The Effects of an Arbuscular Mycorrhizal Fungus and Rhizobium Symbioses on Soybean Aphid Mostly Fail to Propagate to the Third Trophic Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Insects
2.2. Plant and Microbial Materials
2.3. Experimental Design
2.4. Insects’ Parameters Measured
2.5. Statistical Analysis
3. Results
3.1. Effects of Soybean Aphid Parasitoid, Aphelinus Certus of AM Fungi, and Rhizobia Inoculation on Soybean
3.2. Effects of AM Fungi and Rhizobia Inoculation on Ladybird Beetle, Coleomegilla Maculata
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatments | |||
---|---|---|---|
M−R− | M−R+ | M+R− | M+R+ |
Control, neither mycorrhizal nor rhizobial inoculant | Rhizobial inoculant alone | Mycorrhizal inoculant alone | Mycorrhizal and Rhizobial inoculant together |
References
- Borer, E.T.; Seabloom, E.W.; Shurin, J.B.; Anderson, K.E.; Blanchette, C.A.; Broitman, B.; Cooper, S.D.; Halpern, B.S. What determines the strength of a trophic cascade? Ecology 2005, 86, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Ripple, W.J.; Estes, J.A.; Schmitz, O.J.; Constant, V.; Kaylor, M.J.; Lenz, A.; Motley, J.L.; Self, K.E.; Taylor, D.S.; Wolf, C. What is a trophic cascade? Trends Ecol. Evol. 2016, 31, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Ode, P.J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 2006, 51, 163–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.; Hunter, M.D.; de Roode, J.C. Microbial root mutualists affect the predators and pathogens of herbivores above ground: Mechanisms, magnitudes, and missing links. Front. Ecol. Evol. 2017, 5, 160. [Google Scholar] [CrossRef] [Green Version]
- Rasmann, S.; Bennett, A.; Biere, A.; Karley, A.; Guerrieri, E. Root symbionts: Powerful drivers of plant above- and belowground indirect defenses: Root Symbionts and Indirect Defenses. Insect Sci. 2017, 24, 947–960. [Google Scholar] [CrossRef]
- Ueda, K.; Tawaraya, K.; Murayama, H.; Sato, S.; Nishizawa, T.; Toyomasu, T.; Murayama, T.; Shiozawa, S.; Yasuda, H. Effects of arbuscular mycorrhizal fungi on the abundance of foliar-feeding insects and their natural enemy. Appl. Entomol. Zool. 2013, 48, 79–85. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Vet, L.E.M.; Harvey, J.A.; Wäckers, F.L. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol. 2001, 16, 547–554. [Google Scholar] [CrossRef]
- Pineda, A.; Zheng, S.-J.; van Loon, J.J.A.; Pieterse, C.M.J.; Dicke, M. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends Plant Sci. 2010, 15, 507–514. [Google Scholar] [CrossRef]
- Pineda, A.; Soler, R.; Pozo, M.J.; Rasmann, S.; Turlings, T.C.J. Editorial: Above-belowground interactions involving plants, microbes and insects. Front. Plant Sci. 2015, 6, 318. [Google Scholar] [CrossRef] [Green Version]
- Ossler, J.N.; Zielinski, C.A.; Heath, K.D. Tripartite mutualism: Facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts. Am. J. Bot. 2015, 102, 1332–1341. [Google Scholar] [CrossRef] [Green Version]
- Maurya, A.K.; Kelly, M.P.; Mahaney, S.M.; Gomez, S.K. Arbuscular mycorrhizal symbiosis alters plant gene expression and aphid weight in a tripartite interaction. J. Plant Interact. 2018, 13, 294–305. [Google Scholar] [CrossRef]
- Hodge, A. Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol. Ecol. 2000, 32, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.J. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 2005, 59, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.J. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 361–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Xavier, L.J.C.; Germida, J.J. Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum Bv. Viceae enhance pea yield and nutrition. Biol. Fertil. Soils 2003, 37, 261–267. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Q.; Chen, F.; Yan, X.; Liao, H. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 2011, 21, 173–181. [Google Scholar] [CrossRef]
- van der Heijden, M.G.; Bruin, S.d.; Luckerhoff, L.; van Logtestijn, R.S.; Schlaeppi, K. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 2016, 10, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Hartley, S.E.; Gange, A.C. Impacts of plant symbiotic fungi on insect herbivores: Mutualism in a multitrophic context. Annu. Rev. Entomol. 2009, 54, 323–342. [Google Scholar] [CrossRef]
