The Identification and Characterization of Endopolygalacturonases in a South African Isolate of Phytophthora cinnamomi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Full-Length P. cinnamomi PG Sequences
2.1.1. Obtaining PG Sequences
2.1.2. Identification of PG Sequences from the Genome of P. cinnamomi
2.1.3. Identifying Full-Length and Partial PG Sequences
2.2. Phylogenetic Tree Construction
2.3. Identification of Intron/Exon Boundaries and Intron Loss/Gain Events
2.4. Inoculation of Avocado Rootstocks and Harvesting of Infected Root Samples
2.5. RNA Extraction, Sequencing and Differential Gene Expression Analysis of P. cinnamomi PG Genes during Avocado Infection
3. Results
3.1. Genome-Wide Identification of P. cinnamomi endoPGs
3.2. Full-Length Protein and Signature Domain Analysis
3.3. Evolution of PGs in P. cinnamomi
3.4. Phylogenetic Relationship between endoPGs from P. cinnamomi and Other Oomycetes
3.5. Time-Course Gene Expression of PG Genes from P. cinnamomi during Colonization of a Susceptible Avocado Rootstock
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rookes, J.E.; Wright, M.L.; Cahill, D.M. Elucidation of defence responses and signalling pathways induced in Arabidopsis thaliana following challenge with Phytophthora cinnamomi. Physiol. Mol. Plant Pathol. 2008, 72, 151–161. [Google Scholar] [CrossRef]
- Hardham, A.R. Cell biology of plant–oomycete interactions. Cell. Microbiol. 2007, 9, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Blackman, L.M.; Cullerne, D.P.; Hardham, A.R. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC. Genom. 2014, 15, 785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardham, A.R. Pathogen profile Phytophthora cinnamomi. Mol. Plant Pathol. 2005, 6, 589–604. [Google Scholar] [CrossRef]
- Cleveland, T.; Cotty, P. Invasiveness of Aspergillus flavus isolates in wounded cotton bolls is associated with production of a specific fungal polygalacturonase. Phytopathology 1991, 81, 155–158. [Google Scholar] [CrossRef]
- Brown, R.; Cleveland, T.; Cotty, P.; Mellon, J. Spread of Aspergillus flavus in cotton bolls, decay of intercarpellary membranes, and production of fungal pectinases. Phytopathology 1992, 82, 462–467. [Google Scholar] [CrossRef]
- Le Cam, B.; Massiot, P.; Rouxel, F. Cell wall polysaccharide-degrading enzymes produced by isolates of Mycocentrospora acerina differing in aggressiveness on carrot. Physiol. Mol. Plant Pathol. 1994, 44, 187–198. [Google Scholar] [CrossRef]
- Have At Mulder, W.; Visser, J.; van Kan, J.A. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant-Microbe Interact. 1998, 11, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Oeser, B.; Heidrich, P.M.; Müller, U.; Tudzynski, P.; Tenberge, K.B. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet. Biol. 2002, 36, 176–186. [Google Scholar] [CrossRef]
- Scott-Craig, J.S.; Panaccione, D.G.; Cervone, F.; Walton, J.D. Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell 1990, 2, 1191–1200. [Google Scholar]
- Gao, S.; Choi, G.H.; Shain, L.; Nuss, D.L. Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica. Appl. Environ. Microbiol. 1996, 62, 1984–1990. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Maceira, F.; Di Pietro, A.; Roncero, M.I.G. Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. Mol. Plant-Microbe Interact. 2000, 13, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Torto, T.A.; Rauser, L.; Kamoun, S. The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Curr. Genet. 2002, 40, 385–390. [Google Scholar] [CrossRef]
