Marker-Free Genome Engineering in Amycolatopsis Using the pSAM2 Site-Specific Recombination System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Cultivation Conditions and Strain Manipulation
2.2. Plasmids and DNA Manipulations
2.3. Construction and Verification of A. mediterranei DSM 40773 Mutant Strains
2.3.1. Marker-Free rifK Mutants
2.3.2. Large-Scale Deletions
2.4. Rifamycin Production
2.5. Antibacterial Activity Assays
3. Results
3.1. Design of Genetic Tools for pSAM2 SSR System Application
3.2. Cassette Excision
3.3. Region Excision
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (i)
- Construction of the plasmid pEA01 expressing Xis and Int
- (ii)
- Construction of the plasmids pEA02 and pEA03 carrying attL and attR
- (iii)
- Construction of pRIF05 for the inactivation of rifK
- (iv)
- Construction of pRIF12 and pRIF14 for deletion of the rifamycin gene cluster
References
- Song, Z.; Xu, T.; Wang, J.; Hou, Y.; Liu, C.; Liu, S.; Wu, S. Secondary metabolites of the genus Amycolatopsis: Structures, bioactivities and biosynthesis. Molecules 2021, 26, 1884. [Google Scholar] [CrossRef] [PubMed]
- August, P.R.; Tang, L.; Yoon, Y.J.; Ning, S.; Müller, R.; Yu, T.W.; Taylor, M.; Hoffmann, D.; Kim, C.G.; Zhang, X.; et al. Biosynthesis of the ansamycin antibiotic rifamycin: Deductions from the molecular analysis of the Rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem. Biol. 1998, 5, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Van Wageningen, A.M.A.; Kirkpatrick, P.N.; Williams, D.H.; Harris, B.R.; Kershaw, J.K.; Lennard, N.J.; Jones, M.; Jones, S.J.M.; Solenberg, P.J. Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem. Biol. 1998, 5, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Zmijewski, M.J.; Briggs, B. Biosynthesis of vancomycin: Identification of tdp-glucose: aglycosyl-vancomycin glucosyltransferase from Amycolatopsis orientalis. FEMS Microbiol. Lett. 1989, 59, 129–133. [Google Scholar] [CrossRef]
- Davis, J.R.; Goodwin, L.A.; Woyke, T.; Teshima, H.; Bruce, D.; Detter, C.; Tapia, R.; Han, S.; Han, J.; Pitluck, S.; et al. Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J. Bacteriol. 2012, 194, 2396–2397. [Google Scholar] [CrossRef] [Green Version]
- Albarracín, V.H.; Amoroso, M.J.; Abate, C.M. Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 2010, 79, 131–137. [Google Scholar] [CrossRef]
- Fleige, C.; Meyer, F.; Steinbüchel, A. Metabolic engineering of the actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl. Environ. Microbiol. 2016, 82, 3410–3419. [Google Scholar] [CrossRef] [Green Version]
- Meyer, F.; Pupkes, H.; Steinbüchel, A. development of an improved system for the generation of knockout mutants of Amycolatopsis sp. strain ATCC 39116. Appl. Environ. Microbiol. 2017, 83, e02660-16. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Murugesan, B.; Hoßbach, J.; Evans, S.K.; Stark, W.M.; Smith, M.C.M. integrating vectors for genetic studies in the rare actinomycete Amycolatopsis marina. BMC Biotechnol. 2019, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Madoń, J.; Hütter, R. Transformation system for Amycolatopsis (Nocardia) mediterranei: Direct transformation of mycelium with plasmid DNA. J. Bacteriol. 1991, 173, 6325–6331. [Google Scholar] [CrossRef] [Green Version]
