Effect of Non-Lethal Selection on Spontaneous Revertants of Frameshift Mutations: The Escherichia coli hisF Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Directed-Evolution Experiment and Isolation of HisF+ Revertants
- (i)
- E. coli FB182 cells were grown overnight at 37 °C with shaking (150 rpm) in minimal medium Davis (MMD) [28] ((NH4)2SO4 1 g/L; K2HPO4 7 g/L; KH2PO4 2 g/L; Na3-citrate·2H2O 0.5 g/L; MgSO4·7H2O 0.1 g/L; pH 7.2) with glucose 1% and histidine 25 µg/mL.
- (ii)
- The optical density (O.D.600) of the culture was measured and the culture was diluted to O.D.600 0.1 in a final volume of 50 mL of MMD containing glucose 1% and histidine 25 µg/mL.
- (iii)
- The culture was then incubated at 37 °C with shaking (150 rpm); at the end of the log phase, cells were centrifuged, washed twice in saline solution (NaCl 0.9% w/v) and then spread on 100 mL MMD plates containing agar 1.6% and glucose 1% in the absence of histidine (three plates), or in the presence of histidine 0.3 µg/mL (three plates) or 1 µg/mL (three plates). 100 µL of 10−5 and 10−6 dilutions were plated on LB agar (Lysogeny Broth) [29] (NaCl 10 g/L, yeast extract 5 g/L, tryptone 10 g/L, agar 16 g/L), to evaluate the cells’ vital titer.
- (iv)
- Vital titer plates were incubated at 37 °C overnight. Selective pressure plates were incubated at 37 °C for 30 days, and the appearance of HisF+ revertants was checked daily.
- (v)
- Three different experiments were carried out in triplicate.
- (vi)
- HisF+ revertants were tested for their ability to grow in the total absence or in low concentrations of histidine through streaking on MMD plates containing glucose 1% and histidine 0, 0.3, 1 µg/mL.
2.3. PCR Amplification and Sequencing
2.4. Prediction of Protein Three-Dimensional Structure
2.5. His+ Revertant Growth Curves and Statistical Analyses
3. Results and Discussion
3.1. Isolation of E. coli FB182 HisF+ Revertants
- (i)
- 11 HisF+ colonies were isolated on MMD in the absence of histidine out of 3 × 109 viable cells plated;
- (ii)
- 20 HisF+ colonies were isolated on MMD in the presence of 0.3 µg/mL histidine out of 3 × 109 viable cells plated;
- (iii)
- 36 HisF+ colonies were isolated on MMD in the presence of 1 µg/mL histidine out of 3 × 109 viable cells plated.
3.2. Genetic Characterization of His+ Revertants
- (i)
- Insertion of four different length (+1,+4, +7, +10 bp) occurred;
- (ii)
- Just one type of deletion took place (−2 bp); no deletions longer than 2 bp were detected;
- (iii)
- The highest number of mutants (52 out of 67 corresponding to 78%) exhibit a +1 bp insertion; nine mutants exhibit a +4 bp insertion; 1 mutant exhibited a +7 bp and 1 a +10 bp insertion;
- (iv)
- Four mutants showed a −2 bp deletion;
- (v)
- Fifteen different types of +1 insertions occurred (one in an identical position, five upstream and eight downstream of the E. coli FB182 deletion). Moreover, a single strain (ID 15) harbors, aside from a +1 insertion located upstream of the E. coli FB182 deletion, a single nucleotide substitution. To simplify, this strain was considered to be part of the +1 insertions group.
- (vi)
- Five different types of +4 insertions took place (two upstream and three downstream of the E. coli FB182 deletion).
