Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes
Abstract
:1. Introduction
2. Diversity of Phosphorus-Forms and P-Dynamic in Soils
2.1. Back to Orthophosphate Ions and Distribution of P in Different Chemical Species
2.2. Geophysicochemical Processes Involved in P Cycling and Speciation
2.3. Multiple Drivers Shaped the P-Form Diversity in the Soil Matrix
2.3.1. Soil Properties as Drivers of P-Speciation
2.3.2. Influence of Climatic Variables
2.3.3. Influence of Land Uses and Soil Management Practices
2.3.4. Interrelations, Coupling and Feedback between the Different Environmental Variables
3. Phosphorus as a Driver of Shifts in Soil Microbiomes
3.1. A Large Diversity of Experimental Designs Has Been Used to Track P as a Driver of Microbial Community Assemblages
3.2. Occurrence of Microbial Communities with P-Dependent Structure and Composition
3.3. Importance of Interkingdom Interactions among Plant-Associated Microbial Communities
Experimental Design | Assessment of Shifts in Microbial Assemblages | References | |||||
---|---|---|---|---|---|---|---|
Fertilization Practices P Sources | P Levels in Amendment | Ecosystem Or Culture Conditions | Plant Species Culture Duration before Plant Sampling | Soil Compartments | Targeted Microbial Communities | Diversity Analysis | |
Long-Term Fertilization Practices—Repetitive Inputs During the Long Term | |||||||
~40 year fertilization trial Superphosphate Phosphate rock | 188 SP; 250SP; 250RP; 376SP kg ha−1yr−1 | pastoral agricultural system | grass/clover | soil | Actinobacteria Pseudomonas, AMF | Gene copie numbers (qPCR) PCR-DGGE profiles | [89] |
~3 year fertilization trial Solutions of NaH2PO4 | 15 g m−2 year−1 in 2 monthly portions | tropical forests | tree species of a mixed forest | soil | Bacteria Fungi AMF | Microbial biomass Community composition (PLFA) | [90] |
2 or 4 year fertilization trial Triple-super phosphate | 10 g of P per m2·yr−1 | Broad range of natural sites | native plants Growing season | Soil | Bacteria Archaea Fungi | Sequencing of gene markers; Alpha diversity; Taxonomic structure Functional gene composition | [97] |
43 year fertilization trial Triple-super phosphate | no inputs 11 kg P ha−1 yr−1 33 kg P ha−1 yr−1 | field experiment | Intercropping Faba bean/ Durum wheat flowering stage | Rhizosphere Bulk soil | Actinobacteria, α-Proteobacteria Firmicutes | Microbial biomass Genes copies numbers (qPCR) | [110] |
2 years trial NaH2PO4.2H2O. | 5 g P m−2 yr−1 15 g P m−2 yr−1 30 g P m−2 yr−1 | plantation | Subalpine spruce plantation | soil | Bacteria Fungi AMF | Microbial biomass Community composition (PLFA) | [104] |
Fertilization since 1902 mineral fertilization (NPK) farmyard manure fertilization Combined farmyard manure and mineral fertilization | NPK = calcium ammonium nitrate+ superphosphate+ potassium chloride, 20t ha−1 of manure | field experiment | 4-year crop rotation (B. vulgaris; H. vulgare; S. tuberosum; T. aestivum). | soil | Bacteria Fungi | microbial biomass Enzyme activities Sequencing of gene markers; Richness; Alpha diversity; Taxonomic structure | [100] |
~30 years trial superphosphate Organic manure | 40 kg P2O5 ha−1 year−1 | field experiment | Triticum aestivum L. | soil | Bacteria Archea | Sequencing of gene markers;Alpha/beta diversity | [101] |
3 years fertilization trial Triple superphosphate Crude rock phosphate | P2O adjusted: 4 kg/ha 100 kg/ha | field experiment | Maize 60 days | Root Rhizosphere | Bacteria Fungi AMF | Sequencing of gene markers; Alpha diversity; Taxonomic structure T-RFLP | [114] |
Since 1949 Superphosphate Basic slag Alkali sinter phosphate 6-year crop rotation | 0; 5 kg P ha−1 year−1 | Greenhouse | Arabidopsis thaliana 7–8 weeks | Roots Rhizosphere Bulk soil | Bacteria Fungi | Sequencing of gene markers; Alpha/beta diversity; Taxonomic structure | [92] |
long-term experiment | 0; 150 kg ha−1 | field experiment | Maize 10 weeks | Axial roots Lateral roots Bulk soil | Fungi | Sequencing of gene markers; Alpha/beta diversity; Taxonomic structure transcriptome sequencing | [115] |
Short term P fertilization/One-time phosphate fertilization/ | |||||||
