and EDR are considered electro-membrane separation processes as ion-exchange membranes (IEM) that are used to separate different ions present in solution as it permeates owing to electrical potential difference. ED/EDR has been mainly utilized for advanced water deionization, high-efficiency removal of ions in pure and ultrapure water application as well as brackish water desalination. |
Membrane filtration (MF) | MF is capable of removing not only suspended solid and organic components but also inorganic contaminants such as metal ions. A membrane is a selective layer used to make contact between two homogenous phases with a porous or non-porous structure for the removal of pollutants. Based on the various sizes of the particle, it is divided into three types as below: |
| UF utilizes permeable membrane to separate heavy metals with pore sizes in the range of 0.1–0.001 micron which permeates water and low molecular weight solutes, while retaining the macromolecules, particles, and colloids that are larger in size of 5–20 nm. The removal of Cu (II), Zn (II), Ni (II), and Mn (II) from aqueous solutions is achieved by using ultrafiltration assisted with chitosan-enhanced membrane with a rejection of 95–100% or a copolymer of malic acid and acrylic acid attaining a removal efficiency of 98.8% by forming macromolecular structures with the polymers. |
| NF is a pressure-driven membrane process that lies between ultrafiltration and reverse osmosis. It is able to reject molecular ionic species by making separation of large molecules possible by small pores when they are within the molecular weight range from 300 to 500 Da with a pore diameter of 0.5–1 nm. A current commercial nanofiltration membrane NF270 is used for removing Cd (II), Mn (II), and Pb (II) with an efficiency of 99, 89, and 74%, respectively. |
| In RO, a pressure-driven membrane process, water can pass through the membrane, while the heavy metal is retained. The removal performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) was investigated for the separation of Cu(II) and Ni(II) ions from both synthetic and real plating wastewater. |
Microfiltration (MF) | MF uses the same principle as ultrafiltration. The major difference between the two processes is that the solutes which are removed by MF are larger than those rejected by UF using the pore size of 0.1–10 μm with applied pressure range of 0.1–3 bar. |
Photocatalysis | Photocatalysis is based on the reactive properties of electron- hole pairs generated in the semiconductor particles under illumination by light of energy. Metal ions are reduced by capturing the photo-excited conduction band electrons, and water or other organics are oxidized by the balance band holes. Heavy toxic metal ions such as Hg2+ and Ag+, and noble metals can be removed from water by photo deposition on Titania surface-trapped photoelectron states, probably Ti(III), and silver deposition could be observed on the same time scale. |
Bacterial Biosorbents | Target Metals | Amount of Heavy Metals Uptake (mg/L) | Biosorption Efficiency (%) | Reference |
---|---|---|---|---|
Pseudomonas alcaliphila NEWG-2 | Cr | 200 | 96.6 | [52] |
Pseudomonas sp. strain DC-B3 | Cr | 55.35 | 41 | [53] |
Pseudomonas aeruginosa G12 | Cr | 10 | 93 | [54] |
Cellulosimicrobium funkei AR6 | Cr | 164.66 | 82.33 | [55] |
Stenotrophomonas maltophilia | Cr | 19.84 | 99.2 | [56] |
Acinetobacter sp. WB-1 | Cr | 6.82 | 68.17 | [57] |
Cellulosimicrobium sp. | Cr | 96.98 | 96.98 | [58] |
Stenotrophomonas sp. | Cr | 270 | 90 | [59] |
Cellulosimicrobium sp. | Pb | 200 | 84.62 | [58] |
Methylobacterium sp. | Pb | 300 | 62.28 | [60,61] |
Aeribacillus pallidus MRP280 | Pb | 86.47 | 96.78 | [62] |
Bacillus sp. PZ-1 | Pb | 400 | >90 | [63] |
Arthrobacter viscosus | Pb | 100 | 97 | [64] |
Arthrobacter sp. 25 | Pb | 95.04 | 86.25 | [65] |
Pseudomonas sp. I3 | Pb | 49.48 | 98.96 | [66] |
Bacillus badius AK | Pb | 60 | 60 | [67] |
Klebsiellap enumoniae | Cd | 40.18 | 40.18 | [68] |
Rhodotorula sp. | Cd | 40 | 80 | [69] |
Bacillus megaterium sp. | Cd | 39.5 | 79 | [69] |
Bacillus sp. Q3 | Cd | 108.2 | 93.76 | [70] |
Pseudomonas aeruginosa FZ-2 | Hg | 10 | 99.7 | [71] |