- Hoffmann, D.; Vierheilig, H.; Schausberger, P. Arbuscular mycorrhiza enhances preference of ovipositing predatory mites for direct prey-related cues. Physiol. Entomol. 2011, 36, 90–95. [Google Scholar] [CrossRef]
- Schausberger, P.; Peneder, S.; Jürschik, S.; Hoffmann, D. Mycorrhiza changes plant volatiles to attract spider mite enemies: Adaptive indirect below- and above-ground interaction. Funct. Ecol. 2012, 26, 441–449. [Google Scholar] [CrossRef]
- Gange, A.C.; Brown, V.K.; Aplin, D.M. Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol. Lett. 2003, 6, 1051–1055. [Google Scholar] [CrossRef]
- Guerrieri, E.; Lingua, G.; Digilio, M.C.; Massa, N.; Berta, G. Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol. Entomol. 2004, 29, 753–756. [Google Scholar] [CrossRef]
- Hempel, S.; Stein, C.; Unsicker, S.B.; Renker, C.; Auge, H.; Weisser, W.W.; Buscot, F. Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system. Oecologia 2009, 160, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Wooley, S.C.; Paine, T.D. Infection by mycorrhizal fungi increases natural enemy abundance on tobacco (Nicotiana rustica). Environ. Entomol. 2011, 40, 36–41. [Google Scholar] [CrossRef]
- Balog, A.; Loxdale, H.D.; Bálint, J.; Benedek, K.; Szabó, K.-A.; Jánosi-Rancz, K.-T.; Domokos, E. The arbuscular mycorrhizal fungus Rhizophagus irregularis affects arthropod colonization on sweet pepper in both the field and greenhouse. J. Pest Sci. 2017, 90, 935–946. [Google Scholar] [CrossRef]
- Pineda, A.; Soler, R.; Weldegergis, B.T.; Shimwela, M.M.; Van Loon, J.J.A.; Dicke, M. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling: Rhizobacteria and aphid parasitoids. Plant Cell Environ. 2013, 36, 393–404. [Google Scholar] [CrossRef]
- Pangesti, N.; Weldegergis, B.T.; Langendorf, B.; van Loon, J.J.A.; Dicke, M.; Pineda, A. rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 2015, 178, 1169–1180. [Google Scholar] [CrossRef] [Green Version]
- Katayama, N.; Zhang, Z.Q.; Ohgushi, T. Community-wide effects of below-ground rhizobia on above-ground arthropods. Ecol. Entomol. 2011, 36, 43–51. [Google Scholar] [CrossRef]
- Tao, L.; Ahmad, A.; de Roode, J.C.; Hunter, M.D. Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms. J. Ecol. 2016, 104, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.A. Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Curr. Opin. Plant Biol. 2000, 3, 329–335. [Google Scholar] [CrossRef]
- Gange, A.C.; Bower, E.; Brown, V.K. Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 1999, 120, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Wurst, S.; Dugassa-Gobena, D.; Langel, R.; Bonkowski, M.; Scheu, S. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol. 2004, 163, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, V.V.; Schweiger, R.; Müller, C. Effects of arbuscular mycorrhiza on plant chemistry and the development and behavior of a generalist herbivore. J. Chem. Ecol. 2016, 42, 1247–1258. [Google Scholar] [CrossRef]
- Tomczak, V.V.; Müller, C. Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid. J. Insect Physiol. 2017, 98, 258–266. [Google Scholar] [CrossRef]
- Garzo, E.; Rizzo, E.; Fereres, A.; Gomez, S.K. High levels of arbuscular mycorrhizal fungus colonization on Medicago truncatula reduces plant suitability as a host for pea aphids (Acyrthosiphon pisum). Insect Sci. 2020, 27, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.M.; Mescher, M.C.; De Moraes, C.M. Plant–rhizobia mutualism influences aphid abundance on soybean. Plant Soil 2009, 323, 187–196. [Google Scholar] [CrossRef]
- Dean, J.; Mescher, M.; De Moraes, C. Plant dependence on rhizobia for nitrogen influences induced plant defenses and herbivore performance. Int. J. Mol. Sci. 2014, 15, 1466–1480. [Google Scholar] [CrossRef] [Green Version]
- Gadhave, K.R.; Gange, A.C. Interactions involving rhizobacteria and foliar-feeding insects. In Aboveground–Belowground Community Ecology; Ohgushi, T., Wurst, S., Johnson, S.N., Eds.; Ecological Studies; Springer International Publishing: Cham, Switzerland, 2018; Volume 234, pp. 117–133. ISBN 978-3-319-91613-2. [Google Scholar]
