Surfactin Shows Relatively Low Antimicrobial Activity against Bacillus subtilis and Other Bacterial Model Organisms in the Absence of Synergistic Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Cultivation Conditions
2.2. Stress Approach
2.3. Pretreatment for MS Analysis
2.4. NanoLC-MS/MS Analysis
2.5. MS Data Analysis and Protein Quantification
2.6. Voronoi Treemap Generation
3. Results
3.1. Effect of Surfactin Treatment on Bacterial Cell Growth
3.2. Comparative Analyses of Microbial Sensitivity to Rhamnolipids and Sophorolipids
3.3. Effect of Surfactin Present during the Cultivation Process of B. subtilis
3.4. Proteomic Alterations of Unadapted B. subtilis Cells after Surfactin Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marvasi, M.; Visscher, P.T.; Casillas Martinez, L. Exopolymeric substances (EPS) from Bacillus subtilis: Polymers and genes encoding their synthesis. FEMS Microbiol. Lett. 2010, 313, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.M.; Marahiel, M.A.; Zuber, P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 1988, 170, 5662–5668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosato, V.; Albertini, A.M.; Zotti, M.; Sonda, S.; Bruschi, C.V. Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 1997, 143, 3443–3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartal, A.; Vigneshwari, A.; Bóka, B.; Vörös, M.; Takács, I.; Kredics, L.; Manczinger, L.; Varga, M.; Vágvölgyi, C.; Szekeres, A. Effects of Different Cultivation Parameters on the Production of Surfactin Variants by a Bacillus subtilis Strain. Molecules 2018, 23, 2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klausmann, P.; Hennemann, K.; Hoffmann, M.; Treinen, C.; Aschern, M.; Lilge, L.; Heravi, K.M.; Henkel, M.; Hausmann, R. Bacillus subtilis High Cell Density Fermentation Using a Sporulation-Deficient Strain for the Production of Surfactin. Appl. Microbiol. Biotechnol. 2021, 105, 4141–4151. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.M.; Xia, L.A.; Zuber, P. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 1991, 173, 5487–5493. [Google Scholar] [CrossRef] [Green Version]
- Serror, P.; Sonenshein, A.L. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 1996, 178, 5910–5915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumsakul, O.; Takahashi, H.; Oshima, T.; Hishimoto, T.; Kanaya, S.; Ogasawara, N.; Ishikawa, S. Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Res. 2011, 39, 414–428. [Google Scholar] [CrossRef]
- Quadri, L.E.; Weinreb, P.H.; Lei, M.; Nakano, M.M.; Zuber, P.; Walsh, C.T. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 1998, 37, 1585–1595. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, D.R.; Prágai, Z.; Rodriguez, S.; Chevreux, B.; Muffler, A.; Albert, T.; Bai, R.; Wyss, M.; Perkins, J.B. The origins of 168, W23, and other Bacillus subtilis legacy strains. J. Bacteriol. 2008, 190, 6983–6995. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef] [PubMed]
- Dhali, D.; Coutte, F.; Arias, A.A.; Auger, S.; Bidnenko, V.; Chataigné, G.; Lalk, M.; Niehren, J.; de Sousa, J.; Versari, C.; et al. Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14 isoform. Biotechnol. J. 2017, 12, 1600574. [Google Scholar] [CrossRef]
- Hoffmann, M.; Mück, D.; Grossmann, L.; Greiner, L.; Klausmann, P.; Henkel, M.; Lilge, L.; Weiss, J.; Hausmann, R. Surfactin from Bacillus subtilis displays promising characteristics as O/W-emulsifier for food formulations. Colloids Surf. B Biointerfaces 2021, 203, 111749. [Google Scholar] [CrossRef] [PubMed]
- Béven, L.; Wróblewski, H. Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes. Res. Microbiol. 1997, 148, 163–175. [Google Scholar] [CrossRef]