Triple-super phosphate Rock phosphate | 50 kg P ha−1 50 kg P ha−1 250 kg P ha−1 | glasshouse Agricultural soil | Phaseolus vulgaris 10 weeks | Rhizosphere Bulk soil | Bacteria | PCR-TRFLP: Richness; Taxonomic structure | [102] |
Potassium phosphate | 0; 5; 10 and 20 kg P ha−1 | greenhouse Agronomic soil | Lolium perenne 14 weeks | soil | Bacteria Fungi AMF | DGGE fingerprintings Sequencing of gene markers;Alpha/beta diversity Gene abundance(phoD) Phosphatase activity | [105] |
Soils from low/High P area (4.4 mg/dm3 5.3 mg/dm3) Additional superphosphate | 90 kg/ha P2O5 | field experiment | Maize 60 days | Roots Rhizosphere | Bacteria Fungi | Sequencing of gene markers; Alpha/beta diversity; Taxonomic structure | [94] |
P-K or P-Na buffer | 1; 20; 50 mM P | Phytochamber Agricultural soil | Arabidopsis thaliana 8 week | Roots Rhizosphere Bulk soil | Fungi | Sequencing of gene markers; Alpha diversity; Taxonomic structure Fungal Co-occurrence networks | [93] |
Superphosphate Rock phosphate AMF inoculation (Rhizophagus clarus) | 60 mg of P2O5 per kg | Greenhouse Agricultural soil | Sugarcane 120 days | Soil | Bacteria Fungi | DGGE analysis; Taxonomic structure Co-occurrence network | [103] |
Nutritive solution KH2PO4 | 0; 0.03 mM; 1 mM; 5 mM | Climate chamber Agronomic soil+sand | Petunia hybrida/ Arabidopsis thaliana 10 weeks | Roots | AMF Fungal endobacteria | Sequencing of gene markers; Alpha diversity; Taxonomic structure Co-occurrence network | [96] |
3.4. Identification of General Rules Explaining the Shifts in Microbiomes Following P Inputs Are Lacking
4. Assessing P-Impact on Microbial Communities to Identify Rules in P-Dependent Shifts, Require Appropriate Characterization of Amended P Forms and Their Fate
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodd, I.C.; Zinovkina, N.Y.; Safronova, V.I.; Belimov, A.A. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 2010, 157, 361–379. [Google Scholar] [CrossRef]
- Basiru, S.; Mwanza, H.P.; Hijri, M. Analysis of Arbuscular Mycorrhizal Fungal Inoculant Benchmarks. Microorganisms 2021, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Oberson, A.; Joner, F.J. Microbial turnover of phosphorus in soil. In Organic Phosphorus in the Environment; Wallingford: Cambridge, MA, USA, 2005; pp. 133–164. [Google Scholar] [CrossRef]
- Bergkemper, F.; Scholer, A.; Engel, M.; Lang, F.; Kruger, J.; Schloter, M.; Schulz, S. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ. Microbiol. 2016, 18, 1988–2000. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Parihar, S.; Ahirwar, N.; Snehi, S.K.; Singh, V. Plant Growth Promoting Rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Microb. Biochem. Technol. 2015, 7, 96–102. [Google Scholar]
- Mishra, N.; Sundar, S.K. Native PGPMs as bioinoculants to promote plant growth: Response to PGPM inoculation in principal grain and pulse crops. Int. J. Agric. Food Sci. Technol. 2013, 4, 1055–1064. [Google Scholar]
- Mishra, J.; Singh, R.; Arora, N.K. Plant growth-promoting microbes: Diverse roles in agriculture and environmental sustainability. In Probiotics and Plant Health; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer: Singapore, 2017; pp. 71–111. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Oburger, E.; David, L.; Jones, J.D.; Wenzel, W.W. Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 2011, 341, 363–382. [Google Scholar] [CrossRef]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Luo, L.; Yang, J.; Li, B.; Yuan, H. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Appl. Biochem. Biotechnol. 2015, 175, 2755–2768. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2013, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Hanif, M.K.; Hameed, S.; Imran, A.; Naqqash, T.; Shahid, M.; Van Elsas, J.D. Isolation and characterization of a beta-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Front. Microbiol. 2015, 6, 583. [Google Scholar] [CrossRef] [Green Version]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2013, 378, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Hijri, M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 2016, 26, 209–214. [Google Scholar] [CrossRef]
