Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Genera Present on Naturally Contaminated Maize
2.2. Maize and the Development of the Moisture Adsorption Curve
2.3. Grain Storage Studies
2.4. Mycotoxins and Secondary Metabolite Analyses
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheli, F.; Campagnoli, A.; Pinotti, L.; Fusi, E.; Dell’Orto, V. Sampling feed for mycotoxins: Acquiring knowledge from food. Ital. J. Anim. Sci. 2009, 8, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Rodriguez, A.; Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef] [PubMed]
- Hautbergue, T.; Jamin, E.L.; Debrauwer, L.; Puel, O.; Oswald, I.P. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat. Prod. Rep. 2018, 35, 147–173. [Google Scholar] [CrossRef] [PubMed]
- Verheecke-Vaessen, C.; Diez-Gutierrez, L.; Renaud, J.; Sumarah, M.; Medina, A.; Magan, N. Interacting climate change environmental factors effects on Fusarium langsethiae growth, expression of TRI genes and T-2/HT-2 mycotoxin production on oat-based media and in stored oats. Fungal Biol. 2019, 123, 617–623. [Google Scholar] [CrossRef]
- Baxter, C.J.; Magan, N.; Lane, B.; Wildman, H.G. Influence of environmental factors on growth and production of pharmaceutically useful metabolites by a Phoma sp. Appl. Microbiol. Biotech. 1998, 49, 328–332. [Google Scholar] [CrossRef]
- Aldred, D.; Magan, N.; Lane, B. Influence of water activity and nutrient type on in vitro growth of surface cultures and production of the pharmaceutical metabolite squalestatin S1 by a Phoma sp. J. Appl. Microbiol. 2000, 87, 842–848. [Google Scholar] [CrossRef]
- Aldred, D.; Penn, J.; Magan, N. Water availability and metabolomic profiles of Epicoccum nigrum and Sarophorum palmicola grown in solid substrate fermentation systems. Mycologist 2005, 19, 18–23. [Google Scholar] [CrossRef]
- IARC. A Review of Human Carcinogens: Chemical Agents and Related Occupations. Available online: http://monographs.iarc.fr/ENG/Monographs/vol100F/mono100F-23.pdf (accessed on 31 March 2022).
- Garcia-Cela, E.; Kiaitsi, E.; Medina, A.; Sulyok, M.; Krska, R.; Magan, N. Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination. Food Addit. Contam. Part A 2019, 36, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef] [Green Version]
- Arbona, V.; Manzi, M.; de Ollas, C.; Gómez-Cadenas, A. Metabolomics as a Tool to Investigate Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 4885–4911. [Google Scholar] [CrossRef]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.; Draeger, S.; dela Cruz, T.E.; Rheinheimer, J.; Siems, K.; Loesgen, S.; Bitzer, J.; Schloerke, O.; Zeeck, A.; Kock, I.; et al. Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot. Mar. 2008, 51, 219–234. [Google Scholar] [CrossRef]
- Chen, F.; Ma, R.; Chen, X.-L. Advances of Metabolomics in Fungal Pathogen–Plant Interactions. Metabolites 2019, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, N.P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 2019, 17, 167–180. [Google Scholar] [CrossRef]