- Vollenbroich, D.; Ozel, M.; Vater, J.; Kamp, R.M.; Pauli, G. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biol. J. Int. Assoc. Biol. Stand. 1997, 25, 289–297. [Google Scholar]
- Kracht, M.; Rokos, H.; Ozel, M.; Kowall, M.; Pauli, G.; Vater, J. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot. 1999, 52, 613–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameda, Y.; Oira, S.; Matsui, K.; Kanatomo, S.; Hase, T. Antitumor activity of bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem. Pharm. Bull. 1974, 22, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deleu, M.; Lorent, J.; Lins, L.; Brasseur, R.; Braun, N.; El Kirat, K.; Nylander, T.; Dufrêne, Y.F.; Mingeot-Leclercq, M.-P. Effects of surfactin on membrane models displaying lipid phase separation. Biochim. Biophys. Acta 2013, 1828, 801–815. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, C.; Teruel, J.A.; Aranda, F.J.; Ortiz, A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta (BBA) Biomembr. 2003, 1611, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Mnif, I.; Ghribi, D. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 2015, 71, 100–112. [Google Scholar]
- Fernandes, P.A.V.; de Arruda, I.R.; dos Santos, A.F.A.B.; de Araújo, A.A.; Maior, A.M.S.; Ximenes, E.A. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Braz. J. Microbiol. 2007, 38, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Bartolini, M.; Cogliati, S.; Vileta, D.; Bauman, C.; Ramirez, W.; Grau, R. Stress-Responsive Alternative Sigma Factor SigB Plays a Positive Role in the Antifungal Proficiency of Bacillus subtilis. Appl. Environ. Microbiol. 2019, 85, e00178-19. [Google Scholar] [CrossRef] [Green Version]
- Bais, H.P.; Fall, R.; Vivanco, J.M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 2004, 134, 307–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geissler, M.; Oellig, C.; Moss, K.; Schwack, W.; Henkel, M.; Hausmann, R. High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species. J. Chromatogr. B 2017, 1044–1045, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Clémence, L.; Schlusselhuber, M.; Bigot, R.; Bertaux, J.; Berjeaud, J.-M.; Verdon, J. Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity. Appl. Microbiol. Biotechnol. 2015, 99, 5083–5093. [Google Scholar]
- Tsuge, K.; Ohata, Y.; Shoda, M. Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob. Agents Chemother. 2001, 45, 3566–3573. [Google Scholar] [CrossRef] [Green Version]
- Wecke, T.; Zühlke, D.; Mäder, U.; Jordan, S.; Voigt, B.; Pelzer, S.; Labischinski, H.; Homuth, G.; Hecker, M.; Mascher, T. Daptomycin versus Friulimicin B: In-depth profiling of Bacillus subtilis cell envelope stress responses. Antimicrob. Agents Chemother. 2009, 53, 1619–1623. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, F.G.; Johnson, M.J. A glycolipid produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 1949, 71, 4124–4126. [Google Scholar] [CrossRef]
- Wecke, T.; Bauer, T.; Harth, H.; Mäder, U.; Mascher, T. The rhamnolipid stress response of Bacillus subtilis. FEMS Microbiol. Lett. 2011, 323, 113–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Housseiny, G.; Aboshanab, K.M.; Aboulwafa, M.M.; Hassouna, N.A. Structural and physicochemical characterization of rhamnolipids produced by Pseudomonas aeruginosa P6. AMB Express 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Q.; Hau, Y.; Chen, J.; Zhang, H.; Wang, H. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl. Microbiol. Biotechnol. 2017, 101, 8309–8319. [Google Scholar] [CrossRef]