3.3. Spatial Distribution of Mutations Causing HisF+ Reversion
3.4. Effect of the Strength of Selective Pressure
3.5. Effect of Time
3.6. Analysis of the Amino Acid Sequence of the HisF Proteins from HisF+ Revertants and Prediction of Tertiary Structure of HisF Proteins from wild-type E. coli and HisF+ Revertants
3.7. Correlation of Reversion Mutation Occurred with the Ability to Grow in the Absence of Histidine
3.8. Mechanisms of Frameshift Mutations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dijkhuizen, L. Evolution of metabolic pathways. In Evolution of Microbial Life; Roberts, D.M., Sharp, P., Alderson, G., Collins, M.A., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 243–265. [Google Scholar]
- Hall, B.G. Toward an understanding of evolutionary potential. FEMS Microbiol. Lett. 1999, 178, 1–6. [Google Scholar] [CrossRef]
- Cairns, J.; Overbaugh, J.; Miller, S. The origin of mutants. Nature 1988, 335, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 1990, 126, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.L. Mechanisms of Stationary Phase Mutation: A Decade of Adaptive Mutation. Annu. Rev. Genet. 1999, 33, 57–88. [Google Scholar] [CrossRef] [Green Version]
- Maisnier-Patin, S.; Roth, J.R. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation). Cold Spring Harb. Perspect. Biol. 2015, 7, a018176. [Google Scholar] [CrossRef] [Green Version]
- Stahl, F.W. A unicorn in the garden. Nature 1988, 335, 112–113. [Google Scholar] [CrossRef]
- Davis, B.D. Transcriptional bias: A non-Lamarckian mechanism for substrate-induced mutations. Proc. Natl. Acad. Sci. USA 1989, 86, 5005–5009. [Google Scholar] [CrossRef] [Green Version]
- Boe, L. Mechanism for induction of adaptive mutations in Escherichia coli. Mol. Microbiol. 1990, 4, 597–601. [Google Scholar] [CrossRef]
- Galitski, T.; Roth, J.R. Evidence that F Plasmid Transfer Replication Underlies Apparent Adaptive Mutation. Science 1995, 268, 421–423. [Google Scholar] [CrossRef] [Green Version]
- Cairns, J.; Foster, P. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 1991, 128, 695–701. [Google Scholar] [CrossRef]
- Alonso, A.; Campanario, E.; Martínez, J.L. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 1999, 145, 2857–2862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perfeito, L.; Fernandes, L.; Mota, C.; Gordo, I. Adaptive Mutations in Bacteria: High Rate and Small Effects. Science 2007, 317, 813–815. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.T.-F. Membership mutation of the genetic code: Loss of fitness by tryptophan. Proc. Natl. Acad. Sci. USA 1983, 80, 6303–6306. [Google Scholar] [CrossRef] [Green Version]