- Sun, W.X.; Jia, Y.J.; Feng, B.Z.; O’Neill, N.R.; Zhu, X.P.; Xie, B.Y.; Zhang, X.G. Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici. Genesis 2009, 47, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Götesson, A.; Marshall, J.S.; Jones, D.A.; Hardham, A.R. Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. Mol. Plant-Microbe Interact. 2002, 15, 907–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.-Z.; Liou, R.-F. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 2005, 42, 339–350. [Google Scholar] [CrossRef]
- Lang, C.; Dörnenburg, H. Perspectives in the biological function and the technological application of polygalacturonases. Appl. Microbiol. Biotechnol. 2000, 53, 366–375. [Google Scholar] [CrossRef]
- D’ovidio, R.; Roberti, S.; Di Giovanni, M.; Capodicasa, C.; Melaragni, M.; Sella, L.; Tosi, P.; Favaron, F. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta 2006, 224, 633–645. [Google Scholar] [CrossRef]
- Esquerré-Tugayé, M.-T.; Boudart, G.; Dumas, B. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol. Biochem. 2000, 38, 157–163. [Google Scholar] [CrossRef]
- García-Pineda, E.; Benezer-Benezer, M.; Gutiérrez-Segundo, A.; Rangel-Sánchez, G.; Arreola-Cortés, A.; Castro-Mercado, E. Regulation of defence responses in avocado roots infected with Phytophthora cinnamomi (Rands). Plant Soil 2010, 331, 45–56. [Google Scholar] [CrossRef]
- Hardham, A.R.; Blackman, L.M. Phytophthora cinnamomi. Mol. Plant Pathol. 2018, 19, 260–285. [Google Scholar] [CrossRef] [Green Version]
- Thornton, J.W.; DeSalle, R. Gene family evolution and homology: Genomics meets phylogenetics. Annu. Rev. Genom. Hum. Genet. 2000, 1, 41–73. [Google Scholar] [CrossRef]
- Tyler, B.M.; Tripathy, S.; Zhang, X.; Dehal, P.; Jiang, R.H.; Aerts, A.; Arredondo, F.D.; Baxter, L.; Bensasson, D.; Beynon, J.L. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 2006, 313, 1261–1266. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461, 393. [Google Scholar] [CrossRef]
- Baxter, L.; Tripathy, S.; Ishaque, N.; Boot, N.; Cabral, A.; Kemen, E.; Thines, M.; Ah-Fong, A.; Anderson, R.; Badejoko, W. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 2010, 330, 1549–1551. [Google Scholar] [CrossRef] [Green Version]
- Lamour, K.H.; Mudge, J.; Gobena, D.; Hurtado-Gonzales, O.P.; Schmutz, J.; Kuo, A.; Miller, N.A.; Rice, B.J.; Raffaele, S.; Cano, L.M. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol. Plant-Microbe Interact. 2012, 25, 1350–1360. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Ma, X.; Zhou, S.; Wang, P.; Sun, Y.; Li, X.; Hou, Y. Molecular and functional characterization of a polygalacturonase-inhibiting protein from Cynanchum komarovii that confers fungal resistance in Arabidopsis. PLoS ONE 2016, 11, e0146959. [Google Scholar] [CrossRef] [Green Version]
- Tabima, J.F.; Kronmiller, B.A.; Press, C.M.; Tyler, B.M.; Zasada, I.A.; Grünwald, N.J. Whole genome sequences of the raspberry and strawberry pathogens Phytophthora rubi and P. fragariae. Mol. Plant-Microbe Interact. 2017, 30, 767–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelbrecht, J.; Duong, T.A.; Prabhu, S.A.; Seedat, M.; van den Berg, N. Genome of the destructive oomycete Phytophthora cinnamomi provides insights into its pathogenicity and adaptive potential. BMC Genom. 2021, 22, 1–15. [Google Scholar] [CrossRef]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785. [Google Scholar] [CrossRef]