- Stegmann, E.; Pelzer, S.; Wilken, K.; Wohlleben, W. development of three different gene cloning systems for genetic investigation of the new species Amycolatopsis japonicum MG417-CF17, the ethylenediaminedisuccinic acid producer. J. Biotechnol. 2001, 92, 195–204. [Google Scholar] [CrossRef]
- Malhotra, S.; Majumdar, S.; Kumar, M.; Bhasin, V.K.; Gartemann, K.H.; Lal, R. Nucleotide sequence of plasmid pA387 of Amycolatopsis benzoatilytica and construction of a conjugative shuttle Vector. J. Basic Microbiol. 2008, 48, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, X.; Wu, J.; Zhao, G.; Wang, J. CRISPR-Cas12a-assisted genome editing in Amycolatopsis mediterranei. Front. Bioeng. Biotechnol. 2020, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hosted, T.J.; Baltz, R.H. Use of RpsL for dominance selection and gene replacement in Streptomyces roseosporus. J. Bacteriol. 1997, 179, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Dubeau, M.P.; Ghinet, M.G.; Jacques, P.É.; Clermont, N.; Beaulieu, C.; Brzezinski, R. Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria. Appl. Environ. Microbiol. 2009, 75, 1211–1214. [Google Scholar] [CrossRef] [Green Version]
- Potúčková, L.; Kelemen, G.H.; Findlay, K.C.; Lonetto, M.A.; Buttner, M.J.; Kormanec, J. A New RNA polymerase sigma factor, σf is required for the late stages of morphological differentiation in Streptomyces spp. Mol. Microbiol. 1995, 17, 37–48. [Google Scholar] [CrossRef]
- Knirschova, R.; Novakova, R.; Mingyar, E.; Bekeova, C.; Homerova, D.; Kormanec, J. Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. J. Microbiol. Methods 2015, 113, 1–3. [Google Scholar] [CrossRef]
- Rezuchova, B.; Homerova, D.; Sevcikova, B.; Núñez, L.E.; Novakova, R.; Feckova, L.; Skultety, L.; Cortés, J.; Kormanec, J. An efficient blue-white screening system for markerless deletions and stable integrations in Streptomyces chromosomes based on the blue pigment indigoidine biosynthetic gene bpsA. Appl. Microbiol. Biotechnol. 2018, 102, 10231–10244. [Google Scholar] [CrossRef]
- Siegl, T.; Luzhetskyy, A. Actinomycetes genome engineering approaches. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 2012, 102, 503–516. [Google Scholar] [CrossRef]
- Herrmann, S.; Siegl, T.; Luzhetska, M.; Jilg, L.P.; Welle, E.; Erb, A.; Leadlay, P.F.; Bechthold, A.; Luzhetskyy, A. Site-specific recombination strategies for engineering actinomycete. Appl. Environ. Microbiol. 2012, 78, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, M.; Uchiyama, T.; Omura, S.; Cane, D.E.; Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 2646–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccard, F.; Smokvina, T.; Pernodet, J.L.; Friedmann, A.; Guérineau, M. The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J. 1989, 8, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Raynal, A.; Tuphile, K.; Gerbaud, C.; Luther, T.; Guérineau, M.; Pernodet, J.L. Structure of the chromosomal insertion site for pSAM2: Functional analysis in Escherichia coli. Mol. Microbiol. 1998, 28, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Raynal, A.; Friedmann, A.; Tuphile, K.; Guérineau, M.; Pernodet, J.L. Characterization of the attP site of the integrative element pSAM2 from Streptomyces ambofaciens. Microbiology 2002, 148, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Raynal, A.; Karray, F.; Tuphile, K.; Darbon-Rongère, E.; Pernodet, J.-L. Excisable cassettes: New tools for functional analysis of Streptomyces genomes. Appl. Environ. Microbiol. 2006, 72, 4839–4844. [Google Scholar] [CrossRef] [Green Version]