- Sardans, J.; Gargallo-Garriga, A.; Urban, O.; Klem, K.; Walker, T.W.N.; Holub, P.; Janssens, I.A.; Peñuelas, P. Ecometabolomics for a Better Understanding of Plant Responses and Acclimation to Abiotic Factors Linked to Global Change. Metabolites 2020, 10, 239. [Google Scholar] [CrossRef]
- Stevenson, A.; Hamill, P.G.; Medina, A.; Kminek, G.; Rummel, J.D.; Dijksterhuis, J.; Timson, D.J.; Magan, N.; Leong, S.-L.; Hallsworth, J.E. Glycerol enhances fungal germination at the water-activity limit for life. Environ. Microbiol. 2017, 19, 947–967. [Google Scholar] [CrossRef] [Green Version]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Malachova, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Multi-Toxin Determination in Food—The Power of “Dilute and Shoot”. LCGC Eur. 2015, 28, 542–555. [Google Scholar]
- Nielsen, K.F.; Mansson, M.; Frisvad, J.C.; Laresen, T.O. Dereplication of microbial natural products by LC—DAD-TOFMS. Nat. Prod. 2011, 74, 2338–2348. [Google Scholar] [CrossRef]
- Parra, R.; Aldred, D.; Magan, N. A novel immobilized design for the production of the heterologous protein lysozyme by a genetically engineered Aspergillus niger strain. Appl. Microbiol. Biotechnol. 2005, 37, 704–711. [Google Scholar]
- Somjaipeng, S.; Medina, A.; Magan, N. Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzym. Microb. Technol. 2016, 90, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magan, N. Fungi in extreme environments. In Environmental and Microbial Relationships, 2nd ed.; Kubicek, C.P., Druzhinina, I.S., Eds.; The MYCOTA IV; Springer: Berlin, Germany, 2007; Chapter 6; pp. 85–103. [Google Scholar]
- Pusztahelyi, T.; Holb, I.J.; Pócsi, I. Secondary metabolites in fungus-plant interactions. Front. Plant. Sci. 2015, 6, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collemare, J.; Billard, A.; Böhnert, H.U.; Lebrun, M.-H. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthegrisea: The role of hybrid PKS-NRPS in pathogenicity. Mycol. Res. 2008, 112, 207–215. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Environmental fluxes and fungal interactions: Maintaining a competitive edge. In Stress in Yeasts and Filamentous Fungi; van West, P., Avery, S., Stratford, M., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2007; Chapter 2. [Google Scholar]
- Venkatesh, N.; Keller, N.P. Mycotoxins in Conversation with Bacteria and Fungi. Front. Microbiol. 2019, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Pfliegler, W.P.; Pócsi, I.; Győri, Z.; Pusztahelyi, T. The Aspergilli and Their Mycotoxins: Metabolic Interactions with Plants and the Soil Biota. Front. Microbiol. 2020, 10, 2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magan, N.; Garcia-Cela, E.; Verheecke-Vaessen, C.; Medina, A. Advances in postharvest detection and control of fungal contamination of cereals. In Advances in Postharvest Management of Cereals and Grains; Maier, D., Ed.; Burleigh Dodds Series in Agricultural Science; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; Chapter 14; 478p. [Google Scholar]