- Eddy, S.R. Profile hidden Markov models. Bioinform 1998, 14, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016, 34, 772–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Bouckaert, R.R. Bayesian Evolutionary Analysis with BEAST; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Yule, G.U. II.—A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FR S. Philos. Trans. R. Soc. B Biol. Sci. 1925, 213, 21–87. [Google Scholar]
- Whelan, S.; Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Ho, S.Y.; Phillips, M.J.; Rambaut, A. Relaxed phylogenetics and dating with confidence. Public Libr. Sci. Biol. 2006, 4, e88. [Google Scholar] [CrossRef]
- Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 2008, 253, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.W.; Zentmyer, G.A. Production of sporangia by Phytophthora cinnamomi in axenic culture. Mycologia 1970, 62, 397–402. [Google Scholar] [CrossRef]
- Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mapleson, D.; Venturini, L.; Kaithakottil, G.; Swarbreck, D. Efficient and accurate detection of splice junctions from RNA-seq with Portcullis. GigaScience 2018, 7, giy131. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-H.; Yan, H.-Z.; Liu, L.-F.; Liou, R.-F. Functional characterization of a gene family encoding polygalacturonases in Phytophthora parasitica. Mol. Plant-Microbe Interact. 2008, 21, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Vorwerk, S.; Somerville, S.; Somerville, C. The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci. 2004, 9, 203–209. [Google Scholar] [CrossRef]
- van der Does, H.C.; Rep, M. Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol. Plant-Microbe Interact. 2007, 20, 1175–1182. [Google Scholar] [CrossRef] [Green Version]
- Palanivelu, P. Polygalacturonases: Active site analyses and mechanism of action. Indian J. Biotechnol. 2006, 5, 148–162. [Google Scholar]
- Mertens, J.A.; Burdick, R.C.; Rooney, A.P. Identification, biochemical characterization, and evolution of the Rhizopus oryzae 99–880 polygalacturonase gene family. Fungal Genet. Biol. 2008, 45, 1616–1624. [Google Scholar] [CrossRef]
- Federici, L.; Caprari, C.; Mattei, B.; Savino, C.; Di Matteo, A.; De Lorenzo, G.; Cervone, F.; Tsernoglou, D. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc. Natl. Acad. Sci. USA 2001, 98, 13425–13430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickersgill, R.; Smith, D.; Worboys, K.; Jenkins, J. Crystal structure of polygalacturonase from Erwinia carotovora ssp. Carotovora. J. Biol. Chem. 1998, 273, 24660–24664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wubben, J.; Mulder, W.; Ten Have, A.; Van Kan, J.; Visser, J. Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl. Environ. Microbiol. 1999, 65, 1596–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ovidio, R.; Mattei, B.; Roberti, S.; Bellincampi, D. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant–pathogen interactions. Biochim. Et Biophys. Acta (BBA) Proteins Proteom. 2004, 1696, 237–244. [Google Scholar] [CrossRef]
- Di Pietro, A.; Roncero, M.I.G. Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol. Plant-Microbe Interact. 1998, 11, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ten Have, A.; Breuil, W.O.; Wubben, J.P.; Visser, J.; van Kan, J.A. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet. Biol. 2001, 33, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Kasza, Z.; Vagvölgyi, C.; Févre, M.; Cotton, P. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Curr. Microbiol. 2004, 48, 208–213. [Google Scholar] [CrossRef]