- Owen, D.; Williams, A.P.; Griffith, G.W.; Withers, P.J.A. Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl. Soil Ecol. 2015, 86, 41–54. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Kaur, T.; Yadav, N.; Yadav, A.N.; Kumar, M.; Kumar, V.; Dhaliwal, H.S.; Saxena, A.K. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere 2021, 31, 43–75. [Google Scholar] [CrossRef]
- Renaut, S.; Daoud, R.; Masse, J.; Vialle, A.; Hijri, M. Inoculation with rhizophagus irregularis does not alter arbuscular mycorrhizal fungal community structure within the roots of corn, wheat, and soybean crops. Microorganisms 2020, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Jilani, G.; Akram, A.; Ali, R.M.; Hafeez, F.Y.; Shamsi, I.H.; Chaudhry, A.N.; Chaudhry, A.G. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann. Microbiol. 2007, 57, 177–183. [Google Scholar] [CrossRef]
- Rafi, M.M.; Krishnaveni, M.S.; Charyulu, P.B.B.N. Chapter 17—Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. In Recent Developments in Applied Microbiology and Biochemistry; Buddolla, V., Ed.; Academic Press: Cambridge, MA, USA, 2019; p. 223. [Google Scholar]
- Raymond, N.S.; Gomez-Munoz, B.; van der Bom, F.J.T.; Nybroe, O.; Jensen, L.S.; Muller-Stover, D.S.; Oberson, A.; Richardson, A.E. Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. [Google Scholar] [CrossRef]
- Liu, J.; Qi, W.; Li, Q.; Wang, S.G.; Song, C.; Yuan, X.Z. Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly. 3 Biotech 2020, 10, 164. [Google Scholar] [CrossRef]
- Jahnke, R.A. The Phosphorus Cycle. In Earth System Science; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Barber, S.A. Soil Nutrient Bioavailability: A Mechanistic Approach; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Schachtman, D.P.; Reid, R.J.; Ayling, S.M. Phosphorus uptake by plants: From soil to cell. Plant Physiol. 1998, 116, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Ziadi, N.; Whalen, J.K.; Messiga, A.J.; Morel, C. Assessment and modeling of soil available phosphorus in sustainable cropping systems. Adv. Agron. 2013, 122, 85–126. [Google Scholar]
- Bieleski, R.L. Phosphate pools, phosphate transport, and phosphate availability. Ann. Rev. Plant Physiol. 1973, 24, 225–252. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Bünemann, E.K. Assessment of gross and net mineralization rates of soil organic phosphorus—A review. Soil Biol. Biochem. 2015, 89, 82–98. [Google Scholar] [CrossRef]
- Jones, D.L.; Oburger, E. Solubilization of phosphorus by soil microorganisms. In Phosphorus in Action; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–198. [Google Scholar]
- Lambers, H.; Plaxton, W.C. Phosphorus: Back to the roots. Annu. Plant Rev. 2015, 48, 1–22. [Google Scholar]
- Turner, B.L.; Cade-Menun, B.J.; Condron, L.M.; Newman, S. Extraction of soil organic phosphorus. Talanta 2005, 66, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. In Phosphorus in Action; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–243. [Google Scholar]
- Hinsinger, P.; Herrmann, L.; Lesueur, D.; Robin, A.; Trap, J.; Waithaisong, K.; Plassard, C. Impact of roots, microorganisms and microfauna on the fate of soil phosphorus in the rhizosphere. Annu. Plant Rev. 2015, 48, 377–408. [Google Scholar]
- Richardson, A. Soil microorganisms and phosphorus availability. In Soil Biota: Management in Sustainable Farming Systems; Pankhurst, C.E., Doube, B.D., Gupta, V.V.S.R., Grace, P.R., Eds.; CSIRO: Melbourne, Australia, 1994; pp. 50–60. [Google Scholar]
- Turner, B.L.; Condron, L.M. Pedogenesis, nutrient dynamics, and ecosystem development: The legacy of T.W. Walker and J.K. Syers. Plant Soil 2013, 367, 1–10. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Fernandez-Martinez, M.; Molowny-Horas, R.; Janssens, I.A.; Ciais, P.; Goll, D.; Richter, A.; Obersteiner, M.; Asensio, D.; et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 2017, 7, 1337. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.-M.; Jia, X.-X.; Zhang, G.-L.; Shao, M.-A. Soil organic phosphorus transformation during ecosystem development: A review. Plant Soil 2017, 417, 17–42. [Google Scholar] [CrossRef]