- Bacher, J.M.; Bull, J.J.; Ellington, A.D. Evolution of phage with chemically ambiguous proteomes. BMC Evol. Biol. 2003, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoesl, M.G.; Oehm, M.S.S.; Durkin, P.; Darmon, E.; Peil, L.; Aerni, H.; Rappsilber, J.; Rinehart, J.; Leach, D.; Söll, D.; et al. Chemical Evolution of a Bacterial Proteome. Angew. Chem. Int. Ed. 2015, 54, 10030–10034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, F.; Sinn, L.; Petras, D.; Schipp, C.J.; Kubyshkin, V.; Berger, A.A.; Dorrestein, P.C.; Rappsilber, J.; Budisa, N.; Koksch, B. Multiomics Analysis Provides Insight into the Laboratory Evolution of Escherichia coli toward the Metabolic Usage of Fluorinated Indoles. ACS Central Sci. 2020, 7, 81–92. [Google Scholar] [CrossRef]
- Bridges, B.A. Starvation-associated mutation in Escherichia coli: A spontaneous lesion hypothesis for “directed” mutation. Mutat. Res. Mol. Mech. Mutagen. 1994, 307, 149–156. [Google Scholar] [CrossRef]
- Sikora, A.; Grzesiuk, E. Reversion of argE3 to Arg(+) in Escherichia coli AB1157—An informative bacterial system for mutation detection. Acta Biochim. Pol. 2010, 57. [Google Scholar] [CrossRef] [Green Version]
- Ames, B.N.; McCann, J.; Yamasaki, E. Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat. Res. Environ. Mutagen. Relat. Subj. 1975, 31, 347–363. [Google Scholar] [CrossRef]
- Prival, M.J.; A Cebula, T. Sequence analysis of mutations arising during prolonged starvation of Salmonella typhimurium. Genetics 1992, 132, 303–310. [Google Scholar] [CrossRef]
- Gizatullin, F.S.; Babynin, E. The selection-induced His+ reversion in Salmonella typhimurium. Mutat. Res. Mol. Mech. Mutagen. 1996, 357, 43–56. [Google Scholar] [CrossRef]
- Goldschmidt, E.P.; Cater, M.S.; Matney, T.S.; Butler, M.A.; Greene, A. Genetic Analysis of the Histidine Operon in Escherichia Coli K12. Genetics 1970, 66, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Chioccioli, S.; Bogani, P.; Del Duca, S.; Castronovo, L.M.; Vassallo, A.; Puglia, A.M.; Fani, R. In vivo evaluation of the interaction between the Escherichia coli IGP synthase subunits using the Bacterial Two-Hybrid system. FEMS Microbiol. Lett. 2020, 367, fnaa112. [Google Scholar] [CrossRef] [PubMed]
- Gerlt, J.A. New wine from old barrels. Nat. Genet. 2000, 7, 171–173. [Google Scholar] [CrossRef]
- Copley, R.R.; Bork, P. Homology among (βα)8 barrels: Implications for the evolution of metabolic pathways. J. Mol. Biol. 2000, 303, 627–641. [Google Scholar] [CrossRef]
- Kasai, T. Regulation of the expression of the histidine operon in Salmonella typhimurium. Nature 1974, 249, 523–527. [Google Scholar] [CrossRef]
- Davis, B.D.; Mingioli, E.S. Mutants of Escherichia Coli Requiring Methionine or Vitamin B 12. J. Bacteriol. 1950, 60, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Spring: New York, NY, USA, 1989; Volumes 1–3, ISBN 13 978-0-87969-309-1. [Google Scholar]
- Hall, T.A. BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widdel, F. Theory and Measurement of Bacterial Growth A. Basic and practical aspects. Dalam Grund. Mikrobiol. 2007, 4, 1–11. [Google Scholar]
- Atkinson, K.E. An Introduction to Numerical Analysis. Math. Comput. 1990, 54, 903. [Google Scholar] [CrossRef]