- Cutler, A.J.; Light, R.J. Regulation of hydroxydocosanoic and sophoroside production in Candida bogoriensis by the level of glucose and yeast extract in the growth medium. J. Biol. Chem. 1979, 254, 1944–1950. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Price, N.P.; Ray, K.J.; Kuo, T.M. Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol. Lett. 2010, 311, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, V.; Badia, D.; Ratsep, P. Sophorolipids having enhanced antibacterial activity. Antimicrob. Agents Chemother. 2007, 51, 397–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rienzo, M.A.D.; Banat, I.M.; Dolman, B.; Winterburn, J.; Martin, P.J. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. New Biotechnol. 2015, 32, 720–726. [Google Scholar] [CrossRef]
- Díaz De Rienzo, M.A.; Stevenson, P.; Marchant, R.; Banat, I.M. Antibacterial properties of biosurfactants against selected Gram-positive and-negative bacteria. FEMS Microbiol. Lett. 2016, 363, fnv224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, Y.; Tian, X.; Chu, J. Advances in sophorolipid-producing strain performance improvement and fermentation optimization technology. Appl. Microbiol. Biotechnol. 2020, 104, 10325–10337. [Google Scholar] [CrossRef] [PubMed]
- Borsanyiova, M.; Patil, A.; Mukherji, R.; Prabhune, A.; Bopegamage, S. Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol. (Praha) 2016, 61, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Geissler, M.; Kühle, I.; Heravi, K.M.; Altenbuchner, J.; Henkel, M.; Hausmann, R. Evaluation of surfactin synthesis in a genome reduced Bacillus subtilis strain. AMB Express 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Vahidinasab, M.; Lilge, L.; Reinfurt, A.; Pfannstiel, J.; Henkel, M.; Morabbi Heravi, K.; Hausmann, R. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microb. Cell Fact. 2020, 19, 205. [Google Scholar] [CrossRef] [PubMed]
- Willenbacher, J.; Zwick, M.; Mohr, T.; Schmid, F.; Syldatk, C.; Hausmann, R. Evaluation of different Bacillus strains in respect of their ability to produce Surfactin in a model fermentation process with integrated foam fractionation. Appl. Microbiol. Biotechnol. 2014, 98, 9623–9632. [Google Scholar] [CrossRef]
- Rahmer, R.; Morabbi Heravi, K.; Altenbuchner, J. Construction of a Super-Competent Bacillus subtilis 168 Using the P mtlA -comKS Inducible Cassette. Front. Microbiol. 2015, 6, 1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blombach, B.; Hans, S.; Bathe, B.; Eikmanns, B.J. Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl. Environ. Microbiol. 2009, 75, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagdasarian, M.A.; Lurz, R.; Rückert, B.; Franklin, F.C.H.; Bagdasarian, M.M.; Frey, J.; Timmis, K.N. Specific-purpose plasmid cloning vectors II. Broad host range, high copy number, RSF 1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 1981, 16, 237–247. [Google Scholar] [CrossRef]
- Wessel, D.; Flügge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 1984, 138, 141–143. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Rappsilber, J.; Ishihama, Y.; Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 2003, 75, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.V.; de Godoy, L.M.F.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteom. MCP 2005, 4, 2010–2021. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Gierlinski, M. Proteus: Downstream Analysis of the MaxQuant Output. R Package Version 0.2.14. Available online: https://github.com/bartongroup/Proteus (accessed on 1 July 2020).
- Zhu, B.; Stülke, J. SubtiWiki in 2018: From genes and proteins to functional network annotation of the model organism Bacillus subtilis. Nucleic Acids Res. 2018, 46, D743–D748. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
- Raffeiner, M.; Heumos, L. Voronoi-Treemap-Portlet, GitHub Repository. Available online: https://github.com/qbicsoftware/voronoi-treemap-portlet (accessed on 1 September 2020).