- Condron, L.M.; Turner, B.L.; Cade-Menun, B.J. Chemistry and dynamics of soil organic phosphorus. In Phosphorus: Agriculture and the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 87–121. [Google Scholar]
- Dalai, R.C. Soil organic phosphorus. Adv. Agron. 1977, 29, 83–117. [Google Scholar]
- Quiquampoix, H.; Mousain, D. Enzymatic hydrolysis of organic phosphorus. In Organic Phosphorus in the Environment; CABI Publishing: Wallington, UK, 2004; pp. 89–112. [Google Scholar]
- Turner, B.L.; Lambers, H.; Condron, L.M.; Cramer, M.D.; Leake, J.R.; Richardson, A.E.; Smith, S.E. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil 2012, 367, 225–234. [Google Scholar] [CrossRef]
- Perrott, K.; Sarathchandra, S.; Waller, J. Seasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a high producing pastoral soil. J. Soil Res. 1990, 28, 593–608. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Keller, B.; Hoop, D.; Jud, K.; Boivin, P.; Frossard, E. Increased availability of phosphorus after drying and rewetting of a grassland soil: Processes and plant use. Plant Soil 2013, 370, 511–526. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Joseph Wright, S. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 2014, 117, 115–130. [Google Scholar] [CrossRef]
- Frossard, E.; Condron, L.M.; Oberson, A.; Sinaj, S.; Fardeau, J.C. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 2000, 29, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Staunton, S.; Ludwig, B.; Torrent, J.; Barrow, N.J. A mechanistic model for describing the sorption and desorption of phosphate by soil. Journal of Soil Science, 34, 733–750. Commentary on the impact of Barrow (1983): By S. Staunton, B. Ludwig & J. Torrent. Eur. J. Soil Sci. 2015, 66, 4–8. [Google Scholar] [CrossRef]
- Barrow, N.J. A mechanistic model for describing the sorption and desorption of phosphate by soil. J. Soil Sci. 1983, 34, 733–750. [Google Scholar] [CrossRef]
- Penn, C.; Camberato, J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y. Phosphorus-sorption characteristics of calcareous soils and limestone from the Southern Everglades and adjacent farmlands. Soil Sci. Soc. Am. 2001, 65, 1404–1412. [Google Scholar] [CrossRef] [Green Version]
- Shirvani, M.; Shariatmadari, H.; Kalbasi, M. Phosphorus Buffering capacity indices as related to soil properties and plant uptake. J. Plant Nutr. 2005, 28, 537–550. [Google Scholar] [CrossRef]
- Devau, N.; Hinsinger, P.; Le Cadre, E.; Colomb, B.; Gérard, F. Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochim. Cosmochim. Acta 2011, 75, 2980–2996. [Google Scholar] [CrossRef]
- Koopmans, G.F.; Chardon, W.J.; de Willigen, P.; van Riemsdijk, W.H. Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability. J. Environ. Qual. 2004, 33, 1393–1402. [Google Scholar] [CrossRef] [Green Version]
- Celi, L.; Barberis, E. Abiotic stabilization of organic phosphorus in the environment. In Organic Phosphorus in the Environment; CABI Publishing: Wallington, UK, 2004; pp. 113–132. [Google Scholar]
- George, T.S.; Giles, C.D.; Menezes-Blackburn, D.; Condron, L.M.; Gama-Rodrigues, A.C.; Jaisi, D.; Lang, F.; Neal, A.L.; Stutter, M.I.; Almeida, D.S.; et al. Organic phosphorus in the terrestrial environment: A perspective on the state of the art and future priorities. Plant Soil 2017, 427, 191–208. [Google Scholar] [CrossRef]
- Stutter, M.I.; Shand, C.A.; George, T.S.; Blackwell, M.S.A.; Dixon, L.; Bol, R.; MacKay, R.L.; Richardson, A.E.; Condron, L.M.; Haygarth, P.M. Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma 2015, 257–258, 29–39. [Google Scholar] [CrossRef]