- Bork, P.; Gellerich, J.; Groth, H.; Hooft, R.; Martin, F. Divergent evolution of a β/α-barrel subclass: Detection of numerous phosphate-binding sites by motif search. Protein Sci. 1995, 4, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Thoma, R.; Henn-Sax, M.; Sterner, R.; Wilmanns, M. Structural Evidence for Evolution of the β/α Barrel Scaffold by Gene Duplication and Fusion. Science 2000, 289, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Wierenga, R. The TIM-barrel fold: A versatile framework for efficient enzymes. FEBS Lett. 2001, 492, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Reisinger, B.; Sperl, J.; Holinski, A.; Schmid, V.; Rajendran, C.; Carstensen, L.; Schlee, S.; Blanquart, S.; Merkl, R.; Sterner, R. Evidence for the Existence of Elaborate Enzyme Complexes in the Paleoarchean Era. J. Am. Chem. Soc. 2013, 136, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Nagano, N.; A Orengo, C.; Thornton, J. One Fold with Many Functions: The Evolutionary Relationships between TIM Barrel Families Based on their Sequences, Structures and Functions. J. Mol. Biol. 2002, 321, 741–765. [Google Scholar] [CrossRef]
- Foster, P.L. Stress-Induced Mutagenesis in Bacteria. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 373–397. [Google Scholar] [CrossRef]
- Beismann-Driemeyer, S.; Sterner, R. Imidazole Glycerol Phosphate Synthase from Thermotoga maritima. J. Biol. Chem. 2001, 276, 20387–20396. [Google Scholar] [CrossRef] [Green Version]
- Eisenstein, M. Artificial intelligence powers protein-folding predictions. Nature 2021, 599, 706–708. [Google Scholar] [CrossRef]
- Liu, S.; Wu, C.; Chen, C. The computational models of AlphaFold2 and RoseTTAfold carry protein foldability information. bioRxiv 2022. [Google Scholar] [CrossRef]
- Douangamath, A.; Walker, M.; Beismann-Driemeyer, S.; Vega-Fernandez, M.; Sterner, R.; Wilmanns, M. Structural Evidence for Ammonia Tunneling across the (βα)8 Barrel of the Imidazole Glycerol Phosphate Synthase Bienzyme Complex. Structure 2002, 10, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Rivalta, I.; Lisi, G.P.; Snoeberger, N.-S.; Manley, G.; Loria, J.P.; Batista, V.S. Allosteric Communication Disrupted by a Small Molecule Binding to the Imidazole Glycerol Phosphate Synthase Protein–Protein Interface. Biochemistry 2016, 55, 6484–6494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colacino, J.M.; Chirgadze, N.Y.; Garman, E.; Murti, K.; Loncharich, R.J.; Baxter, A.J.; A Staschke, K.; Laver, W. A Single Sequence Change Destabilizes the Influenza Virus Neuraminidase Tetramer. Virology 1997, 236, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyulkhandanyan, A.; Rezaie, A.R.; Roumenina, L.; Lagarde, N.; Fremeaux-Bacchi, V.; Miteva, M.; Villoutreix, B.O. Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol. Genet. Genom. Med. 2020, 8, e1166. [Google Scholar] [CrossRef]
- Muñoz, V.; Serrano, L. Helix design, prediction and stability. Curr. Opin. Biotechnol. 1995, 6, 382–386. [Google Scholar] [CrossRef]