- Adetunji, M.; Atanda, O.; Ezekiel, C.N.; Sulyok, M.; Warth, B.; Beltrán, E.; Krska, R.; Obadina, O.; Bakare, A.; Chilaka, C.A. Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin. Res. 2014, 30, 89–102. [Google Scholar] [CrossRef]
- Watts, P. Microreactors for drug discovery: The importance of integrating chemical synthesis with real-time analytical detection. Anal. Bioanal. Chem. 2005, 382, 865–867. [Google Scholar] [CrossRef]
- Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro Wolfender, J.-L. Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery. Biotech. Adv. 2014, 32, 1180–1204. [Google Scholar] [CrossRef]
- Wiles, C.; Watts, P. High throuput organic synthesis in microreactors. Adv. Chem. Eng. 2010, 38, 103–194. [Google Scholar]
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; de Souza Vandenberghe, L.P. Recent developments and innovations in solid state fermentation. Biotech. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Parra, R.; Aldred, D.; Magan, N. Medium optimization for the production of the secondary metabolite S1 by a Phoma species combining orthogonal design and response surface methodology. Enzym. Microbial. Technol. 2005, 37, 704–711. [Google Scholar] [CrossRef]
- Medina, A.; Schmidt-Heydt, M.; Rodríguez, A.; Parra, R.; Geisen, R.; Magan, N. Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr. Genet. 2015, 61, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Somjaipeng, S.; Magan, N. Differential effect of interacting environmental factors on growth and human lysozyme production by a recombinant strain of Pichia pastoris. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 1000–1015. [Google Scholar]
Group (Number of Metabolites Studies) | Secondary Metabolites |
---|---|
Aflatoxin derivatives and the metabolites from the aflatoxin pathway (14) | Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2, Aflatoxin M1, Aflatoxin P1, Aflatoxicol. Sterigmatocystin, O-Methylsterigmatocystin, Averantin, Averufin, Versicolorin A, Versicolorin, Nidurufin, Norsolorinic acid |
Other metabolites associated with Aspergillus section Flavi species (5) | Kojic acid, 3-Nitropropionic acid, Cyclopiazonic acid, Asperfuran, Aspinolid B |
Metabolites from other Aspergillus species (19) | Aspergillicin Derivate, Aspterric acid, Bis (methylthio)gliotoxin, Butyrolacton III, Butyrolactone I, Fumigaclavine C, Fumiquinazolin D, Helvolic acid, Phenopyrrozin, Pyranonigrin, Pseurotin A, Demethylsulochrin, Methylsulochrin, Mevastatin, Viomellein, Terphenyllin, Terretonin, Dichlordiaportin, Tryprostatin B |
Fusarium metabolites (27) | Zearalenone, Fumonisin B1, Fumonisin B2, Fumonisin B3, Fumonisin B4, hydrolysed Fumonisin B1, Deoxynivalenol, DON-3-glucoside, Nivalenol, 15-Acetyldeoxynivalenol, T-2 toxin, HT-2 toxin, Monoacetoxyscirpenol, Diacetoxyscirpenol, Moniliformin, Beauvericin, Enniatin B, Enniatin B1, Fusarin C, Epiequisetin, Equisetin, Aurofusarin, Rubrofusarin, Bikaverin, Culmorin, 15-Hydroxyculmorin Chrysogin |