- Yang, X.; Post, W.M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 2011, 8, 2907–2916. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.; de Deyn, G.B.; de Goede, R.G.M.; Fleskens, L.; Geissen, V.; Kuijper, T.W.M.; Mäder, P.; et al. Soil Quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Damon, P.M.; Bowden, B.; Rose, T.; Rengel, Z. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biol. Biochem. 2014, 74, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Frossard, E.; Achat, D.L.; Bernasconi, S.M.; Bünemann, E.K.; Fardeau, J.-C.; Jansa, J.; Morel, C.; Rabeharisoa, L.; Randriamanantsoa, L.; Sinaj, S.; et al. The use of tracers to investigate phosphate cycling in soil–plant systems. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling; Bünemann, E., Oberson, A., Frossard, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 59–91. [Google Scholar]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Tang, X.; Bernard, L.; Brauman, A.; Daufresne, T.; Deleporte, P.; Desclaux, D.; Souche, G.; Placella, S.A.; Hinsinger, P. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biol. Biochem. 2014, 75, 86–93. [Google Scholar] [CrossRef]
- Yang, X.; Post, W.M.; Thornton, P.E.; Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 2013, 10, 2525–2537. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cao, C.; Cai, M.L.; Li, C.-F. Crop yield, P uptake and soil organic phosphorus fractions in response to short-term tillage and fertilization under a rape-rice rotation in central China. J. Soil Sci. Plant Nutr. 2013, 13, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Liebisch, F.; Keller, F.; Huguenin-Elie, O.; Frossard, E.; Oberson, A.; Bünemann, E.K. Seasonal dynamics and turnover of microbial phosphorusin a permanent grassland. Biol. Fertil. Soils 2013, 50, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Ringeval, B.; Augusto, L.; Monod, H.; van Apeldoorn, D.; Bouwman, L.; Yang, X.; Achat, D.L.; Chini, L.P.; Van Oost, K.; Guenet, B.; et al. Phosphorus in agricultural soils: Drivers of its distribution at the global scale. Glob. Change Biol. 2017, 23, 3418–3432. [Google Scholar] [CrossRef]
- Hou, E.; Lu, X.; Jiang, L.; Wen, D.; Luo, Y. Quantifying soil phosphorus dynamics: A data assimilation approach. J. Geophys. Res. Biogeosci. 2019, 124, 2159–2173. [Google Scholar] [CrossRef]
- Mise, K.; Fujita, K.; Kunito, T.; Senoo, K.; Otsuka, S. Phosphorus-mineralizing communities reflect nutrient-rich characteristics in Japanese Arable Andisols. Microbes Environ. 2018, 33, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Deiss, L.; de Moraes, A.; Maire, V. Environmental drivers of soil phosphorus composition in natural ecosystems. Biogeosciences 2018, 15, 4575–4592. [Google Scholar] [CrossRef] [Green Version]
- Faucon, M.-P.; Houben, D.; Reynoird, J.-P.; Mercadal-Dulaurent, A.-M.; Armand, R.; Lambers, H. Chapter Two—Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 134, pp. 51–79. [Google Scholar]
- Hou, E.; Tan, X.; Heenan, M.; Wen, D. A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method. Sci. Data 2018, 5, 180166. [Google Scholar] [CrossRef] [Green Version]
- Hassani, M.A.; Duran, P.; Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 2018, 6, 58. [Google Scholar] [CrossRef]
- Bonfante, P.; Desiro, A. Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J. 2017, 11, 1727–1735. [Google Scholar] [CrossRef]
- de Menezes, A.B.; Richardson, A.E.; Thrall, P.H. Linking fungal-bacterial co-occurrences to soil ecosystem function. Curr. Opin. Microbiol. 2017, 37, 135–141. [Google Scholar] [CrossRef]
- Suñer, L.; Galantini, J. Texture influence on soil phosphorus content and distribution in semiarid Pampean grasslands. International. J. Plant Soil Sci. 2015, 7, 109–120. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, L.; Lu, H.; Shao, Y.; Liu, S.; Fu, S. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Sci. Total Environ. 2020, 732, 139295. [Google Scholar] [CrossRef]
- Hui, D.; Mayes, M.A.; Wang, G. Kinetic parameters of phosphatase: A quantitative synthesis. Soil Biol. Biochem. 2013, 65, 105–113. [Google Scholar] [CrossRef]
- Ali, W.; Nadeem, M.; Ashiq, W.; Zaeem, M.; Gilani, S.S.M.; Rajabi-Khamseh, S.; Pham, T.H.; Kavanagh, V.; Thomas, R.; Cheema, M. The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Sci. Rep. 2019, 9, 17297. [Google Scholar] [CrossRef] [Green Version]
- Houben, D.; Michel, E.; Nobile, C.; Lambers, H.; Kandeler, E.; Faucon, M.-P. Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. Appl. Soil Ecol. 2019, 137, 178–186. [Google Scholar] [CrossRef]