- García-Maceira, F.I.; Di Pietro, A.; Huertas-González, M.D.; Ruiz-Roldán, M.C.; Roncero, M.I.G. Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl. Environ. Microbiol. 2001, 67, 2191–2196. [Google Scholar] [CrossRef] [Green Version]
- Cotton, P.; Rascle, C.; Fevre, M. Characterization of PG2, an early endoPG produced by Sclerotinia sclerotiorum, expressed in yeast. FEMS Microbiol. Lett. 2002, 213, 239–244. [Google Scholar] [CrossRef]
- Martel, M.-B.; Létoublon, R.; Fèvre, M. Purification and characterization of two endopolygalacturonases secreted during the early stages of the saprophytic growth of Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 1998, 158, 133–138. [Google Scholar] [CrossRef]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Andrew, M.; Barua, R.; Short, S.M.; Kohn, L.M. Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. Public Libr. Sci. One 2012, 7, e29943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprockett, D.D.; Piontkivska, H.; Blackwood, C.B. Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens. Gene 2011, 479, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Laluk, K.; Mengiste, T. Necrotroph attacks on plants: Wanton destruction or covert extortion? Arab. Book/Am. Soc. Plant Biol. 2010, 8, e0136. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.-S.; Ryu, K.-H.; Kwon, S.-J.; Kim, J.-W.; Kim, K.-S.; Park, K.-C. Phylogenetics and gene structure dynamics of polygalacturonase genes in Aspergillus and Neurospora crassa. Plant Pathol. J. 2013, 29, 234. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.H.; Tyler, B.M.; Govers, F. Comparative analysis of Phytophthora genes encoding secreted proteins reveals conserved synteny and lineage-specific gene duplications and deletions. Mol. Plant-Microbe Interact. 2006, 19, 1311–1321. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.; Merican, A.F.; Gilbert, W. Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc. Natl. Acad. Sci. 2002, 99, 16128–16133. [Google Scholar] [CrossRef] [Green Version]
- Jeffares, D.C.; Mourier, T.; Penny, D. The biology of intron gain and loss. Trends Genet. 2006, 22, 16–22. [Google Scholar] [CrossRef]
- Roy, S.W. The origin of recent introns: Transposons? Genome Biol. 2004, 5, 251. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ma, X.; Yu, H.; Fang, D.; Li, Y.; Wang, X.; Wang, W.; Dong, Y.; Xiao, B. Genomes and virulence difference between two physiological races of Phytophthora nicotianae. GigaScience 2016, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.S.; Shao, J.; Lary, D.J.; Kronmiller, B.A.; Shen, D.; Strem, M.D.; Amoako-Attah, I.; Akrofi, A.Y.; Begoude, B.D.; ten Hoopen, G.M. Phytophthora megakarya and Phytophthora palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms. Genome Biol. Evol. 2017, 9, 536–557. [Google Scholar] [CrossRef]
Gene Coding Sequence | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
pcpg1 | ATGAAGTTCTTCACCACTGCG | CTACACGCTCATGCTGTTGG |
pcpg16 | ATGAAGTTCTTCGCCCCCGTCC | TTAGCAGTCCACGCTGCTGGG |
pcpg17 | ATGAAGTTCTTCGCCCCCGTCC | TTAGCAAGACACTCCGCTCGGTTC |
pcpg19 | ATGAAGGCTTTCTCCGCTCTC | CTTAGCACGGGACATTGGAC |
pcpg25 | ATGAAGTTTTTCTCCGCCTTATTCAC | TTAGCACGGGACATTGTACGG |
Sequence NCBI ID | Renamed Sequence | Hmmsearch E-Value a | Hmmscan Score b | BLASTP E-Value a | BLASTP Score b |
---|---|---|---|---|---|
OL334941 | PcPG1 | 2.4 × 10−196 | 652.2 | 1 × 10−159 | 450 |