Penicillium metabolites (58) | Ochratoxin A, Ochratoxin B, Patulin, Citrinin, Citreoviridin, Mycophenolic acid, Mycophenolic acid IV, Norverrucosidin, Verrucosidin, Desoxyverrucosidin, Verrucofortine, Xanthomegnin, Viridicatin, Viridicatol, O-Methylviridicatin, Andrastin A, Andrastin B, Paxillin, Penicillic acid, Penicillin G, Penitrem A, Agroclavine, Chanoclavin, Festuclavine, Citreohybridinol, Oxaline, Neoxaline, Meleagrin, Pinselin, Puberulin A, Purpuride, Questiomycin A, Quinolactacin A, Roquefortine C, Roquefortine D, Rugulosin, Rugulovasine A, Griseofulvin, Griseophenone B, Griseophenone C, Dechlorogriseofulvin, Dehydrogriseofulvin, Cyclopenin, Cyclopenol, Cyclopeptine, Dehydrocyclopeptine, Flavoglaucin, Brevicompanine B, Atlantinon A, Aurantiamin A, Aurantine, Anacin, Berkedrimane B, Communesin B,2-Methylmitorubin, Pestalotin, 7-Hydroxypestalotin, Scalusamid A |
Other fungal metabolites (8) | Altersetin, Bassianolide, Ergine, Ergometrine, Ergometrinine, Cladosporin, Gliocladic acid, Heptelidic acid |
Unspecific metabolites (20) | Asperphenamate, Brevianamid F, Chrysophanol, Citreorosein, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val), Emodin, Endocrocin, F01 1358-A, Fallacinol, Fellutanine A, Iso-Rhodoptilometrin, N-Benzoyl-Phenylalanine, Neoechinulin A, Norlichexanthone, Orsellinic acid, Physcion, Rugulusovin, Skyrin, Tryptophol |
Maize Aspergillus Secondary Metabolites (ng/g) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | 20 | 25 | 30 | 35 | ||||||||||||
aw | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 |
Aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 30.5 | 13.5 | <LOD | 1.7 | <LOD | 1717.2 | 19,732.1 | <LOD | <LOD | 559.2 |
Aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 1.7 | <LOD | <LOD | <LOD | <LOD | 48.5 | 216.9 | <LOD | <LOD | 22.5 |
Aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 3.2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 45.5 | 80.6 | <LOD | <LOD | 18.3 |
Aflatoxin P1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 1.8 | <LOD | <LOD | <LOD |
Aflatoxicol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 143.9 | 40 | <LOD | <LOD | <LOD |
Sterigmatocystin | <LOD | <LOD | <LOD | 0.3 | <LOD | <LOD | <LOD | 1.1 | <LOD | 0.7 | <LOD | 18.4 | 1.1 | <LOD | <LOD | <LOD |
O-Methylsterigmatocystin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.5 | <LOD | <LOD | <LOD | 54.7 | 5.9 | <LOD | <LOD | <LOD |
Averantin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 1.2 | <LOD | 0.2 | <LOD | 39.3 | 10.5 | <LOD | <LOD | 27.3 |
Averufin | <LOD | <LOD | <LOD | 1.1 | <LOD | <LOD | <LOD | 3.9 | <LOD | 2.2 | <LOD | 116 | 79.2 | <LOD | <LOD | 28.7 |
Versicolorin A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 4.1 | <LOD | 2.6 | <LOD | 108.2 | 15.1 | <LOD | <LOD | 25.1 |
Versicolorin C | <LOD | <LOD | <LOD | 2.4 | <LOD | <LOD | <LOD | 5.7 | <LOD | 2 | <LOD | 158.7 | 277 | <LOD | <LOD | 68.3 |
Nidurufin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.3 | <LOD | 0.3 | <LOD | 95.8 | <LOD | <LOD | <LOD | 47.9 |
Norsolorinic acid | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 3 | <LOD | 3 | <LOD | <LOD | 61.4 | <LOD | <LOD | <LOD |
Kojic acid | <LOD | <LOD | 209.4 | 199.6 | <LOD | 19.5 | 1823.1 | 142,174.7 | 608.1 | 13,536.5 | 20,854.9 | 3,057,523 | 47,332.3 | <LOD | 25,061.8 | 3,335,509.7 |