- Xomphoutheb, T.; Jiao, S.; Guo, X.; Mabagala, F.S.; Sui, B.; Wang, H.; Zhao, L.; Zhao, X. The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in Northeast China. Sci. Rep. 2020, 10, 6574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberson, A.; Pypers, P.; Bünemann, E.K.; Frossard, E. Management impacts on biological phosphorus cycling in cropped soils. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling; Bünemann, E., Oberson, A., Frossard, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 431–458. [Google Scholar]
- Zhang, H.; Shi, L.; Wen, D.; Yu, K. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biol. Fertil. Soils 2015, 52, 41–51. [Google Scholar] [CrossRef]
- Bai, Y.; Xiang, Q.; Zhao, K.; Yu, X.; Chen, Q.; Ma, M.; Jiang, H.; Zhang, X.; Penttinen, P.; Gu, Y.; et al. Plant and soil development cooperatively shaped the composition of the phod-harboring bacterial community along the primary succession in the Hailuogou Glacier Chronosequence. Msystems 2020, 5, e00475-20. [Google Scholar] [CrossRef]
- Hallama, M.; Pekrun, C.; Lambers, H.; Kandeler, E. Hidden miners—The roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant Soil 2018, 434, 7–45. [Google Scholar] [CrossRef] [Green Version]
- Cassman, N.A.; Leite, M.F.A.; Pan, Y.; de Hollander, M.; van Veen, J.A.; Kuramae, E.E. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci. Rep. 2016, 6, 23680. [Google Scholar] [CrossRef] [Green Version]
- Koyama, A.; Wallenstein, M.D.; Simpson, R.T.; Moore, J.C. Carbon-degrading enzyme activities stimulated by increased nutrient availability in Arctic tundra soils. PLoS ONE 2013, 8, e77212. [Google Scholar] [CrossRef] [Green Version]
- Wakelin, S.; Mander, C.; Gerard, E.; Jansa, J.; Erb, A.; Young, S.; Condron, L.; O’Callaghan, M. Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures. Appl. Soil Ecol. 2012, 61, 40–48. [Google Scholar] [CrossRef]
- Liu, L.; Gundersen, P.; Zhang, T.; Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 2012, 44, 31–38. [Google Scholar] [CrossRef]
- Hu, M.; Peñuelas, J.; Sardans, J.; Tong, C.; Chang, C.T.; Cao, W. Dynamics of phosphorus speciation and the phoD phosphatase gene community in the rhizosphere and bulk soil along an estuarine freshwater-oligohaline gradient. Geoderma 2020, 365, 114236. [Google Scholar] [CrossRef]
- Robbins, C.; Thiergart, T.; Hacquard, S.; Garrido-Oter, R.; Gans, W.; Peiter, E.; Schulze-Lefert, P.; Spaepen, S. Root-associated bacterial and fungal community profiles of arabidopsis thaliana are robust across contrasting soil P levels. Phytobiomes J. 2018, 2, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Fabianska, I.; Gerlach, N.; Almario, J.; Bucher, M. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. New Phytol. 2019, 221, 2123–2137. [Google Scholar] [CrossRef] [Green Version]
- Gomes, E.A.; Lana, U.G.P.; Quensen, J.F.; de Sousa, S.M.; Oliveira, C.A.; Guo, J.; Guimarães, L.J.M.; Tiedje, J.M. Root-associated microbiome of maize genotypes with contrasting phosphorus use efficiency. Phytobiomes J. 2018, 2, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Wang, C.; Baldauf, J.A.; Tai, H.; Gutjahr, C.; Hochholdinger, F.; Li, C. Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots. New Phytol. 2018, 217, 1240–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodenhausen, N.; Somerville, V.; Desirò, A.; Walser, J.-C.; Borghi, L.; van der Heijden, M.G.A.; Schlaeppi, K. Petunia- and arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes J. 2019, 3, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberan, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, U.C.; Medeiros, J.D.; Leite, L.R.; Morais, D.K.; Cuadros-Orellana, S.; Oliveira, C.A.; de Paula Lana, U.G.; Gomes, E.A.; Dos Santos, V.L. Long-term rock phosphate fertilization impacts the microbial communities of maize rhizosphere. Front. Microbiol. 2017, 8, 1266. [Google Scholar] [CrossRef] [PubMed]
- Suñer, L.; Galantini, J. Phosphorus Dynamic in the Soil-Plant System under Different Management Practices in Semiarid Pampas. 2016. Available online: https://www.researchgate.net/publication/317760251 (accessed on 10 December 2021).