- Khanna, M.; Dua, M.; Lal, R. Selection of suitable marker genes for the development of cloning vectors and electroporation in different strains of Amycolatopsis mediterranei. Microbiol. Res. 1998, 153, 205–211. [Google Scholar] [CrossRef]
- Malhotra, S.; Lal, R. The genus Amycolatopsis: Indigenous plasmids, cloning vectors and gene transfer systems. Indian J. Microbiol. 2007, 47, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, Y.; Zhu, L.; Zhao, W.; Chen, D.; Huang, W.; Yang, S. Characterization of plasmid pXL100 from Amycolatopsis orientalis HCCB10007 and construction of a shuttle vector. J. Basic Microbiol. 2015, 55, 247–254. [Google Scholar] [CrossRef]
- Lal, R.; Khanna, R.; Dhingra, N.; Khanna, M.; Lal, S. Development of an improved cloning vector and transformation system in Amycolatopsis mediterranei (Nocardia mediterranei). J. Antibiot. (Tokyo) 1998, 51, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Paget, M.S.; Chamberlin, L.; Atrih, A.; Foster, S.J.; Buttner, M.J. Evidence that the extracytoplasmic function sigma factor sigmae is required for normal cell wall structure in Streptomyces coelicolor A3(2). J. Bacteriol. 1999, 181, 204–211. [Google Scholar] [CrossRef] [Green Version]
- MacNeil, D.J.; Gewain, K.M.; Ruby, C.L.; Dezeny, G.; Gibbons, P.H.; MacNeil, T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 1992, 111, 61–68. [Google Scholar] [CrossRef]
- Aubry, C.; Pernodet, J.-L.; Lautru, S. Modular and integrative vectors for synthetic biology applications in Streptomyces spp. Appl. Environ. Microbiol. 2019, 85, e00485-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, S.; Ziebandt, A.-K.; Ohlsen, K.; Schäfer, T.; Hecker, M.; Albrecht, D.; Novick, R.; Götz, F. Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Infect. Immun. 2010, 78, 2877–2889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieser, T.; Chater, K.F.; Bibb, M.J.; Buttner, M.J.; Hopwood, D.A. Pratical Streptomyces Genetics; John Innes Foundation: Norwich, 2000; ISBN 0-7084-0623-8. [Google Scholar]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001; ISBN 0879695773. [Google Scholar]
- Nguyen, H.C.; Karray, F.; Lautru, S.; Gagnat, J.; Lebrihi, A.; Huynh, T.D.H.; Pernodet, J.L. Glycosylation steps during spiramycin biosynthesis in Streptomyces ambofaciens: Involvement of three glycosyltransferases and their interplay with two auxiliary proteins. Antimicrob. Agents Chemother. 2010, 54, 2830–2839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierman, M.; Logan, R.; O’Brien, K.; Seno, E.T.; Nagaraja Rao, R.; Schoner, B.E. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 1992, 116, 43–49. [Google Scholar] [CrossRef]
- Pattee, P.A. Use of tetrazolium for improved resolution of bacteriophage plaques. J. Bacteriol. 1966, 92, 787–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.C.; Darbon, E.; Thai, R.; Pernodet, J.L.; Lautru, S. Post-PKS tailoring steps of the spiramycin macrolactone ring in Streptomyces ambofaciens. Antimicrob. Agents Chemother. 2013, 57, 3836–3842. [Google Scholar] [CrossRef] [Green Version]
- Witwinowski, J.; Moutiez, M.; Coupet, M.; Correia, I.; Belin, P.; Ruzzini, A.; Saulnier, C.; Caraty, L.; Favry, E.; Seguin, J.; et al. Study of bicyclomycin biosynthesis in Streptomyces cinnamoneus by genetic and biochemical approaches. Sci. Rep. 2019, 9, 20226. [Google Scholar] [CrossRef] [Green Version]