3-Nitropropionic acid | <LOD | <LOD | 158.6 | 499 | <LOD | <LOD | <LOD | 264 | <LOD | 182.9 | 56.4 | 13,279.1 | 118.1 | <LOD | 30.1 | 14,677.4 |
Cyclopiazonic | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 137.7 | 552 | 344.8 | <LOD | <LOD | <LOD | <LOD | <LOD | 9244.8 |
Asperfuran | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 152.4 | 1212.1 | <LOD | <LOD | <LOD | <LOD | 389.9 | <LOD | <LOD | 70,155.5 |
Aspinolid B | <LOD | <LOD | 0.5 | 244.2 | <LOD | <LOD | <LOD | 490.2 | <LOD | 355.7 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Maize Penicillium Secondary Metabolites (ng/g) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | 20 | 25 | 30 | 35 | ||||||||||||
aw | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 |
2-Methylmitorubin | <LOD | <LOD | <LOD | 11 | <LOD | <LOD | <LOD | 155.1 | <LOD | 71.1 | <LOD | 413.2 | <LOD | <LOD | <LOD | <LOD |
7-Hydroxypestalotin | 3.9 | 4.3 | 19.3 | 12.8 | 3.6 | 6.8 | 5 | 26.7 | 5.1 | 16 | 8.3 | <LOD | 9.1 | 2.2 | <LOD | <LOD |
Agroclavine | 0.1 | 1.6 | 1.2 | 3.3 | 5.9 | 3 | 12.4 | 9.6 | 15.1 | 18 | 12.9 | <LOD | <LOD | <LOD | <LOD | <LOD |
Anacin | <LOD | <LOD | <LOD | 1176.9 | <LOD | <LOD | <LOD | 103.7 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Andrastin A | <LOD | 0.9 | 1.5 | 166.6 | <LOD | 3 | 2.3 | 180.1 | <LOD | 270.4 | 4.5 | 1657.7 | <LOD | <LOD | <LOD | <LOD |
Andrastin B | <LOD | <LOD | <LOD | 390 | <LOD | <LOD | <LOD | 164.7 | <LOD | 21.3 | <LOD | 133.2 | <LOD | <LOD | <LOD | <LOD |
Atlantinon A | <LOD | <LOD | 7.9 | 729.7 | <LOD | <LOD | 14.2 | 223.2 | <LOD | 414.8 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Aurantiamin A | <LOD | <LOD | <LOD | 813.2 | <LOD | <LOD | <LOD | 54.4 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Aurantine | <LOD | <LOD | 2.1 | 969.8 | <LOD | <LOD | <LOD | 475.8 | <LOD | 1247.7 | 0.8 | 559.5 | <LOD | <LOD | <LOD | <LOD |
Berkedrimane B | <LOD | <LOD | 16.8 | 1724.1 | <LOD | <LOD | <LOD | 7360.5 | <LOD | 3981.2 | 6.4 | 265.4 | <LOD | <LOD | <LOD | <LOD |
Brevicompanine B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Chanoclavin | 0.3 | 4.1 | 5.3 | 18.6 | 4.1 | 5.6 | 12 | 17.2 | 8.7 | 9.8 | 6.4 | 24.6 | <LOD | <LOD | <LOD | 29.1 |
Citreohybridinol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Citreoviridin | <LOD | <LOD | <LOD | 55.7 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Citrinin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 337.9 | <LOD | 934.6 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Communesin B | <LOD | <LOD | <LOD | 19.1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Cyclopenin | <LOD | <LOD | <LOD | 64.9 | <LOD | <LOD | <LOD | 107.8 | <LOD | 114.9 | <LOD | 198 | <LOD | <LOD | <LOD | <LOD |
Cyclopenol | <LOD | 10.4 | 6.1 | 979.8 | <LOD | <LOD | <LOD | 1745.5 | <LOD | 1877.2 | 3.4 | 3260.8 | 5.1 | <LOD | 5.2 | <LOD |
Cyclopeptine | <LOD | <LOD | <LOD | 84.1 | <LOD | <LOD | <LOD | 80.9 | <LOD | 76.9 | <LOD | 160.9 | <LOD | <LOD | <LOD | <LOD |