- Tilmon, K.J.; Hodgson, E.W.; O’Neal, M.E.; Ragsdale, D.W. Biology of the soybean aphid, Aphis glycines (Hemiptera: Aphididae) in the United States. J. Integr. Pest Manag. 2011, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dabré, E.E.; Hijri, M.; Favret, C. Influence on soybean aphid by the tripartite interaction between soybean, a rhizobium bacterium, and an arbuscular mycorrhizal fungus. Microorganisms 2022. in revision. [Google Scholar]
- Ragsdale, D.W.; Voegtlin, D.J.; O’Neil, R.J. Soybean aphid biology in North America. Ann. Entomol. Soc. Am. 2004, 97, 5. [Google Scholar] [CrossRef]
- Kim, H.; Hoelmer, K.A.; Lee, S. Population genetics of the soybean aphid in north america and east asia: Test for introduction between native and introduced populations. Biol. Invasions 2017, 19, 597–614. [Google Scholar] [CrossRef]
- Mccornack, B.P.; Ragsdale, D.W.; Venette, R.C. Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures. J. Econ. Entomol. 2004, 97, 8. [Google Scholar] [CrossRef]
- Rhainds, M.; Roy, M.; Daigle, G.; Brodeur, J. Toward Management guidelines for the soybean aphid in quebec. i. feeding damage in relationship to seasonality of infestation and incidence of native predators. Can. Entomol. 2007, 139, 728–741. [Google Scholar] [CrossRef]
- Mignault, M.-P.; Roy, M.; Brodeur, J. Soybean aphid predators in québec and the suitability of aphis glycines as prey for three coccinellidae. Biocontrol 2006, 51, 89–106. [Google Scholar] [CrossRef]
- Frewin, A.J.; Xue, Y.; Welsman, J.A.; Broadbent, B.A.; Schaafsma, A.W.; Hallett, R.H. Development and parasitism by Aphelinus certus (Hymenoptera: Aphelinidae), a parasitoid of Aphis glycines (Hemiptera: Aphididae). Environ. Entomol. 2010, 39, 1570–1578. [Google Scholar] [CrossRef] [Green Version]
- Hopper, K.R.; Diers, B.W. Parasitism of soybean aphid by Aphelinus species on soybean susceptible versus resistant to the aphid. Biol. Control 2014, 76, 101–106. [Google Scholar] [CrossRef]
- Leblanc, A.; Brodeur, J. Estimating parasitoid impact on aphid populations in the field. Biol. Control 2018, 119, 33–42. [Google Scholar] [CrossRef]
- Kaser, J.M.; Heimpel, G.E. Impact of the parasitoid Aphelinus certus on soybean aphid populations. Biol. Control 2018, 127, 17–24. [Google Scholar] [CrossRef]
- Rondon, S.I.; Price, J.F.; Cantliffe, D.J. Developmental time, reproduction, and feeding of two subspecies of Coleomegilla Maculata (Coleoptera: Coccinellidae) in the laboratory. Fla. Entomol. 2006, 89, 85–88. [Google Scholar] [CrossRef]
- Roger, C.; Coderre, D.; Boivin, G. Differential prey utilization by the generalist predator Coleomegilla maculata Lengi according to prey size and species. Entomol. Exp. Appl. 2000, 94, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Krafsur, E.S.; Obrycki, J.J. Coleomegilla maculata (Coleoptera: Coccinellidae) is a species complex. Ann. Entomol. Soc. Am. 2000, 93, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.L. Greenhouse evaluation of neonate and adult applications of Coleomegilla maculata (Coleoptera: Coccinellidae) to control twospotted spider mite infestations. Fla. Entomol. 2015, 98, 714–720. [Google Scholar] [CrossRef]
- Hijri, M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 2016, 26, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Pérez, Y.M.; Echevarría, A.M.; Carmona, A.M. Respuesta de plantas de tomate (Solanum lycopersicum L.) a la biofertilizacion liquida con Glomus cubense. Cultiv. Trop. 2014, 35, 21–26. [Google Scholar]
- Rohne, O. Effect of temperature and host stage on performance of Aphelinus varipes Forster (Hym., Aphelinidae) parasitizing the cotton aphid, Aphis gossypii Glover (Hom., Aphididae). J. Appl. Entomol. 2002, 126, 572–576. [Google Scholar] [CrossRef]
- Ode, P.J.; Crompton, D.S. Compatibility of aphid resistance in soybean and biological control by the parasitoid Aphidius colemani (Hymenoptera: Braconidae). Biol. Control 2013, 64, 255–262. [Google Scholar] [CrossRef]