- Juguet, M.; Lautru, S.; Francou, F.X.; Nezbedová, Š.; Leblond, P.; Gondry, M.; Pernodet, J.L. An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens. Chem. Biol. 2009, 16, 421–431. [Google Scholar] [CrossRef]
- Tuteja, D.; Dua, M.; Khanna, R.; Dhingra, N.; Khanna, M.; Kaur, H.; Saxena, D.M.; Lal, R. The importance of homologous recombination in the generation of large deletions in hybrid plasmids in Amycolatopsis mediterranei. Plasmid 2000, 43, 1–11. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Lei, C.; Yan, H.; Shao, Z.; Wang, Y.; Zhao, G.; Wang, J.; Ding, X. RifZ (AMED_0655) is a pathway-specific regulator for rifamycin biosynthesis in Amycolatopsis mediterranei. Appl. Environ. Microbiol. 2017, 83, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.D.F. Metabolic Engineering of Actinobacteria for the Production of Flavor. Ph.D. Thesis, University Paris-Saclay, Gif-sur-Yvette, France, 2022. [Google Scholar]
- Caraty-Philippe, L.; da Silva, A.; Pernodet, J.L.; Darbon, E.; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France. Characterization of diketopiperazine biosynthetic gene clusters in Amycolatopsis sp. AA4. Personal communication, 2022. manuscript in preparation. [Google Scholar]
- Boubakri, H.; Seghezzi, N.; Duchateau, M.; Gominet, M.; Kofroňová, O.; Benada, O.; Mazodier, P.; Pernodet, J.L. The absence of pupylation (prokaryotic ubiquitin-like protein modification) affects morphological and physiological differentiation in Streptomyces coelicolor. J. Bacteriol. 2015, 197, 3388–3399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikura, N.; Darbon, E.; Esnault, C.; Deniset-Besseau, A.; Xu, D.; Lejeune, C.; Jacquet, E.; Nhiri, N.; Sago, L.; Cornu, D.; et al. The phosin PptA plays a negative role in the regulation of antibiotic production in Streptomyces lividans. Antibiotics 2021, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Witwinowski, J. Caractérisation de Voies de Biosynthèse de Dicétopipérazines Chez les Actinobactéries. Ph.D. Thesis, Université Paris-Saclay, Gif-sur-Yvette, France, 2017. [Google Scholar]
Strain | Description | Reference or Source |
---|---|---|
E. coli DH5α | General cloning strain | Promega |
E. coli ET12567/pUZ8002 | Host strain for conjugation from E. coli to Amycolatopsis | [30,31] |
E. coli ET12567/pUZ8003 | Host strain for conjugation from E. coli to Amycolatopsis (pUZ8003 is a modified pUZ8002 with aph(3′) gene replaced by bla) | [32] |
A. mediterranei DSM 40773 | Wild-type (WT) strain | DSMZ |
DSM 40773 ∆rifK::att1Ωhyg | A. mediterranei rifK deletion mutant with replacement of the rifK gene by the att1Ωhyg hygromycin resistance cassette | This study |
DSM 40773 ∆rifK::att1 | Unmarked A. mediterranei rifK deletion mutant | This study |
DSM 40773-pRIF14 | A. mediterranei containing pRIF14 | This study |
DSM 40773-pRIF12-pRIF14 | A. mediterranei containing both plasmids pRIF14 and pRIF12 | This study |
DSM 40773 ∆rif::att1 | A. mediterranei with a deletion of the complete rif cluster | This study |
S. aureus HG003 | Rifamycin sensitive strain used as indicator in bioassay analysis | [33] |
S. aureus HG003 rpoB (H418Y) | Rifamycin resistant strain used as indicator in bioassay analysis, rpoB mutant of S. aureus HG003 | Marick Esberard and Philippe Bouloc unpublished |
Plasmid | Description a | Reference or Source |
---|---|---|
pRL60 | E.coli-Amycolatopsis shuttle plasmid, Ery R, Kan R, amy+, oriT | [29] |