Dechlorogriseofulvin | <LOD | <LOD | <LOD | 77.8 | <LOD | <LOD | <LOD | 301.8 | <LOD | 122.3 | <LOD | 1992.4 | <LOD | <LOD | <LOD | <LOD |
Dehydrocyclopeptine | <LOD | <LOD | <LOD | 21.2 | <LOD | <LOD | <LOD | 19.3 | <LOD | 19.6 | <LOD | 90.1 | <LOD | <LOD | <LOD | <LOD |
Dehydrogriseofulvin | <LOD | <LOD | <LOD | 0.7 | <LOD | <LOD | <LOD | 2.4 | <LOD | 0.6 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Desoxyverrucosidin | <LOD | <LOD | <LOD | 59.6 | <LOD | <LOD | <LOD | 53.5 | <LOD | 85.4 | <LOD | 118.5 | <LOD | <LOD | <LOD | <LOD |
Festuclavine | <LOD | 0.2 | 0.6 | 0.9 | 0.2 | 0.3 | 1.7 | 1.5 | 0.5 | 1.1 | 1.6 | <LOD | <LOD | <LOD | <LOD | 9 |
Flavoglaucin | <LOD | 7576 | 118,078 | 132,976 | 5186 | 97,681 | 144,820 | 140,188 | 45,908 | 140,928 | 293,943 | 562,099 | 219,519 | <LOD | 216,805 | 240,027 |
Griseofulvin | <LOD | <LOD | <LOD | 83.6 | <LOD | <LOD | <LOD | 225.9 | <LOD | 139.3 | <LOD | 1057.6 | <LOD | <LOD | <LOD | <LOD |
Griseophenone B | <LOD | <LOD | <LOD | 380.3 | <LOD | <LOD | <LOD | 1881.7 | <LOD | 644.1 | <LOD | 3376.9 | <LOD | <LOD | <LOD | <LOD |
Griseophenone C | <LOD | <LOD | <LOD | 28 | <LOD | <LOD | <LOD | 126.8 | <LOD | 55.2 | <LOD | 279.5 | <LOD | <LOD | <LOD | <LOD |
Meleagrin | <LOD | <LOD | <LOD | 573.9 | <LOD | <LOD | <LOD | 118.9 | <LOD | 68.6 | <LOD | 30.8 | <LOD | <LOD | <LOD | <LOD |
Mycophenolic acid | 2.3 | 5.8 | 82.2 | 417.6 | 760 | <LOD | 58.3 | 173.2 | <LOD | <LOD | <LOD | <LOD | 25.7 | <LOD | 8.6 | <LOD |
Mycophenolic acid IV | <LOD | <LOD | 2.8 | 9.5 | 1.9 | <LOD | <LOD | 4.1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Neoxaline | <LOD | <LOD | <LOD | 5.9 | <LOD | <LOD | <LOD | 1.7 | <LOD | 1.6 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Norverrucosidin | <LOD | <LOD | <LOD | 146.2 | <LOD | <LOD | 1.1 | 84.3 | <LOD | 196.6 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Ochratoxin A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 204.3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Ochratoxin B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
O-Methylviridicatin | <LOD | <LOD | <LOD | 8.9 | <LOD | <LOD | <LOD | 7.9 | <LOD | 11.1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Oxaline | <LOD | <LOD | 0.3 | 293.7 | 0.7 | <LOD | 0.5 | 221.9 | <LOD | 302.2 | 0.1 | 15.8 | <LOD | <LOD | <LOD | <LOD |
Patulin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Paxillin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Penicillic acid | <LOD | <LOD | <LOD | 29.9 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Penicillin G | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Penitrem A | <LOD | <LOD | <LOD | 6.5 | <LOD | <LOD | <LOD | 9.1 | <LOD | 8.5 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Pestalotin | 4 | <LOD | 9.9 | 6.9 | 4.5 | 2.9 | 4.9 | 10.2 | 3.6 | 7.3 | 9.5 | <LOD | 4.7 | <LOD | 1.8 | <LOD |
Pinselin | <LOD | <LOD | 43.5 | 12990.3 | 15.6 | <LOD | 37.2 | 3546.4 | <LOD | 4112.1 | 15.2 | 4634.3 | <LOD | <LOD | <LOD | <LOD |
Puberulin A | <LOD | <LOD | <LOD | 94.9 | <LOD | <LOD | <LOD | 12 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Purpuride | <LOD | <LOD | <LOD | 1913.2 | <LOD | <LOD | <LOD | 3077.1 | <LOD | 2188.9 | 9.5 | 126.7 | <LOD | <LOD | <LOD | <LOD |