- Sagarra, L.A.; Vincent, C.; Stewart, R.K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 2001, 91, 363–367. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 May 2022).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using Lme4. arXiv 2015, arXiv:1406.5823. [Google Scholar] [CrossRef]
- Dinno, A. Nonparametric pairwise multiple comparisons in independent groups using Dunn’s Test. Stata J. Promot. Commun. Stat. Stata 2015, 15, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Berns, A.R.; Hunter, M.D. Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct. Ecol. 2014, 28, 190–196. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maure, F.; Thomas, F.; Doyon, J.; Brodeur, J. Host nutritional status mediates degree of parasitoid virulence. Oikos 2016, 125, 1314–1323. [Google Scholar] [CrossRef]
- Nishida, R. Sequestration of defensive substances from plants by lepidoptera. Annu. Rev. Entomol. 2002, 47, 57–92. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.M.; Smith, A.H.; Russell, J.A. Defensive symbiosis in the real world-advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 2014, 28, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.J.; Kim, K.L.; Harmon, J.P.; Oliver, K.M. Specificity of multi-modal aphid defenses against two rival parasitoids. PLoS ONE 2016, 11, e0154670. [Google Scholar] [CrossRef]
- Hopper, K.R. The defensive aphid symbiont Hamiltonella defensa affects host quality differently for Aphelinus glycinis versus Aphelinus atriplicis. Biol. Control 2018, 116, 3–9. [Google Scholar] [CrossRef]
Variables | Inoculant Treatments | F-Values | p | |||
---|---|---|---|---|---|---|
M−R− | M+R− | M−R+ | M+R+ | |||
Number of mummies | 10.89 ± 3.46 | 7.89 ± 2.25 | 4.33 ± 2.00 | 4.33 ± 1.36 | 1.7470 | 0.1772 |
Proportion of emerged parasitoids (%) | 66.7 ± 11.54 b | 78.3 ± 7.77 b | 24.1 ± 8.79 a | 70.4 ± 10.97 b | 6.3826 | 0.0025 |
Tibia length-females (µm) | 283 ± 9.01 | 281 ± 4.97 | 286 ± 9.07 | 269 ± 9.05 | 0.8247 | 0.2909 |
Tibia length-males (µm) | 262 ± 11.50 | 261 ± 12.87 | 255 ± 14.52 | 253 ± 9.08 | 0.3990 | 0.9404 |
Variables | χ2 | p |
---|---|---|
Sex ratio (F/M) | 3.9429 | 0.2677 |
Development time of females (days) | 5.6273 | 0.1370 |
Development time of males (days) | 1.1173 | 0.7729 |
Variables | Inoculant Treatments | F | p | |||
---|---|---|---|---|---|---|
M−R− | M+R− | M−R+ | M+R+ | |||
L1 duration (days) | 2.71 ± 0.16 | 2.74 ± 0.17 | 2.74 ± 0.17 | 2.87 ± 0.13 | 0.6406 | 0.4339 |
L2 duration (days) | 2.64 ± 0.15 | 2.69 ± 0.13 | 2.78 ± 0.16 | 2.70 ± 0.16 | 0.2387 | 0.6340 |
L3 duration (days) | 3.00 ± 0.00 | 2.89 ± 0.12 | 3.17 ± 0.16 | 3.23 ± 0.17 | 0.5515 | 0.4720 |
L4 duration (days) | 5.31 ± 0.17 | 5.45 ± 0.18 | 4.83 ± 0.26 | 5.26 ± 0.47 | 0.4830 | 0.5131 |
Pupation (days) | 6.29 ± 0.18 | 6.00 ± 0.00 | 6.29 ± 0.18 | 5.86 ± 0.14 | 0.3000 | 0.6004 |
L4 weight (g) | 13.3 ± 0.25 | 13.6 ± 0.70 | 14.4 ± 0.57 | 14.1 ± 0.78 | 0.7340 | 0.4266 |
Adult weight (g) | 11.0 ± 0.01 | 11.9 ± 0.24 | 12.2 ± 0.26 | 12.3 ± 0.45 | 1.8576 | 0.2285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabré, É.E.; Brodeur, J.; Hijri, M.; Favret, C. The Effects of an Arbuscular Mycorrhizal Fungus and Rhizobium Symbioses on Soybean Aphid Mostly Fail to Propagate to the Third Trophic Level. Microorganisms 2022, 10, 1158. https://doi.org/10.3390/microorganisms10061158
Dabré ÉE, Brodeur J, Hijri M, Favret C. The Effects of an Arbuscular Mycorrhizal Fungus and Rhizobium Symbioses on Soybean Aphid Mostly Fail to Propagate to the Third Trophic Level. Microorganisms. 2022; 10(6):1158. https://doi.org/10.3390/microorganisms10061158
Chicago/Turabian StyleDabré, Élisée Emmanuel, Jacques Brodeur, Mohamed Hijri, and Colin Favret. 2022. "The Effects of an Arbuscular Mycorrhizal Fungus and Rhizobium Symbioses on Soybean Aphid Mostly Fail to Propagate to the Third Trophic Level" Microorganisms 10, no. 6: 1158. https://doi.org/10.3390/microorganisms10061158
APA StyleDabré, É. E., Brodeur, J., Hijri, M., & Favret, C. (2022). The Effects of an Arbuscular Mycorrhizal Fungus and Rhizobium Symbioses on Soybean Aphid Mostly Fail to Propagate to the Third Trophic Level. Microorganisms, 10(6), 1158. https://doi.org/10.3390/microorganisms10061158