Vibrio parahaemolyticus PG02 | Hg | 5 | 90 | [72] |
Pseudomonas aeruginosa | Cd, Pb | 62.8 (Cd); 73.1 (Pb) | 87 (Cd); 98.5 (Pb) | [73] |
Saccharomyces cerevisiae | Pb, Cd | 0.045 (Pb); 0.47 (Cd) | 70.3 (Pb); 76.2 (Cd) | [74] |
Desulfovibrio desulfuricans (immobilize on zeolite) | Zn | 174 | 100 | [75] |
Micrococcus luteus DE2008 | Pb, Cu | 20.4 (Cu); 98.25 (Pb) | 25.42 (Cu); 36.07 (Pb) | [76] |
Bacillus sp. | Pb, Cu, Cd | 990 (Cd); 970 (Cu); 200 (Pb) | >90 (Cd, Cu); 20 (Cd) | [77] |
Oceanbacillus profundus | Pb, Zn | 45 (Pb); 1.08 (Zn) | 97 (Pb); 54 (Zn) | [78] |
Staphylococcus epidermidis | Cr, Zn | 118 (Zn); 112 (Cr) | 59 (Zn), 56 (Cr) | [79] |
Streptomyces sp. | Pb, Cd, Cu | 1.43 (Cu); 0.91 (Pb) 3.66 (Cd) | Pb (83.4); Cu (74.5); Cd (68.4) | [80,81] |
Klebsiella sp. USL2S | Hg, Pb, Cd, Ni | 8500 (Hg); 10,000 (Pb); 1026 (Cd); 8479 (Ni) | 85 (Hg); 97.13 (Pb); 73.33 (Cd) 86.06 (Ni) | [82] |
Pseudomonas azotoformans JAW1 | Cd, Cu, Pb | 24.64 (Cd); 17.44 (Cu); 19.55 (Pb) | 98.57 (Cd); 69.76 (Cu); 78.23 (Pb) | [83] |
Bacterial Biosorbents | Target Metals | Amount of Heavy Metals Uptake (mg/L) | Bioaccumulation Efficiency (%) | Reference |
---|---|---|---|---|
Bacillus megaterium sp. | Pb | 2.1 | 98.5 | [88] |
Bacillus sp. PZ-1 | Pb | 100 | 96 | [63] |
Arthrobacter viscosus | Pb | 100 | 96 | [64] |
Bacillus thuringiensis PW-05 | Hg | 50 | 91 | [89] |
Vibrio fluvialis | Hg | 0.25 | 60 | [90] |
Enterdobacter cloacae | Cd | 4 | 72.11 | [91] |
Bacillus sp. Q5 | Cd | 97.35 | 76.42 | [70] |
Burkholderia cepacia GYP1 | Cd | >90 | >90 | [92] |
Bacillus cereeus | Cr | 1500 | 81 | [93] |
Sporosarcina saromensis M52 | Cr | 50 | 82.5 | [94] |
Pseudomonas aeruginosa RW9 | Cr | 0.46 | 90 | [95] |
Rhizopus stolonifer | Pb, Ni, Cd | 170.7 (Pb); 18.7 (Ni); 25.6 (Cd) | 44.44 (Pb); 16.66 (Ni); 8.3 (Cd) | [96] |
Bacillus subtilis | Pb, Cd | 2.09 (Pb); 0.37 (Cd) | 98.1 (Pb); 92.5 (Cd) | [88] |
Pseudomonas sp. | Pb, Cd | 98.2 (Pb); 82.6 (Cd) | >98 (Pb); 75 (Cd) | [97] |
Streptomyces K11 | Zn | 11.76 | 36 | [98] |
Streptomyces zinciresistens | Cd, Zn | 220.5 (Cd); 113.5 (Zn) | 98.11 (Cd); 87.33 (Zn) | [99] |
Alcaligenes sp. MMA | Cr, Zn, Cd | 9.78 (Cr); 14 (Zn); 12.6 (Cd) | 48.93 (Cr); 70 (Zn); 63 (Cd) | [100] |
Bacillus cereus RC-1 | Zn, Cd, Pb | 3.83 (Zn); 8.14 (Cd); 4.03 (Pb) | 38.3 (Zn); 81.4 (Cd); 40.3 (Pb) | [101] |
Contents | Biosorption | Bioaccumulation |
---|---|---|
General features | Passive process | Active process |
Ions bound on the surface of ions | Intracellular accumulation of ions | |
Rapid and simple process | Requires longer time and complex process | |
Not energy requirement | Requires energy sources for metabolisms | |
Carried out by both-live and dead biomass | Carried out only by live biomass | |
No sensitivity to cultivation conditions | Inhibited by the lack of nutrients, low temperature, and metal toxicity | |
Fresh cultivation medium is not necessary | Need of fresh cultivation medium | |
Biomass can be regenerated and reuse | Due to the intercellular accumulation, reuse is limited for further purpose | |
Main affect factors | ||
| Can occur in a wide range of pH and temperature | Be sensitive to pH and temperature change led to a significant change in living cells |
| Can be increased by modification or biomass transformation | Better in the case of biosorption |
| There is a limitation for maximum biosorption | More significant affect cell growth led to more affect the accumulation ability |
Advantages | Disadvantages |
---|---|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms 2022, 10, 610. https://doi.org/10.3390/microorganisms10030610
Pham VHT, Kim J, Chang S, Chung W. Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms. 2022; 10(3):610. https://doi.org/10.3390/microorganisms10030610
Chicago/Turabian StylePham, Van Hong Thi, Jaisoo Kim, Soonwoong Chang, and Woojin Chung. 2022. "Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities" Microorganisms 10, no. 3: 610. https://doi.org/10.3390/microorganisms10030610
APA StylePham, V. H. T., Kim, J., Chang, S., & Chung, W. (2022). Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms, 10(3), 610. https://doi.org/10.3390/microorganisms10030610