Questiomycin A | 13.7 | 22.5 | 30.1 | 31 | 11.7 | 14.1 | 16.5 | 50.6 | 15.1 | 35.9 | 28.2 | <LOD | 20 | 5.9 | 8.7 | <LOD |
Quinolactacin A | <LOD | <LOD | <LOD | 0.4 | <LOD | 0.1 | <LOD | 0.4 | <LOD | 0.4 | 51.6 | 2.6 | <LOD | <LOD | <LOD | <LOD |
Roquefortine C | <LOD | <LOD | <LOD | 30116.3 | <LOD | <LOD | <LOD | 48492.9 | <LOD | 20269 | <LOD | 130454 | <LOD | <LOD | <LOD | <LOD |
Roquefortine D | <LOD | <LOD | <LOD | 84.5 | <LOD | <LOD | <LOD | 132.8 | <LOD | 89 | <LOD | 271.9 | <LOD | <LOD | <LOD | <LOD |
Rugulosin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 160.1 | <LOD | <LOD | <LOD | 7212.7 | <LOD | <LOD | <LOD | <LOD |
Rugulovasine A | <LOD | <LOD | <LOD | 28 | <LOD | <LOD | <LOD | 225.1 | <LOD | 38.9 | <LOD | 509.4 | <LOD | <LOD | <LOD | <LOD |
Scalusamid A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 23.2 | <LOD | <LOD | <LOD | <LOD | <LOD |
Verrucofortine | <LOD | <LOD | <LOD | 1.2 | <LOD | <LOD | <LOD | 0.8 | <LOD | 0.7 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Verrucosidin | <LOD | <LOD | <LOD | 335.2 | <LOD | <LOD | 9.9 | 245.5 | <LOD | 535.5 | <LOD | 125.2 | <LOD | <LOD | <LOD | <LOD |
Viridicatin | <LOD | <LOD | 19.6 | 308.5 | <LOD | <LOD | <LOD | 138 | <LOD | 144 | <LOD | 407.1 | <LOD | <LOD | <LOD | <LOD |
Viridicatol | <LOD | <LOD | 154.1 | 3473.6 | 204.9 | <LOD | <LOD | 1623.4 | <LOD | 1665.5 | <LOD | 3445.4 | <LOD | <LOD | <LOD | <LOD |
Xanthomegnin | <LOD | <LOD | <LOD | 1775.7 | <LOD | <LOD | <LOD | 2091.7 | <LOD | 953 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Maize Fusarium Secondary Metabolites (ng/g) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | 20 | 25 | 30 | 35 | ||||||||||||
aw | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 | 0.8 | 0.85 | 0.9 | 0.95 |
Zearalenone | 3.3 | 4.7 | 20.2 | 1.9 | 2.2 | 2.4 | 2.2 | <LOD | 2 | 1.9 | 23.1 | <LOD | 2.8 | 54.7 | 24 | 1303.9 |
Fumonisin B1 | 61.7 | 61.2 | 65.3 | 56.7 | 363.3 | 13,771.9 | 59.7 | 91,682.8 | 58.6 | 397.5 | 165.6 | 21451.5 | 85.9 | 37.1 | 105.5 | <LOD |
Fumonisin B2 | 19 | 10.5 | 9.7 | 14.7 | 48.3 | 2597.1 | 10.1 | 22,186.5 | <LOD | 176.2 | 56.4 | 4225.5 | 17.1 | 16.1 | 17.2 | <LOD |
Fumonisin B3 | 8.1 | 31.8 | <LOD | <LOD | 82.2 | 1011 | <LOD | 16,173.3 | <LOD | 330.9 | <LOD | 7480.1 | 31.8 | <LOD | <LOD | <LOD |
Fumonisin B4 | <LOD | <LOD | <LOD | <LOD | 96.1 | 1468.2 | <LOD | 248.2 | <LOD | 248.2 | <LOD | 5294.8 | <LOD | <LOD | <LOD | <LOD |
hydrolysed Fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | 3 | <LOD | 78.9 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Deoxynivalenol | 339.1 | 1285.6 | 405.9 | 328.2 | 772.7 | 436.5 | 320.3 | 223.5 | 150.8 | 40.3 | 1282.6 | 3419.1 | 330.3 | 3213.5 | 537.5 | 6303.6 |
DON-3-glucoside | <LOD | 82.9 | 16.4 | <LOD | <LOD | <LOD | 21.1 | 30.5 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 52.7 | <LOD |
Nivalenol | <LOD | 43.6 | 122.1 | 405.9 | 15.9 | 78.6 | 62.2 | 58.9 | 107.6 | <LOD | 14.4 | <LOD | 161.7 | 51.1 | 1002 | <LOD |