- Harpaz, Y.; Elmasry, N.; Fersht, A.R.; Henrick, K. Direct observation of better hydration at the N terminus of an alpha-helix with glycine rather than alanine as the N-cap residue. Proc. Natl. Acad. Sci. USA 1994, 91, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Thapar, R.; Nicholson, E.M.; Rajagopal, P.; Waygood, E.B.; Scholtz, J.M.; Klevit, R.E. Influence of N-Cap Mutations on the Structure and Stability of Escherichia coli HPr. Biochemistry 1996, 35, 11268–11277. [Google Scholar] [CrossRef]
- Streisinger, G.; Okada, Y.; Emrich, J.; Newton, J.; Tsugita, A.; Terzaghi, E.; Inouye, M. Frameshift Mutations and the Genetic Code. Cold Spring Harb. Symp. Quant. Biol. 1966, 31, 77–84. [Google Scholar] [CrossRef]
- Gragg, H.; Harfe, B.D.; Jinks-Robertson, S. Base Composition of Mononucleotide Runs Affects DNA Polymerase Slippage and Removal of Frameshift Intermediates by Mismatch Repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 2002, 22, 8756–8762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tippin, B.; Kobayashi, S.; Bertram, J.G.; Goodman, M.F. To Slip or Skip, Visualizing Frameshift Mutation Dynamics for Error-prone DNA Polymerases. J. Biol. Chem. 2004, 279, 45360–45368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | Mutant Name | Day of Appearance | [His] (µg/mL) | M.C.H. | Total | ID | Mutant Name | Day of Appearance | [His] (µg/mL) | M.C.H. | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 24 | 8 | 1 | 0 | 2 | 10 | G | 6 | 0.3 | 0 | 3 |
PC2 | 2 | 0.3 | 0 | A1 | 2 | 0.3 | 0 | ||||
2 | F16 | 12 | 1 | 0 | 4 | 3 | 2 | 0.3 | 0 | ||
A2 | 8 | 0.3 | 0 | 11 | F03B | 10 | 0 | 0 | 2 | ||
F1A3 | 24 | 1 | 0 | 10 | 6 | 1 | 0 | ||||
F03B2 | 14 | 0.3 | 0 | 12 | I | 2 | 1 | 0 | 6 | ||
3 | F1B2 | 2 | 1 | 0 | 1 | PHC1 | 2 | 0 | 0 | ||
4 | N | 2 | 0 | 0 | 11 | FP1B2 | 9 | 1 | 0 | ||
PHC15 | 11 | 1 | 0 | 2 | 4 | 0 | 0 | ||||
F0B4 | 18 | 0 | 0 | 22 | 8 | 1 | 0 | ||||
F0B5 | 22 | 0 | 0 | A1_2 | 2 | 0.3 | 0 | ||||
6 | 6 | 0.3 | 0 | 13 | PHA1 | 3 | 0.3 | 0 | 1 | ||
7 | 6 | 0.3 | 0 | 14 | H | 2 | 1 | 0 | 5 | ||
8 | 2 | 1 | 0 | C2 | 6 | 1 | 0 | ||||
12 | 6 | 1 | 0 | F1B3 | 7 | 1 | 0 | ||||
18 | 8 | 1 | 0 | F0B7 | 31 | 0 | 0 | ||||
20 | 11 | 1 | 0 | 4 | 2 | 0.3 | 0 | ||||
21 | 14 | 1 | 0 | 15 | D1 | 3 | 1 | 0 | 1 | ||
5 | F1 | 2 | 1 | 0 | 2 | 16 | PB1 | 4 | 1 | 0 | 3 |
FP03B1 | 2 | 0.3 | 0 | 9 | 3 | 1 | 0 | ||||
6 | E | 6 | 1 | 0 | 8 | 11 | 3 | 1 | 0 | ||
F | 2 | 0.3 | 0 | 17 | C1 | 6 | 1 | 0 | 1 | ||
D1_2 | 3 | 1 | 0 | 18 | C2_2 | 2 | 0.3 | 0 | 3 | ||
F0B6 | 26 | 0 | 0 | F03A1 | 2 | 0.3 | 0 | ||||
13 | 7 | 1 | 0 | 17 | 11 | 1 | 0 | ||||
15 | 11 | 0.3 | 0 | 19 | PHA4 | 8 | 0.3 | 0 | 1 | ||
16 | 15 | 0.3 | 0 | 20 | C1_2 | 2 | 1 | 0 | 1 | ||
19 | 8 | 1 | 0 | 21 | PHB1 | 4 | 1 | 0.3 | 1 | ||
7 | A2_2 | 2 | 0.3 | 0 | 1 | 22 | F1A6 | 29 | 1 | 0.3 | 1 |
8 | F0A1 | 2 | 0 | 0 | 3 | 23 | F1A1 | 14 | 1 | 1 | 1 |
F0A2 | 2 | 0 | 0 | 24 | F1A4 | 29 | 1 | 1 | 1 | ||
1 | 4 | 0 | 0 | 25 | F1A2 | 20 | 1 | 0.3 | 2 | ||
9 | F1B1 | 2 | 1 | 0 | 2 | F03B1 | 13 | 0.3 | 0.3 | ||
F0AP1 | 2 | 1 | 0 | Total | 67 |
ID | Mut. Type | N. nt | Location | Position | Nucleotide Sequence (Positions 697–748) | N. Rev. A | N. Rev. B |