OL334942 | PcPG2 | 3.8 × 10−196 | 651.5 | 1 × 10−155 | 441 |
OL334943 | PcPG3 | 5.1 × 10−196 | 651.1 | 1 × 10−157 | 446 |
OL334944 | PcPG4 | 5.1 × 10−196 | 651.1 | 1 × 10−157 | 446 |
OL334945 | PcPG5 | 1.1 × 10−195 | 650.0 | 1 × 10−153 | 436 |
OL334946 | PcPG6 | 3.5 × 10−195 | 648.4 | 1 × 10−154 | 436 |
OL334947 | PcPG7 | 4.2 × 10−195 | 648.1 | 1 × 10−156 | 444 |
OL334948 | PcPG8 | 8.5 × 10−195 | 647.1 | 1 × 10−158 | 447 |
OL334949 | PcPG9 | 1.1 × 10−194 | 646.7 | 1 × 10−156 | 442 |
OL334950 | PcPG10 | 3.7 × 10−192 | 638.4 | 1 × 10−155 | 444 |
OL334951 | PcPG11 | 2.5 × 10−190 | 632.4 | 1 × 10−159 | 453 |
OL334952 | PcPG12 | 2.5 × 10−190 | 632.4 | 1 × 10−159 | 453 |
OL334953 | PcPG13 | 1.6 × 10−189 | 629.7 | 1 × 10−157 | 450 |
OL334954 | PcPG14 | 2 × 10−189 | 629.4 | 1 × 10−158 | 451 |
OL334955 | PcPG15 | 1.3 × 10−187 | 623.5 | 1 × 10−163 | 460 |
OL334956 | PcPG16 | 2.4 × 10−185 | 616.0 | 1 × 10−150 | 427 |
OL334957 | PcPG17 | 2.1 × 10−183 | 609.6 | 1 × 10−139 | 398 |
OL334958 | PcPG18 | 1.9 × 10−177 | 590.0 | 0.0 | 537 |
OL334959 | PcPG19 | 5.8 × 10−176 | 585.1 | 1 × 10−120 | 352 |
OL334960 | PcPG20 | 1.4 × 10−175 | 583.8 | 1 × 10−130 | 376 |
OL334961 | PcPG21 | 1 × 10−169 | 564.6 | 1 × 10−136 | 390 |
OL334962 | PcPG22 | 4.7 × 10−168 | 559.1 | 1 × 10−120 | 367 |
OL334963 | PcPG23 | 2.8 × 10−164 | 546.7 | 1 × 10−136 | 392 |
OL334964 | PcPG24 | 1.3 × 10−161 | 537.9 | 1 × 10−130 | 369 |
OL334965 | PcPG25 | 7.2 × 10−155 | 515.7 | 1 × 10−107 | 319 |
OL334966 | PcPG26 | 1.5 × 10−98 | 330.4 | 1 × 10−71 | 221 |
OL334967 | PcPG27 | 3.2 × 10−91 | 306.4 | 5 × 10−79 | 242 |
OL334968 | PcPG28 | 7 × 10−86 | 288.8 | 7 × 10−66 | 206 |
OL334969 | PcPG29 | 5.1 × 10−82 | 276.1 | 1 × 10−57 | 184 |
OL334970 | PcPG30 | 1.9 × 10−81 | 274.2 | 8 × 10−55 | 176 |
OL334971 | PcPG31 | 6.4 × 10−78 | 262.6 | 6 × 10−63 | 198 |
OL334972 | PcPG32 | 3.3 × 10−71 | 240.5 | 7 × 10−63 | 197 |
OL334973 | PcPG33 | 5.7 × 10−62 | 210.1 | 1 × 10−52 | 171 |
OL334974 | PcPG34 | 2.8 × 10−53 | 181.5 | 2 × 10−51 | 167 |
OL334975 | PcPG35 | 2 × 10−31 | 109.7 | 5 × 10−23 | 94 |
OL334976 | PcPG36 | 5.1 × 10−24 | 85.3 | 7 × 10−17 | 74 |
OL334977 | PcPG37 | 6.6 × 10−14 | 52.0 | 1 × 10−7 | 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyambo, T.M.; Backer, R.; Engelbrecht, J.; Joubert, F.; van der Merwe, N.A.; van den Berg, N. The Identification and Characterization of Endopolygalacturonases in a South African Isolate of Phytophthora cinnamomi. Microorganisms 2022, 10, 1061. https://doi.org/10.3390/microorganisms10051061
Miyambo TM, Backer R, Engelbrecht J, Joubert F, van der Merwe NA, van den Berg N. The Identification and Characterization of Endopolygalacturonases in a South African Isolate of Phytophthora cinnamomi. Microorganisms. 2022; 10(5):1061. https://doi.org/10.3390/microorganisms10051061
Chicago/Turabian StyleMiyambo, Tsakani Magdeline, Robert Backer, Juanita Engelbrecht, Fourie Joubert, Nicolaas Albertus van der Merwe, and Noëlani van den Berg. 2022. "The Identification and Characterization of Endopolygalacturonases in a South African Isolate of Phytophthora cinnamomi" Microorganisms 10, no. 5: 1061. https://doi.org/10.3390/microorganisms10051061
APA StyleMiyambo, T. M., Backer, R., Engelbrecht, J., Joubert, F., van der Merwe, N. A., & van den Berg, N. (2022). The Identification and Characterization of Endopolygalacturonases in a South African Isolate of Phytophthora cinnamomi. Microorganisms, 10(5), 1061. https://doi.org/10.3390/microorganisms10051061