pOSV236 | E. coli-Streptomyces shuttle plasmid expressing the Xis and Int proteins for site-specific excision of excisable cassettes, Amp R, Pur R, oriT | [36] |
pOSV504 | Source of the excisable hygromycin cassette (att1Ωhyg), Amp R, Hyg R | [25] |
pOJ260 | E.coli-Amycolatopsis shuttle plasmid, suicide vector in Amycolatopsis, Apr R, oriT | [37] |
pOSV805 | E.coli-Amycolatopsis shuttle plasmid, integrative in Amycolatopsis using the ϕBT1 SSR system, Hyg R, oriT | [32] |
pCR-blunt | E. coli cloning vector, Kan R | Invitrogen |
pT-atts | pUC derivative containing the attL and attR minimal sites from pSAM2, Amp R, Constructed by Twist Biosciences | This study |
pRL60∆amy | E.coli-Amycolatopsis shuttle plasmid, derivative of pRL60, amy−, Ery R, Kan R, oriT | This study |
pEA01 | E.coli-Amycolatopsis shuttle plasmid, pRL60∆amy derivative containing the xis and int genes from pSAM2 under the control of trcp, the pac gene and oriT, Ery R, Kan R, Pur R, oriT | This study |
pEA02 | E.coli-Amycolatopsis shuttle plasmid, suicide vector in Amycolatopsis; pOJ260 derivative containing the minimal attL sequence and a multi-cloning site, Apr R, oriT | This study |
pEA03 | E.coli-Amycolatopsis shuttle plasmid, suicide vector in Amycolatopsis; pOSV805 derivative containing the minimal attR sequence and a multi-cloning site, Hyg R, oriT | This study |
pRIF01 | pCR-blunt derivative containing the downstream homologous region of rifK, KanR | This study |
pRIF02 | pCR-blunt derivative containing the upstream homologous region of rifK, KanR | This study |
pRIF05 | pOJ260 derivative containing the excisable hygromycin cassette (att1Ωhyg) flanked by the upstream and downstream homologous region of rifK, for replacement of rifK, Apr R, oriT | This study |
pRIF09 | pCR-blunt derivative containing the downstream homologous region of the rif cluster, Kan R | This study |
pRIF10 | pCR-blunt derivative containing the upstream homologous region of the rif cluster, Kan R | This study |
pRIF12 | E.coli-Amycolatopsis shuttle plasmid, suicide plasmid in Amycolatopsis; pEA02 derivative containing the upstream region of the rif cluster, attL, Apr R, oriT | This study |
pRIF14 | E.coli-Amycolatopsis shuttle plasmid, suicide plasmid in Amycolatopsis; pEA03 derivative containing the downstream region of the rif cluster, attR, Hyg R, oriT | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.D.F.; Caraty-Philippe, L.; Darbon, E.; Pernodet, J.-L. Marker-Free Genome Engineering in Amycolatopsis Using the pSAM2 Site-Specific Recombination System. Microorganisms 2022, 10, 828. https://doi.org/10.3390/microorganisms10040828
Santos LDF, Caraty-Philippe L, Darbon E, Pernodet J-L. Marker-Free Genome Engineering in Amycolatopsis Using the pSAM2 Site-Specific Recombination System. Microorganisms. 2022; 10(4):828. https://doi.org/10.3390/microorganisms10040828
Chicago/Turabian StyleSantos, Luísa D. F., Laëtitia Caraty-Philippe, Emmanuelle Darbon, and Jean-Luc Pernodet. 2022. "Marker-Free Genome Engineering in Amycolatopsis Using the pSAM2 Site-Specific Recombination System" Microorganisms 10, no. 4: 828. https://doi.org/10.3390/microorganisms10040828
APA StyleSantos, L. D. F., Caraty-Philippe, L., Darbon, E., & Pernodet, J. -L. (2022). Marker-Free Genome Engineering in Amycolatopsis Using the pSAM2 Site-Specific Recombination System. Microorganisms, 10(4), 828. https://doi.org/10.3390/microorganisms10040828