---|---|---|---|---|---|---|---|
wt | - | - | - | - | …GTATTCCACAAACAAATAATCAATATTGGTGAATTAAAAGCGTACCTGGCAA… | - | |
FB182 | D | −1 | - | 718–719 | …GTATTCCACAAACAAATAATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | - | |
1 | I | +1 | - | 718–719 | …GTATTCCACAAACAAATAATCAATATTGGTGAATTAAAAGCGTACCTGGCAA… | 2 | 52 |
2 | I | +1 | u | 717–718 | …GTATTCCACAAACAAATAATCCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 4 | |
3 | I | +1 | u | 716–717 | …GTATTCCACAAACAAATAATTCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | |
4 | I | +1 | u | 714–716 | …GTATTCCACAAACAAATAAATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 11 | |
5 | I | +1 | u | 713–714 | …GTATTCCACAAACAAATTAATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 2 | |
6 | I | +1 | u | 710–713 | …GTATTCCACAAACAAAATAATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 8 | |
7 | I | +1 | d | 720 | …GTATTCCACAAACAAATAATCA-TGATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | |
8 | I | +1 | d | 721 | …GTATTCCACAAACAAATAATCA-TACTTGGTGAATTAAAAGCGTACCTGGCAA… | 3 | |
9 | I | +1 | d | 721–723 | …GTATTCCACAAACAAATAATCA-TATTTGGTGAATTAAAAGCGTACCTGGCAA… | 2 | |
10 | I | +1 | d | 720–721 | …GTATTCCACAAACAAATAATCA-TAATTGGTGAATTAAAAGCGTACCTGGCAA… | 3 | |
11 | I | +1 | d | 723–725 | …GTATTCCACAAACAAATAATCA-TATTGGGTGAATTAAAAGCGTACCTGGCAA… | 2 | |
12 | I | +1 | d | 727–729 | …GTATTCCACAAACAAATAATCA-TATTGGTGAAATTAAAAGCGTACCTGGCAA… | 6 | |
13 | I | +1 | d | 728 | …GTATTCCACAAACAAATAATCA-TATTGGTGATATTAAAAGCGTACCTGGCAA… | 1 | |
14 | I | +1 | d | 729–731 | …GTATTCCACAAACAAATAATCA-TATTGGTGAATTTAAAAGCGTACCTGGCAA… | 5 | |
15 | S + I | +1 | u | 709 + 706–713 | …GTATTCCACAAAAAAAATAATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | |
16 | I | +4 | u | 705/709/713 | …GTATTCCACAAACAAACAAATAATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 3 | 9 |
17 | I | +4 | u | 711–713 | …GTATTCCACAAACAAAAAAATAATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | |
18 | I | +4 | d | 715/719 | …GTATTCCACAAACAAATAATCA-ATCATATTGGTGAATTAAAAGCGTACCTGGCAA… | 3 | |
19 | I | +4 | d | 719 | …GTATTCCACAAACAAATAATCA-TACATATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | |
20 | I | +4 | d | 721 | …GTATTCCACAAACAAATAATCA-TATTTATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | |
21 | I | +7 | u | 702 | …GTATTCCACATTCCACAAACAAATAATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | 1 |
22 | I | +10 | d | 719 | …GTATTCCACAAACAAATAATCA-TATTGAATCATATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | 1 |
23 | D | −2 | u | 713–714 | …GTATTCCACAAACAAA--ATCA-TATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | 4 |
24 | D | −2 | u | 717–718 | …GTATTCCACAAACAAATAAT---TATTGGTGAATTAAAAGCGTACCTGGCAA… | 1 | |
25 | D | −2 | d | 723–724 | …GTATTCCACAAACAAATAATCA-TATT--TGAATTAAAAGCGTACCTGGCAA… | 2 |
ID | Mut. Type | N. nt | Location | Position | Amino Acid Sequence (Positions 229–258) | N. Rev. A | N. Rev. B | N. Rev. C |
---|---|---|---|---|---|---|---|---|
wt | - | - | - | - | …LAASVFHKQIINIGELKAYLATQGVEIRIC* | - | - | - |