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ji, H.; Gao, C. Differential responses of soil bacterial taxa to long-term P, N, and organic manure application. J. Soils Sediments 2015, 16, 1046–1058. [Google Scholar] [CrossRef]
- Trabelsi, D.; Cherni, A.; Zineb, A.B.; Dhane, S.F.; Mhamdi, R. Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities. Appl. Soil Ecol. 2017, 114, 1–8. [Google Scholar] [CrossRef]
- Gumiere, T.; Rousseau, A.N.; da Costa, D.P.; Cassetari, A.; Cotta, S.R.; Andreote, F.D.; Gumiere, S.J.; Pavinato, P.S. Phosphorus source driving the soil microbial interactions and improving sugarcane development. Sci. Rep. 2019, 9, 4400. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hu, B.; Qi, K.; Chen, W.; Pang, X.; Bao, W.; Tian, G. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. Eur. J. Soil Biol. 2016, 72, 35–41. [Google Scholar] [CrossRef]
- Ikoyi, I.; Fowler, A.; Schmalenberger, A. One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services. Sci. Total Environ. 2018, 630, 849–858. [Google Scholar] [CrossRef]
- Tan, H.; Barret, M.; Mooij, M.J.; Rice, O.; Morrissey, J.P.; Dobson, A.; Griffiths, B.; O’Gara, F. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 2013, 49, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.; Wijesundera, R.; Villarreal-Ruiz, L.; Vasco, A.; Quang Thu, P.; Suija, A.; et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Xiang, X.; He, J.-S.; Wang, C.; Cao, G.; Adams, J.; Chu, H. Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biol. Fertil. Soils 2016, 52, 1059–1072. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Tang, X.; Placella, S.A.; Daydé, F.; Bernard, L.; Robin, A.; Journet, E.-P.; Justes, E.; Hinsinger, P. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant Soil 2016, 407, 119–134. [Google Scholar] [CrossRef]
- Desirò, A.; Salvioli, A.; Ngonkeu, E.L.; Mondo, S.J.; Epis, S.; Faccio, A.; Kaech, A.; Pawlowska, T.E.; Bonfante, P. Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME J. 2014, 8, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-J.; Morse, D.; Hijri, M. Holobiont chronobiology: Mycorrhiza may be a key to linking aboveground and underground rhythms. Mycorrhiza 2019, 29, 403–412. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef]
- Silva, P.; Nahas, E. Bacterial diversity in soil in response to different plans, phosphate fertilizers and liming. Braz. J. Microbiol. 2002, 33, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Toljander, J.F.; Santos-González, J.C.; Tehler, A.; Finlay, R.D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol. Ecol. 2008, 65, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Weeks, J.J., Jr.; Hettiarachchi, G.M. A Review of the Latest in Phosphorus Fertilizer Technology: Possibilities and Pragmatism. J. Environ. Qual. 2019, 48, 1300–1313. [Google Scholar] [CrossRef] [Green Version]
- Igual, J.M.; Rodríguez-Barrueco, C. Fertilizers, Food and Environment; Springer: Dordrecht, The Netherlands, 2007; pp. 199–202. [Google Scholar]
- Dai, Z.; Liu, G.; Chen, H.; Chen, C.; Wang, J.; Ai, S.; Wei, D.; Li, D.; Ma, B.; Tang, C.; et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J 2020, 14, 757–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Liang, X.; He, M.; Liu, y.; Tian, G.; Shi, J. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere 2015, 142, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, D.; Sale, P.; Tang, C. Effect of soil phosphorus availability and residue quality on phosphorus transfer from crop residues to the following wheat. Plant Soil 2017, 416, 361–375. [Google Scholar] [CrossRef]