- Nocaj, A.; Brandes, U. Computing Voronoi Treemaps: Faster, Simpler, and Resolution-Independent. Comput. Graph. Forum 2012, 31, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Valladares, N.; Richardson, A.P.; Olvera, C.; Treviño, L.G.; Déziel, E.; Lépine, F.; Soberón-Chávez, G. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl. Microbiol. Biotechnol. 2006, 73, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Beuker, J.; Steier, A.; Wittgens, A.; Rosenau, F.; Henkel, M.; Hausmann, R. Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor. AMB Express 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willenbacher, J.; Yeremchuk, W.; Mohr, T.; Syldatk, C.; Hausmann, R. Enhancement of surfactin yield by improving the medium composition and fermentation process. AMB Express 2015, 5, 145. [Google Scholar] [CrossRef] [Green Version]
- Nakano, S.; Erwin, K.N.; Ralle, M.; Zuber, P. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol. Microbiol. 2005, 55, 498–510. [Google Scholar] [CrossRef]
- Reder, A.; Pöther, D.C.; Gerth, U.; Hecker, M. The modulator of the general stress response, MgsR, of Bacillus subtilis is subject to multiple and complex control mechanisms. Environ. Microbiol. 2012, 14, 2838–2850. [Google Scholar] [CrossRef] [PubMed]
- Reder, A.; Höper, D.; Weinberg, C.; Gerth, U.; Fraunholz, M.; Hecker, M. The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis. Mol. Microbiol. 2008, 69, 1104–1120. [Google Scholar] [CrossRef] [PubMed]
- Mascher, T.; Zimmer, S.L.; Smith, T.A.; Helmann, J.D. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob. Agents Chemother. 2004, 48, 2888–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachmann, A.B.; Angert, E.R.; Helmann, J.D. Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob. Agents Chemother. 2009, 53, 1598–1609. [Google Scholar] [CrossRef] [Green Version]
- Voigt, B.; Schroeter, R.; Jürgen, B.; Albrecht, D.; Evers, S.; Bongaerts, J.; Maurer, K.-H.; Schweder, T.; Hecker, M. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon. Proteomics 2013, 13, 2140–2161. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Blackman, S.A.; Foster, S.J. Autolysins of Bacillus subtilis: Multiple enzymes with multiple functions. Microbiology 2000, 146, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Seydlová, G.; Svobodová, J. Development of membrane lipids in the surfactin producer Bacillus subtilis. Folia Microbiol. 2008, 53, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, L.; Su, C.X.; Gong, G.H.; Wang, P.; Yu, Z.L. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett. Appl. Microbiol. 2008, 47, 180–186. [Google Scholar] [CrossRef]
- Nanjundan, J.; Ramasamy, R.; Uthandi, S.; Ponnusamy, M. Antimicrobial activity and spectroscopic characterization of surfactin class of lipopeptides from Bacillus amyloliquefaciens SR1. Microb. Pathog. 2019, 128, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Song, L.; Qiao, M.; Zhang, P.; Zhao, Q. Optimization of the Antimicrobial Effects ofSurfactin against Bacillus cereus Spores. J. Food Prot. 2020, 83, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
- Horng, Y.-B.; Yu, Y.-H.; Dybus, A.; Shiao, F.S.-H.; Cheng, Y.-H. Antibacterial activity of Bacillus species-derived surfactin on Brachyspira hyodysenteriae and Clostridium perfringens. AMB Express 2019, 9, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Romero, D.; de Vicente, A.; Rakotoaly, R.H.; Dufour, S.E.; Veening, J.-W.; Arrebola, E.; Cazorla, F.M.; Kuipers, O.P.; Paquot, M.; Pérez-García, A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plat-Microbe Interact. 2007, 20, 430–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falardeau, J.; Wise, C.; Novitsky, L.; Avis, T.J. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 2013, 39, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Stein, T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 2005, 56, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, F.; Neubauer, P.; Gimpel, M. Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. J. Nat. Prod. 2019, 82, 2038–2053. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Nakano, M.M.; Zhang, Y.; Leelakriangsak, M.; Zuber, P. A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc. Natl. Acad. Sci. USA 2003, 100, 4233–4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.; Kobel, P.A.; Morshedi, M.M.; Wu, M.F.W.; Paddon, C.; Helmann, J.D. Defining the Bacillus subtilis sigma (W) regulon: A comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J. Mol. Biol. 2002, 316, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Butcher, B.G.; Helmann, J.D. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol. Microbiol. 2006, 60, 765–782. [Google Scholar] [CrossRef]
- Yu, W.B.; Yin, C.Y.; Zhou, Y.; Ye, B.C. Prediction of the mechanism of action of fusaricidin on Bacillus subtilis. PLoS ONE 2012, 7, e50003. [Google Scholar] [CrossRef]
- Hecker, M.; Völker, U. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol. Microbiol. 1998, 29, 1129–1136. [Google Scholar] [CrossRef]
- Aretz, W.; Meiwes, J.; Seibert, G.; Vobis, G.; Wink, J. Friulimicins: Novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. I. Taxonomic studies of the producing microorganism and fermentation. J. Antibiot. 2000, 53, 807–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vértesy, L.; Ehlers, E.; Kogler, H.; Kurz, M.; Meiwes, J.; Seibert, G.; Vogel, M.; Hammann, P. Friulimicins: Novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. II. Isolation and structural characterization. J. Antibiot. 2000, 53, 816–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Genotype | Reference | Surfactin Conc. [g/L] Used |
---|---|---|---|
Bacillus subtilis KM0 | 168; trp+ | [43] | 10 #, 30 #, 50 *,#, 70 #, 100 * |
Corynebacterium glutamicum ATCC13032 | wild-type | [44] | 50 *, 100 * |
Escherichia coli BL21 (DE3) | F– ompT hsdSB (rB–, mB–) gal dcm (DE3) | Thermo ScientificTM | 50 *, 100 * |
Pseudomonas putida KT2440 | r− m+ | [45] | 50 *, 100 * |
Protein Name | Log2 Fold Change | Regulators | Functions, Homologies |
---|---|---|---|
Increased after surfactin treatment (≥1.5) | |||
LiaH | 7.02 | LiaRS | resistance against oxidative stress and cell wall antibiotics |
YdaD | 4.51 | σB | general stress protein (similar to alcohol dehydrogenase) |
ZagA | 4.20 | Zur | zinc metallochaperone |
YsnF | 3.75 | σB | general stress protein |
MgsR | 3.45 | σB | modulator of general stress response |
CsbD | 3.18 | σB | general stress protein |
YbyB | 3.15 | σB | general stress protein |
YhdF | 3.04 | σB | similar to glucose 1-dehydrogenase |
GspA | 2.99 | σB | general stress protein (similar to glycosyl transferase) |
YbfO | 2.98 | σW, AbrB | similar to erythromycin esterase |
YjgD | 2.94 | σB | general stress protein |
TrpE | 2.92 | MtrB | anthranilate synthase (tryptophan biosynthesis) |
YjzH | 2.69 | unknown | |
YjgC | 2.60 | σB | general stress protein (formate dehydrogenase) |
YdbD | 2.52 | σB | general stress protein (similar to manganese-containing catalase) |
RpmF | 2.39 | ribosomal protein | |
YflT | 2.38 | σB | general stress protein |
YxaB | 2.38 | σB, AbrB | general stress protein (similar to pyruvyl transferase) |
Rtp | 2.35 | replication terminator protein | |
YurQ | 2.33 | unknown | |
YcdF | 2.32 | σB | general stress protein (similar to glucose 1-dehydrogenase) |
YflH | 2.31 | σB, NagR | general stress protein |
YhxD | 2.30 | σB | general stress protein (similar to alcohol dehydrogenase) |
YdaG | 2.00 | σB | general stress protein (putative pyridoxamine 5′-phosphate oxidase) |