FB182 | D | −1 | - | 718–719 | …LAASVFHKQIIILVN* | - | - | - |
1 | I | +1 | - | 718–719 | …LAASVFHKQIINIGELKAYLATQGVEIRIC* | 2 | 2 | 52 |
2 | I | +1 | u | 717–718 | …LAASVFHKQIIHIGELKAYLATQGVEIRIC* | 4 | 5 | |
3 | I | +1 | u | 716–717 | …LAASVFHKQIIHIGELKAYLATQGVEIRIC* | 1 | ||
4 | I | +1 | u | 714–716 | …LAASVFHKQINHIGELKAYLATQGVEIRIC* | 11 | 13 | |
5 | I | +1 | u | 713–714 | …LAASVFHKQINHIGELKAYLATQGVEIRIC* | 2 | ||
6 | I | +1 | u | 710–713 | …LAASVFHKQNNHIGELKAYLATQGVEIRIC* | 8 | 8 | |
7 | I | +1 | d | 720 | …LAASVFHKQIIMIGELKAYLATQGVEIRIC* | 1 | 1 | |
8 | I | +1 | d | 721 | …LAASVFHKQIIILGELKAYLATQGVEIRIC* | 3 | 5 | |
11 | I | +1 | d | 721–723 | …LAASVFHKQIIILGELKAYLATQGVEIRIC* | 2 | ||
9 | I | +1 | d | 720–721 | …LAASVFHKQIIIFGELKAYLATQGVEIRIC* | 2 | 2 | |
10 | I | +1 | d | 723–725 | …LAASVFHKQIIIIGELKAYLATQGVEIRIC* | 3 | 3 | |
12 | I | +1 | d | 727–729 | …LAASVFHKQIIILVKLKAYLATQGVEIRIC* | 6 | 6 | |
13 | I | +1 | d | 728 | …LAASVFHKQIIILVILKAYLATQGVEIRIC* | 1 | 1 | |
14 | I | +1 | d | 729–731 | …LAASVFHKQIIILVNLKAYLATQGVEIRIC* | 5 | 5 | |
15 | S + I | +1 | u | 709 + 706–713 | …LAASVFHKKNNHIGELKAYLATQGVEIRIC* | 1 | 1 | |
16 | I | +4 | u | 705/709/713 | …LAASVFHKQTNNHIGELKAYLATQGVEIRIC* | 3 | 3 | 9 |
17 | I | +4 | u | 711–713 | …LAASVFHKQKNNHIGELKAYLATQGVEIRIC* | 1 | 1 | |
18 | I | +4 | d | 715/719 | …LAASVFHKQIINHIGELKAYLATQGVEIRIC* | 3 | 3 | |
19 | I | +4 | d | 719 | …LAASVFHKQIIIHIGELKAYLATQGVEIRIC* | 1 | 1 | |
20 | I | +4 | d | 721 | …LAASVFHKQIIIFIGELKAYLATQGVEIRIC* | 1 | 1 | |
21 | I | +7 | u | 702 | …LAASVFHIPQTNNHIGELKAYLATQGVEIRIC* | 1 | 1 | 1 |
22 | I | +10 | d | 719 | …LAASVFHKQIIILNHIGELKAYLATQGVEIRIC* | 1 | 1 | 1 |
23 | D | −2 | u | 713–714 | …LAASVFHKQNHIGELKAYLATQGVEIRIC* | 1 | 1 | 4 |
24 | D | −2 | u | 717–718 | …LAASVFHKQIIIGELKAYLATQGVEIRIC* | 1 | 1 | |
25 | D | −2 | d | 723–724 | …LAASVFHKQIIIFELKAYLATQGVEIRIC* | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Duca, S.; Puglia, A.M.; Calderone, V.; Bazzicalupo, M.; Fani, R. Effect of Non-Lethal Selection on Spontaneous Revertants of Frameshift Mutations: The Escherichia coli hisF Case. Microorganisms 2022, 10, 692. https://doi.org/10.3390/microorganisms10040692
Del Duca S, Puglia AM, Calderone V, Bazzicalupo M, Fani R. Effect of Non-Lethal Selection on Spontaneous Revertants of Frameshift Mutations: The Escherichia coli hisF Case. Microorganisms. 2022; 10(4):692. https://doi.org/10.3390/microorganisms10040692
Chicago/Turabian StyleDel Duca, Sara, Anna Maria Puglia, Vito Calderone, Marco Bazzicalupo, and Renato Fani. 2022. "Effect of Non-Lethal Selection on Spontaneous Revertants of Frameshift Mutations: The Escherichia coli hisF Case" Microorganisms 10, no. 4: 692. https://doi.org/10.3390/microorganisms10040692
APA StyleDel Duca, S., Puglia, A. M., Calderone, V., Bazzicalupo, M., & Fani, R. (2022). Effect of Non-Lethal Selection on Spontaneous Revertants of Frameshift Mutations: The Escherichia coli hisF Case. Microorganisms, 10(4), 692. https://doi.org/10.3390/microorganisms10040692