- Zhu, C.; Farah, J.; Choël, M.; Gosselin, S.; Baroudi, M.; Petitprez, D.; Visez, N. Uptake of ozone and modification of lipids in Betula Pendula pollen. Environ. Pollut. 2018, 242, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Bunemann, E.; Marschner, P.; McNeill, A.; McLaughlin, M. Measuring rates of gross and net mineralisation of organic phosphorus in soils. Soil Biol. Biochem. 2007, 39, 900–913. [Google Scholar] [CrossRef]
- Ahmed, W.; Jing, H.; Kaillou, L.; Qaswar, M.; Khan, M.N.; Jin, C.; Geng, S.; Qinghai, H.; Yiren, L.; Guangrong, L.; et al. Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China. PLoS ONE 2019, 14, e0216881. [Google Scholar] [CrossRef] [PubMed]
- Condron, L.; Spears, B.; Haygarth, P.; Turner, B.L.; Richardson, A.E. Role of legacy phosphorus in improving global phosphorus-use efficiency. Environ. Dev. 2013, 8, 147–148. [Google Scholar] [CrossRef]
- Rowe, H.; Withers, P.J.A.; Baas, P.; Chan, N.I.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.; MacDonald, G.K.; McDowell, R.; et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst. 2016, 104, 393–412. [Google Scholar] [CrossRef]
- Chathurika, J.S.; Kumaragamage, D.; Zvomuya, F.; Akinremi, O.O.; Flaten, D.N.; Indraratne, S.P.; Dandeniya, W.S. Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils. Can. J. Soil Sci. 2016, 96, 472–484. [Google Scholar] [CrossRef]
- Xu, G.; Sun, J.; Shao, H.; Chang, S.X. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 2014, 62, 54–60. [Google Scholar] [CrossRef]
- Noack, S.R.; McLaughlin, M.J.; Smernik, R.J.; McBeath, T.M.; Armstrong, R.D. Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant Soil 2014, 378, 125–137. [Google Scholar] [CrossRef]
- Sun, S.; Li, S.; Avera, B.N.; Strahm, B.D.; Badgley, B.D. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration. Appl. Environ. Microbiol. 2017, 83, e00966-17. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Gao, H. Ecological networks reveal contrasting patterns of bacterial and fungal communities in glacier-fed streams in Central Asia. PeerJ 2019, 7, e7715. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zhang, J.; Li, Z.; Xin, X.; Guo, Z.; Wang, D.; Li, D.; Zhao, B. Long-term phosphorus deficiency decreased bacterial-fungal network complexity and efficiency across three soil types in China as revealed by network analysis. Appl. Soil Ecol. 2020, 148, 103506. [Google Scholar] [CrossRef]
- Reddy, C.A.; Saravanan, R.S. Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity. Adv. Appl. Microbiol. 2013, 82, 53–113. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, A.; Wang, F.; Han, X.; Wang, D.; Li, S. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front. Plant Sci. 2015, 6, 339. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.; Abd Allah, E.F.; Alqarawi, A.A.; Al-Huqail, A.A.; Wirth, S.; Egamberdieva, D. The Interaction between Arbuscular Mycorrhizal Fungi and Endophytic Bacteria Enhances Plant Growth of Acacia gerrardii under Salt Stress. Front. Microbiol. 2016, 7, 1089. [Google Scholar] [CrossRef] [Green Version]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ducousso-Détrez, A.; Fontaine, J.; Lounès-Hadj Sahraoui, A.; Hijri, M. Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes. Microorganisms 2022, 10, 609. https://doi.org/10.3390/microorganisms10030609
Ducousso-Détrez A, Fontaine J, Lounès-Hadj Sahraoui A, Hijri M. Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes. Microorganisms. 2022; 10(3):609. https://doi.org/10.3390/microorganisms10030609
Chicago/Turabian StyleDucousso-Détrez, Amandine, Joël Fontaine, Anissa Lounès-Hadj Sahraoui, and Mohamed Hijri. 2022. "Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes" Microorganisms 10, no. 3: 609. https://doi.org/10.3390/microorganisms10030609
APA StyleDucousso-Détrez, A., Fontaine, J., Lounès-Hadj Sahraoui, A., & Hijri, M. (2022). Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes. Microorganisms, 10(3), 609. https://doi.org/10.3390/microorganisms10030609