15-Acetyldeoxynivalenol | 135.4 | 162.4 | 222 | 81.4 | 94.9 | 188.6 | 111.5 | <LOD | 109.4 | 105.9 | 77.6 | <LOD | 233.5 | <LOD | 271.3 | <LOD |
T-2 toxin | <LOD | <LOD | 3.9 | <LOD | <LOD | <LOD | 3.7 | <LOD | <LOD | <LOD | <LOD | <LOD | 22.2 | <LOD | <LOD | <LOD |
HT-2 toxin | <LOD | <LOD | 30.3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 163.5 | <LOD | <LOD | <LOD |
Monoacetoxyscirpenol | <LOD | <LOD | <LOD | 79.1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 92.6 | <LOD |
Diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 27.1 | <LOD |
Moniliformin | 27.2 | 25.1 | 57.3 | 4116.3 | 179.7 | 91 | 26.4 | 2535.2 | 22.1 | 1048.2 | 42.1 | 13,282.9 | 19.8 | 24.6 | 447 | 1449 |
Beauvericin | 72.8 | 5.8 | 5.8 | 5.1 | 7.2 | 26.8 | 4.7 | 75.9 | 9.7 | 73.6 | 6 | 171.6 | 5.7 | 7.9 | 9.4 | 10.1 |
Enniatin B | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | <LOD | <LOD | <LOD | <LOD | 0.3 | 0.2 | 0.8 | <LOD |
Enniatin B1 | 0.6 | 0.6 | 0.7 | 0.7 | 0.6 | 0.5 | 0.5 | 0.6 | <LOD | <LOD | <LOD | <LOD | 0.6 | 0.5 | 0.7 | <LOD |
Fusarin C | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 5424.2 | <LOD | 721.2 | <LOD | 15468 | <LOD | <LOD | <LOD | <LOD |
Epiequisetin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 204.6 | <LOD |
Equisetin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 3049.1 | <LOD |
Aurofusarin | 29.7 | 478.9 | 94.8 | 107.1 | 45.8 | 55.8 | 60.5 | 118.8 | 114.4 | 66.2 | 219.3 | 262.1 | 70.4 | 7673.5 | 481.4 | 1929.9 |
Rubrofusarin | <LOD | <LOD | <LOD | 111.7 | <LOD | <LOD | <LOD | 225.5 | <LOD | 225.5 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Bikaverin | <LOD | <LOD | 33.1 | <LOD | 120 | 158.1 | 7.5 | 730.4 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Culmorin | 380.8 | 2072.3 | 845.5 | 446.3 | 333 | 419.2 | 299.1 | 58.6 | 121 | 131.6 | 1794.4 | 4599.4 | 50.1 | <LOD | 503 | <LOD |
15-Hydroxyculmorin | <LOD | 1156.1 | 481.9 | 199 | 472.1 | 205.6 | 89 | 402.1 | 335.7 | <LOD | 276.2 | <LOD | 723.8 | 12,356.5 | 363.5 | 7503.1 |
Chrysogin | <LOD | <LOD | <LOD | 3.1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 8.7 | <LOD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Cela, E.; Sulyok, M.; Verheecke-Vaessen, C.; Medina, A.; Krska, R.; Magan, N. Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize. Microorganisms 2022, 10, 853. https://doi.org/10.3390/microorganisms10050853
Garcia-Cela E, Sulyok M, Verheecke-Vaessen C, Medina A, Krska R, Magan N. Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize. Microorganisms. 2022; 10(5):853. https://doi.org/10.3390/microorganisms10050853
Chicago/Turabian StyleGarcia-Cela, Esther, Michael Sulyok, Carol Verheecke-Vaessen, Angel Medina, Rudolf Krska, and Naresh Magan. 2022. "Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize" Microorganisms 10, no. 5: 853. https://doi.org/10.3390/microorganisms10050853
APA StyleGarcia-Cela, E., Sulyok, M., Verheecke-Vaessen, C., Medina, A., Krska, R., & Magan, N. (2022). Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize. Microorganisms, 10(5), 853. https://doi.org/10.3390/microorganisms10050853