YbfP | 1.93 | similar to transcription factor (AraC family) | |
Spx | 1.91 | σB, σW, σM, σX, PerR | transcriptional regulator |
YrhJ | 1.91 | σW, σM, σX, FatR | cytochrome P450/NADPH-cytochrome P450 reductase |
RpmE2 | 1.76 | σB, Zur | general stress protein, accessory ribosomal protein under zinc limitation |
YuaI | 1.73 | σW | unknown |
OhrB | 1.73 | σB | general stress protein |
NhaX | 1.73 | σB | general stress protein (putative regulator of NhaC) |
PadR | 1.64 | regulator of the phenolic acid stress response | |
YoxC | 1.61 | σB | general stress protein |
McsA | 1.57 | σB, σM, σF, CtsR, Spx | modulator of CtsR regulator |
YdjP | 1.55 | σW σE | similar to chloroperoxydase |
YsmB | 1.54 | similar to transcriptional regulator (MarR family) | |
YhcW | 1.50 | putative glycerol-3-phosphatase | |
decreased after surfactin treatment (≤1.5) | |||
YxxD | −3.29 | antitoxin | |
CspC | −3.15 | RNA chaperone | |
SecG | −2.24 | SigB | preprotein translocase subunit |
YdgH | −2.11 | LexA | similar to drug exporter |
BdbA | −1.96 | Rok, Abh, DnaA, YvrHb, AbrB | thiol-disulfide oxidoreductase |
LytE | −1.86 | σH, σI, WalR, Spo0A | cell wall hydrolase (major autolysin, cell elongation, separation) |
YfkK | −1.83 | σH, σI, Spo0A, WalR | cell wall hydrolase |
CysE | −1.77 | serine O-acetyltransferase | |
LytC | −1.76 | σD, SinR, YvrHb, SlrR | N-acetylmuramoyl-L-alanine amidase |
SdpI | −1.70 | AbrB, SdpR | immunity protein |
YkfB | −1.67 | CodY | L-Ala-D/L-Glu epimerase |
PanD | −1.65 | aspartate 1-decarboxylase | |
YckB | −1.65 | similar to amino acid ABC transporter | |
BceA | −1.62 | BceR | ABC transporter for target protection of cell wall synthesis |
CwlS | −1.61 | σD, σH, CcpA, Abh, AbrB | D,L-endopeptidase; peptidoglycan hydrolase |
MntH | −1.60 | MntR | manganese transporter |
RbsC | −1.60 | CcpA, AbrB | ribose ABC transporter |
LytF | −1.55 | σD, SlrR, SinR | gamma-D-glutamate-meso-diaminopimelate muropeptidase |
YoeB | −1.55 | WalR | inhibitor of cell separation and autolysins |
YurK | −1.53 | transcriptional regulator (GntR family) | |
TcyB | −1.52 | cystine and diaminopimelate ABC transporter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lilge, L.; Ersig, N.; Hubel, P.; Aschern, M.; Pillai, E.; Klausmann, P.; Pfannstiel, J.; Henkel, M.; Morabbi Heravi, K.; Hausmann, R. Surfactin Shows Relatively Low Antimicrobial Activity against Bacillus subtilis and Other Bacterial Model Organisms in the Absence of Synergistic Metabolites. Microorganisms 2022, 10, 779. https://doi.org/10.3390/microorganisms10040779
Lilge L, Ersig N, Hubel P, Aschern M, Pillai E, Klausmann P, Pfannstiel J, Henkel M, Morabbi Heravi K, Hausmann R. Surfactin Shows Relatively Low Antimicrobial Activity against Bacillus subtilis and Other Bacterial Model Organisms in the Absence of Synergistic Metabolites. Microorganisms. 2022; 10(4):779. https://doi.org/10.3390/microorganisms10040779
Chicago/Turabian StyleLilge, Lars, Nadine Ersig, Philipp Hubel, Moritz Aschern, Evelina Pillai, Peter Klausmann, Jens Pfannstiel, Marius Henkel, Kambiz Morabbi Heravi, and Rudolf Hausmann. 2022. "Surfactin Shows Relatively Low Antimicrobial Activity against Bacillus subtilis and Other Bacterial Model Organisms in the Absence of Synergistic Metabolites" Microorganisms 10, no. 4: 779. https://doi.org/10.3390/microorganisms10040779
APA StyleLilge, L., Ersig, N., Hubel, P., Aschern, M., Pillai, E., Klausmann, P., Pfannstiel, J., Henkel, M., Morabbi Heravi, K., & Hausmann, R. (2022). Surfactin Shows Relatively Low Antimicrobial Activity against Bacillus subtilis and Other Bacterial Model Organisms in the Absence of Synergistic Metabolites. Microorganisms, 10(4), 779. https://doi.org/10.3390/microorganisms10040779